A GEOMETRIC CRITERION FOR MEMBERSHIP IN NEW CLASSES $\mathbb{A}_{1,1}{ }^{2}(r)$

Han Soo Kim and Hae Gyu Kim

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $l_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_{T} denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology. Moreover, let $Q_{\mathcal{A}_{T}}$ denote the quotient space $\mathcal{C}_{1}(\mathcal{H}) /{ }^{\perp} \mathcal{A}_{T}$, where $\mathcal{C}_{1}(\mathcal{H})$ is the trace class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and ${ }^{\perp} \mathcal{A}_{T}$ denotes the preannihilator of \mathcal{A}_{T} in $\mathcal{C}_{1}(\mathcal{H})$. For a brief notation, we shall denote $Q_{\mathcal{A}_{T}}$ by Q_{T}. One knows that \mathcal{A}_{T} is the dual space of Q_{T} and that the duality is given by

$$
\begin{equation*}
\langle A,[L]\rangle=\operatorname{tr}(A L), \quad A \in \mathcal{A}_{T}, \quad[L\} \in Q_{T} \tag{1}
\end{equation*}
$$

The Banach space Q_{T} is called a predual of \mathcal{A}_{T}. For x and y in \mathcal{H}, we can write $x \otimes y$ for the rank one operator in $\mathcal{C}_{1}(\mathcal{H})$ defined by

$$
\begin{equation*}
(x \otimes y)(u)=(u, y) x, \quad{ }^{\forall} u \in \mathcal{H} \tag{2}
\end{equation*}
$$

The theory of dual algebras is applied to the study of invariant subspaces, dilation theory, and reflexivity. The classes $\mathbb{A}_{m, n}$ (to be defined in Section 2) were defined by Bercovici-Foias-Pearcy in [3]. Also these classes are closely related to the study of the theory of dual algebras.

[^0]Especially, B. Chevreau and C. Pearcy [7] defined the properties $E_{\theta, \gamma}^{r}$ (to be defined in Section 2), and B. Chevreau, G. Exner and C. Pearcy [6] obtained some new sufficient conditions for membership in the class $\mathbb{A}_{1, N_{0}}$ (to be defined in Section 2) concerning the properties $E_{\theta, \gamma}^{r}$. In this paper, we construct new classes and obtain a geometric criterion for membership in the classes $\mathbb{A}_{m, n}^{l}$ (to be defined in Section 3).

2. Notation and preliminaries

The notation and terminology employed herein agree with those in [4], [5], [7], [12]. We shall denote by D the open unit disc in the complex plane C, and we write \mathbb{T} for the boundary of D. The space $L^{p}=L^{p}(\mathbb{T}), 1 \leq p \leq \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on \mathbb{T}. The space $H^{p}=H^{p}(\mathbb{T}), 1 \leq$ $p \leq \infty$, is the usual Hardy space. It is well-known that the space H^{∞} is the dual space of L^{1} / H_{0}^{1}, where

$$
\begin{equation*}
H_{0}^{1}=\left\{f \in L^{1}: \int_{0}^{2 \pi} f\left(e^{2 t}\right) e^{2 n t} d t=0, \quad \text { for } \quad n=0,1,2, \cdots\right\} \tag{3}
\end{equation*}
$$

and the duality is given by the pairing

$$
\begin{equation*}
\langle f,[g]\rangle=\int_{T} f g d m \quad \text { for } \quad f \in H^{\infty}, \quad[g] \in L^{1} / H_{0}^{1} \tag{4}
\end{equation*}
$$

Recall that any contraction T can be written as a direct sum $T=$ $T_{1} \oplus T_{2}$, where T_{1} is a completely nonunitary contraction and T_{2} is a unitary operator. If T_{2} is absolutely continuous or acts on the space (0), T will be called an absolutely continuous contraction. The following Foias-Sz.Nagy functional calculus provides a good relationship between the function space H^{∞} and a dual algebra \mathcal{A}_{T}.

Theorem 2.1 [4, Theorem 4.1]. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism Φ_{T} : $H^{\infty} \rightarrow \mathcal{A}_{T}$ defined by $\Phi_{T}(f)=f(T)$ such that
(a) $\Phi_{T}(1)=1_{\mathcal{H}}, \quad \Phi_{T}(\xi)=T$,
(b) $\left\|\Phi_{T}(f)\right\| \leq\|f\|_{\infty}, \quad f \in H^{\infty}$,
(c) Φ_{T} is continuous if both H^{∞} and \mathcal{A}_{T} are given their weak ${ }^{*}$ topologies,
(d) the range of Φ_{T} is weak dense in \mathcal{A}_{T},
(e) there exists a bounded, linear, one-to-one map $\phi_{T}: Q_{T} \rightarrow$ L^{1} / H_{0}^{1} such that $\phi_{T}{ }^{*}=\Phi_{T}$, and
(f) if Φ_{T} is an isometry, then Φ_{T} is a wea k^{*} homeomorphism of H^{∞} onto \mathcal{A}_{T} and ϕ_{T} is an isometry of Q_{T} onto L^{1} / H_{0}^{1}.

Definition 2.2 [3]. Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra and let m and n be any cardinal numbers such that $1 \leq m, n \leq \aleph_{0}$. A dual algebra \mathcal{A} will be said to have property ($\mathbb{A}_{m, n}$) if $m \times n$ system of simultaneous equations of the form

$$
\begin{equation*}
\left[x_{\imath} \otimes y_{\jmath}\right]=\left[L_{\imath, \jmath}\right], \quad 0 \leq i<m, 0 \leq \jmath<n, \tag{5}
\end{equation*}
$$

where $\left\{\left[L_{i, j}\right]\right\}_{\substack{0 \leq 2<m \\ 0 \leq j<n}}$ is an arbitrary $m \times n$ array from $Q_{\mathcal{A}}$, has a solution $\left\{x_{2}\right\}_{0 \leq \imath<m},\left\{y_{3}\right\}_{0 \leq \jmath<n}$ consisting of a pair of sequences of vectors from \mathcal{H}. Furthermore, if m and n are positive integers and r is a fixed real number satisfying $T \geq 1$, a dual algebra \mathcal{A} (with property ($\mathbb{A}_{m, n}$)) is said to have property $\left(\mathbb{A}_{m, n}(r)\right.$) if for every $s>r$ and every $m \times n$ array $\left\{\left[L_{2, j}\right]\right\}_{\substack{0 \lll m \\ 0 \leq j<n}}$ from $Q_{\mathcal{A}}$ such that the rows and columns of the matrix ($\left[L_{2, y}\right]$) are summable, there exist sequences $\left\{x_{t}\right\}_{0 \leq i<m}$ and $\left\{y_{j}\right\}_{0 \leq J<n}$ from \mathcal{H} that satisfy (5) and also satısfy the following conditions:

$$
\begin{equation*}
\left\|x_{i}\right\|^{2} \leq s \sum_{0 \leq j<n}\left\|\left[L_{i_{3}}\right]\right\|, 0 \leq i<m, \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{j}\right\|^{2} \leq s \sum_{0 \leq i<m}\left\|\left[L_{x_{3}}\right]\right\|, 0 \leq j<n \tag{6b}
\end{equation*}
$$

Finally, a dual algebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ has property $\left(\mathbb{A}_{m, \aleph_{0}}(r)\right.$) (for some real number $r \geq 1$) if for every $s>r$ and every array $\left\{\left[L_{i, y}\right]\right\}_{0<x<m}^{0 \leq 1<\infty}$ from $Q_{\mathcal{A}}$ with summable rows, there exist sequences $\left\{x_{i}\right\}_{0 \leq i<m}$ and $\left\{y_{3}\right\}_{0 \leq j<\infty}$ from \mathcal{H} that satisfy (5) and ($6 a, b$) with the replacement of n by \aleph_{0}. Properties $\left(\mathbb{A}_{\aleph_{0}, n}(r)\right)$ and $\left(\mathbb{A}_{\aleph_{0}, \aleph_{0}}(r)\right)$ are defined similary. For brief notation, we shall denote $\left(\mathbb{A}_{n, n}\right)$ by $\left(\mathbb{A}_{n}\right)$. Furthermore, if m and n are cardinal numbers such that $1 \leq m, n \leq \aleph_{0}$, we denote by $\mathbb{A}_{m, n}=\mathbb{A}_{m, n}(\mathcal{H})$ the set of all T in $\mathbb{A}(\mathcal{H})$ such that the singly generated dual algebra \mathcal{A}_{T} has property ($\mathbb{A}_{\mathrm{m}, n}$).

Definition 2.3 [7]. Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and $0 \leq$ $\theta<\gamma \leq 1$. We denote by $\mathcal{E}_{\theta}^{r}(\mathcal{A})$ (resp. $\mathcal{E}_{\theta}^{l}(\mathcal{A})$) the set of all $[L]$ in $Q_{\mathcal{A}}$ such that there exist sequences $\left\{x_{\imath}\right\}_{i=1}^{\infty}$ and $\left\{y_{\imath}\right\}_{\imath=1}^{\infty}$ of vectors from \mathcal{H} satisfying
(a) $\lim \sup _{\imath \rightarrow \infty}\left\|\left[x_{\imath} \otimes y_{2}\right]-[L]\right\| \leq \theta$,
(b) $\left\|x_{i}\right\| \leq 1,\left\|y_{i}\right\| \leq 1,1 \leq i<\infty$,
(cr) $\left\|\left[x_{2} \otimes z\right]\right\| \rightarrow 0$ for all z in $\mathcal{H}\left(\right.$ resp. $\left(c^{l}\right)\left\|\left[z \otimes y_{\imath}\right]\right\| \rightarrow 0$ for all z in $\mathcal{H})$, and
(d^{r}) $\left\{y_{\imath}\right\}$ converges weakly to zero (resp. (d^{l}) $\left\{x_{\imath}\right\}$ converges weakly to zero).
For $0 \leq \theta<\gamma \leq 1$, the dual algebra \mathcal{A} is said to have property $E_{\theta, \gamma}^{r}$ (resp. $E_{\theta, \gamma}^{\prime}$) if the closed absolutely convex hull of the set $\mathcal{E}_{\theta}^{\tau}(\mathcal{A})$ (resp. $\left.\mathcal{E}_{\theta}^{r}(\mathcal{A})\right)$ contains the closed ball $B_{0, \gamma}$ of radius γ centered at the origin in $Q_{\mathcal{A}}$:

$$
\begin{gather*}
\left.\left.\overline{\operatorname{aco}\left(\mathcal{E}_{\theta}^{n}\right.}(\mathcal{A})\right) \supset\left\{[L] \in Q_{\mathcal{A}}: \| L\right] \| \leq \gamma\right\}=B_{0, \gamma} \tag{7}\\
\left(\operatorname{resp} . \quad \overline{a c o}\left(\mathcal{E}_{\theta}^{l}(\mathcal{A})\right) \supset B_{0, \gamma}\right)
\end{gather*}
$$

To establish our results, it will be convenient to use the minimal coisometric extension theorem [12]: every contraction T in $\mathcal{L}(\mathcal{H})$ has a minimal coisometric extension $B=B_{T}$ that is unique up to unitary equivalence. Given such T and B, one knows that there exists a canonical decomposition of the isometry B^{*} as

$$
\begin{equation*}
B^{*}=S \oplus R^{*} \tag{8}
\end{equation*}
$$

corresponding to a decomposition of the space

$$
\begin{equation*}
\mathcal{K}=\mathcal{S} \oplus \mathcal{R} \tag{9}
\end{equation*}
$$

where, if $\mathcal{S} \neq(0), S$ is a unilateral shift operator of some multiplicity in $\mathcal{L}(\mathcal{S})$, and, if $\mathcal{R} \neq(0), R$ is a unitary operator in $\mathcal{L}(\mathcal{R})$. Of course, either \mathcal{S} or \mathcal{R} may be (0). ([7])

Lemma 2.4 [7, Lemma 3.2]. If T is an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$ with minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$, and the subspace \mathcal{R} of \mathcal{K} in (9) is nonzero, then the unitary operator R in (8) is absolutely continuous.

Lemma 2.5 [7, Lemma 3.5]. Suppose $T \in \mathbb{A}(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$. Then $B \in \mathbb{A}(\mathcal{K}), \Phi_{T} \circ \Phi_{B}^{-1}$ is an isometry and weak ${ }^{*}$ homeomorphism from \mathcal{A}_{B} onto \mathcal{A}_{T}, and $j=\varphi_{B}^{-1} \circ$ φ_{T} is a linear isometry of Q_{T} onto Q_{B}. Moreover,

$$
\begin{equation*}
j\left(\left[C_{\lambda}\right] T\right)=\left[C_{\lambda}\right]_{B}, \quad \lambda \in D, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
j\left([x \otimes y]_{T}\right)=[x \otimes y]_{B}, \quad x, y \in \mathcal{H} . \tag{11}
\end{equation*}
$$

Lemma 2.6 [7 , Lemma 3.6]. If T belongs to $\mathbb{A}(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K}), x, y \in \mathcal{H}$, and $w, z \in \mathcal{K}$, then

$$
\begin{gather*}
\left\|[x \otimes y]_{X}\right\|=\left\|[x \otimes y]_{B}\right\|, \tag{12}\\
{[x \otimes z]_{B}=[x \otimes P z]_{B},} \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
[w \otimes z]_{B}=[Q w \otimes Q z]_{B}+[A w \otimes A z]_{B} . \tag{14}
\end{equation*}
$$

Lemma 2.7 [7, Lemma 3.7]. Suppose $T \in \mathbb{A}(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$, and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence from \mathcal{H} such that

$$
\begin{equation*}
\left\|\left[x_{n} \otimes y\right]_{T}\right\| \rightarrow 0, \quad{ }^{\forall} y \in \mathcal{H} \tag{15}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \left\|\left[x_{n} \otimes z\right]_{B}\right\| \rightarrow 0, \quad{ }^{\forall} z \in \mathcal{K}, \tag{16}\\
& \left\|\left[Q x_{n} \otimes z\right]_{B}\right\| \rightarrow 0, \quad{ }^{\forall} z \in \mathcal{K}, \tag{17}
\end{align*}
$$

$$
\left\|\left[A x_{n} \otimes z\right]_{B}\right\| \rightarrow 0, \quad{ }^{\forall} z \in \mathcal{K}
$$

Lemma 2.8 [7, Lemma 3.8]. Suppose $T \in \mathbb{A}(\mathcal{H})$ and has B in $\mathcal{L}(\mathcal{K})$ for its minimal coisometric extension. If $\left\{z_{n}\right\}$ is any sequence in \mathcal{K} that converges weakly to zero, then

$$
\begin{equation*}
\left\|\left[w \otimes z_{n}\right]_{B}\right\| \rightarrow 0, \quad{ }^{\forall} w \in \mathcal{S} . \tag{19}
\end{equation*}
$$

Suppose U is an absolutely continuous unitary operator in $\mathcal{L}(\mathcal{N})$ with spectral measure E_{U}, and let μ be a scalar spcetral measure for U. Then one knows, via the absolute continuity, that there exists a Borel set $\Sigma \subset \mathbb{T}$ such that μ is equivalent to Lebesgue measure $m i_{\Sigma}$ (where this measure is defined to be zero on Borel subsets of $\mathbb{T} \backslash \Sigma$). For any vectors x and y in \mathcal{N}, let us denote by $\mu_{x, y}$ the complex measure on \mathbb{T} defined by

$$
\begin{equation*}
\mu_{x . y}(\mathcal{B})=\left(E_{U}(\mathcal{B}) x, y\right) \tag{20}
\end{equation*}
$$

for every Borel subset \mathcal{B} of \mathbb{T}. Obviously all of these complex measures $\mu_{x, y}$ are absolutely continuous with respect to the measure $\left.m\right|_{\Sigma}$. Therefore, for each parr $x, y \in \mathcal{N}$, there is a function in $L^{1}(\Sigma)$, which is denote by ${ }^{U}{ }^{U} y$ or $x \cdot y$, that is the Radon- Nikodym derivatives of $\mu_{x, y}$ with respect to $\left.m\right|_{\Sigma}$. We thus have, of course,

$$
\begin{equation*}
(l(U) x, y)=\int_{\mathbf{T}} l \quad d \mu_{x, y}=\int_{\Sigma} l\{x \cdot y\} d m, \quad l \in L^{\infty}(\Sigma) \tag{21}
\end{equation*}
$$

Lemma 2.9 [7, Lemma 3.9]. Suppose $T \in \mathbb{A}(\mathcal{H})$ and has $B=S^{*} \oplus R$ as its minimal coisometric extension, with $\mathcal{R} \neq(0)$. Then, for every pair of vectors $w, z \in \mathcal{R}$, we have

$$
\begin{equation*}
\left[w^{R} z\right]=\varphi_{B}\left([w \otimes z]_{B}\right) \tag{22}
\end{equation*}
$$

Lemma 2.10. For $k=1,2$, suppose T_{k} belongs to $\mathbb{A}(\mathcal{H})$ and has minimal coisometric extension $B_{k}=S_{k}^{*} \oplus R_{k}$ in $\mathcal{L}(\mathcal{K})$ with $\mathcal{R}_{k} \neq(0)$. Let $\Sigma_{k} \subset \mathbb{T}$ and $\mathcal{R}_{0, k} \subset \mathcal{R}_{k}$ be as in [7, Proposition 3.10], and denote the projection of \mathcal{K} onto $\mathcal{R}_{0, k}$ by $A_{0, k}$. Let also ϵ and ρ be arbitrary
real numbers such that $\epsilon>0$ and $0<\rho<1$. If $a_{1} \in \mathcal{H}, b_{k} \in \mathcal{R}_{k}$ and $h_{k} \in L^{1}\left(\Sigma_{k}\right)$ are given, and we write $h_{1, k}=\left(A_{k} a_{1}{ }^{R} b_{k}\right)+h_{k}$, then there exist, for each $k=1,2, \quad u_{k} \in \mathcal{H}$ and $c_{k} \in \mathcal{R}_{k}$ such that

$$
\begin{equation*}
\left\|h_{1, k}-A_{k}\left(a_{1}+u_{k}\right)^{R} c_{k}\right\|_{1}<\epsilon \tag{23}
\end{equation*}
$$

$$
\begin{gather*}
\left\|\left(A_{k}-A_{0, k}\right) u_{k}\right\|<\epsilon, \tag{25}\\
\left\|u_{k}\right\| \leq 2\left\|h_{k}\right\|_{1}^{1 / 2}, \\
\left\|c_{k}\right\| \leq(1 / \rho)\left\{\left\|b_{k}\right\|+\left\|h_{k}\right\|_{1}^{1 / 2}\right\}, \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{k}-\dot{b}_{k} \in \mathcal{R}_{0, k}, \tag{28}
\end{equation*}
$$

where the notation $\left\|\|_{1}\right.$ indicates the norm on $L^{1}(\Sigma)$.
Proof. It is clear from [7, Theorem 3.11].

We shall employ the notation $C_{0}=C_{0}(\mathcal{H})$ for the class of all (completely nonunitary) contractions T in $\mathcal{L}(\mathcal{H})$ such that the sequences $\left\{T^{* n}\right\}$ converges to zero in the strong operator topology and is denoted by, as usual, $C_{0}=\left(C_{0}\right)^{*}$, and \mathbb{N} is denoted by the set of all natural numbers.

Lemma 2.11 [8, Theorem 2.1]. Suppose $\left\{T_{k}\right\}_{k=1}^{\infty}$ is any sequence of operators contained in the class $\mathbb{A}_{\aleph_{0}} \cap C_{0},\left\{\left[L_{k}\right]_{T_{k}}\right\}_{k=1}^{\infty}$ is an arbitrary sequence (where $\left[L_{k}\right]_{T_{k}} \in Q_{T_{k}}$), and $\left\{\epsilon_{k}\right\}_{k=1}^{\infty}$ is any sequence of positive numbers. Then there exists a dense set $\mathcal{D} \subset \mathcal{H}$ such that for every x in \mathcal{D}, there exists a sequence $\left\{y_{k}^{x}\right\}_{k=1}^{\infty} \subset \mathcal{H}$ satisfying

$$
\begin{equation*}
\left.\left[x \otimes y_{k}^{x}\right]\right]_{T_{k}}=\left[L_{k}\right]_{T_{k}}, \quad k \in \mathbb{N}, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{k}^{x}\right\|>\epsilon_{k}, \quad k \in \mathbb{N} . \tag{30}
\end{equation*}
$$

3. Main results

From the idea of lemma 2.11, we construct new classes as following:
Definition 3.1. Let m, n and l be any cardinal numbers such that $1 \leq m, n, l \leq \aleph_{0}$. We denote by $\mathbb{A}_{m, n}^{l}(\mathcal{H})$ the class of all sets $\left\{T_{k}\right\}_{k=1}^{l}$ such that T_{k} belong to $\mathbb{A}(\mathcal{H})$ for all $k=1,2, \cdots, l$ and that every $m \times n \times l$ system of simultaneous equations of the form

$$
\begin{equation*}
\left[x_{\imath} \otimes y_{j}^{(k)}\right] T_{k}=\left[L_{\imath j}^{(k)}\right] T_{k} \tag{31}
\end{equation*}
$$

where $\left\{\left[\left.L_{2 \jmath}^{(k)}\right|_{T_{k}}\right\}_{\substack{0 \leq x<m \\ 0 \leq j<n}}\right.$ is an arbitrary $m \times n$ array from $Q_{T_{k}}$ for each $1 \leq k \leq l$, has a solution $\left\{x_{2}\right\}_{0 \leq \imath<m},\left\{y_{3}^{(k)}\right\}_{\substack{0 \leq j<n \\ 1 \leq k \leq l}}$ consisting of a pair of sequences of vectors from \mathcal{H}. Furthermore, if m and n are positive integers and r is a fixed real number satisfying $r \geq 1$, then we denoted by $\left(\mathbb{A}_{m, n}^{l}(r)\right)$ the class of all sets $\left\{T_{k}\right\}_{k=1}^{l}$ such that T_{k} belong to $\mathbb{A}(\mathcal{H})$ for all $k=1,2, \cdots, l$ and that every $m \times n \times l$ system of simultaneous equations of the form (31) has a solution $\left\{x_{\imath}\right\}_{0 \leq \imath<m},\left\{y_{j}^{(k)}\right\}_{\substack{0 \leq j<n \\ 1 \leq k \leq l}}$ consisting of a pair of sequences of vectors from \mathcal{H} and also satisfy the following conditions:

$$
\begin{equation*}
\left\|x_{\imath}\right\|^{2} \leq s \sum_{0 \leq j<n}\left\|\left[L_{\imath j}^{(k)}\right] T_{k}\right\|, 0 \leq \imath<m, 1 \leq k \leq l \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{j}^{(k)}\right\|^{2} \leq s \sum_{0 \leq \imath<m}\left\|\left[L_{\imath \jmath}^{(k)}\right]_{T_{k}}\right\|, 0 \leq j<n, 1 \leq k \leq l . \tag{33}
\end{equation*}
$$

Remark 3.2. If $\left\{T_{k}\right\}_{k=1}^{\infty}$ are in the class $\mathbb{A}_{\mathrm{N}_{0}} \cap C_{0}$, then $\left\{T_{k}\right\}_{k=1}^{\infty} \in$ $\mathbb{A}_{1,1}^{\mathbb{N}_{0}}$, by lemma 2.11 .

LEMMA 3.3. Suppose m, n and l are cardinal numbers such that $1 \leq m, n, l \leq \aleph_{0}$ and $T_{k} \in \mathbb{A}(\mathcal{H})$ has minimal coisometric extension B_{k} in $\mathcal{L}\left(\mathcal{S}_{k} \oplus \mathcal{R}_{k}\right)$ for $k, \quad 1 \leq k \leq l$. Then $\left\{T_{k}\right\}_{k=1}^{l} \in \mathbb{A}_{m, n}^{l}$ if and only if for $\left\{\left[L_{\imath j}^{(k)}\right]_{T_{k}}\right\}_{\substack{0 \leq \imath<m \\ 0 \leq j<n}} \subset Q_{T_{k}}, 1 \leq k \leq l$, there exists a Cauchy sequence $\left\{x_{\imath, p}\right\}_{p=1}^{\infty}$ in \mathcal{H} and sequences $\left\{w_{\jmath, p}^{(k)}\right\}_{p=1}^{\infty}$ in \mathcal{S}_{k} and $\left\{b_{j, p}^{(k)}\right\}_{p=1}^{\infty}$ in \mathcal{R}_{k} such that $\left\{w_{\jmath, p}^{(k)}+b_{j, p}^{(k)}\right\}$ is bounded and $\|\left(\varphi_{B_{k}}^{-1} \circ \varphi_{T_{k}}\right)\left(\left[L_{i j}^{(k)}\right]_{T_{k}}\right)-$ $\left[x_{\imath, p} \otimes\left(w_{j, p}^{(k)}+b_{j, p}^{(k)}\right)\right]_{B_{k}} \| \rightarrow 0$.

Proof. It is clear from [7, Proposition 4.7].

Convention. In the following theorems we assume that \mathcal{R}_{k} are either simultaneously (0) or not (0).

THFOREM 3.4. For $k=1.2$, suppese that $T_{k}(\in \mathbb{A}(\mathcal{H}))$ has minimal coisometric extension B_{k} in $C_{0}(\mathcal{K})$, and $\mathcal{A}_{T_{k}}$ has property $E_{\theta, \gamma}^{r}$ for some $0<\theta<\gamma \leq 1$. Suppose also that, for each $k=1,2,0<\rho<$ $1,\left[L_{k}\right] \in Q_{B_{k}}, a \in \mathcal{H}, w_{k} \in \mathcal{S}_{k}, b_{k} \in \mathcal{R}_{k}$, and $\delta>0$ are given such that

$$
\begin{equation*}
\max _{k}\left\{\left\|\left[L_{k}\right]_{B_{k}}-\left[a \otimes\left(w_{k}+b_{k}\right)\right]_{B_{k}}\right\|\right\}<\delta \tag{34}
\end{equation*}
$$

Then there exist $\hat{a} \in \mathcal{H}, \hat{w}_{k} \in \mathcal{S}_{k}, \quad \hat{b_{k}} \in \mathcal{R}_{k}, \quad k=1,2$, such that

$$
\begin{equation*}
\max _{k=1,2}\left\{\left\|\left[L_{k}\right]_{B_{k}}-\left[\hat{a} \otimes\left(\hat{w}_{k}+\hat{b_{k}}\right)\right]_{B_{k}}\right\|\right\}<(\theta / \gamma) \delta \tag{35}
\end{equation*}
$$

and

$$
\begin{align*}
& \|\hat{a}-a\|<6(\delta / \gamma)^{1 / 2}, \quad\left\|\hat{w}_{k}-w_{k}\right\|<(\delta / \gamma)^{1 / 2} \tag{36}\\
& \left\|\hat{b_{k}}\right\|<1 / \rho\left\{\left\|b_{k}\right\|+(\delta / \gamma)^{1 / 2}\right\}, \quad k=1,2
\end{align*}
$$

Proof. Of course, either of the spaces \mathcal{S}_{k} or \mathcal{R}_{k} may be zero, for all k, but the proof is unchanged in these special cases. Let

$$
\begin{equation*}
\left[D_{k}\right]_{B_{k}}=\left[L_{k}\right]_{B_{k}}-\left[a \otimes\left(w_{k}+b_{k}\right)\right]_{B_{k}} \tag{37}
\end{equation*}
$$

and set $d=\max _{k}\left\{\left\|\left[D_{k}\right]_{B_{k}}\right\|\right\}$, so, $0 \leq d<\delta$. We may assume that $d>0$, since otherwise we can simply take $\hat{a}=a, \hat{w_{k}}=w_{k}$ and $\hat{b_{k}}=b_{k}$ for each $k=1,2$. And, we choose $\epsilon>0$ such that

$$
\begin{equation*}
(\theta / \gamma) d+\epsilon<(\theta / \gamma) \delta \tag{38}
\end{equation*}
$$

With j as in Lemma 2.5, note that $\left\|(\gamma / d) j^{-1}\left(\left[D_{k}\right]_{B_{k}}\right)\right\|<\gamma$, and thus, by hypothesis, for each $k=1,2$, there exist $N \in \mathbb{N}$, elements $\left[P_{1, k}\right], \cdots,\left[P_{N, k}\right]$ from $\mathcal{E}_{\theta}^{r}\left(\mathcal{A}_{T_{k}}\right)$, and scalars $\bar{\alpha}_{1, k}, \cdots, \tilde{\alpha}_{N, k}$ such that

$$
\begin{equation*}
\left\|(\gamma / d) j^{-1}\left(\left[D_{k}\right]_{B_{k}}\right)-\sum_{i=1}^{N} \tilde{\alpha}_{i, k}\left[P_{i, k}\right]_{T_{k}}\right\|<(\epsilon / 2)(\gamma / d) \tag{39}
\end{equation*}
$$

and $\sum_{2=1}^{N}\left|\tilde{\alpha}_{2, k}\right|<1, k=1,2$. Upon setting $\alpha_{2, k}=(d / \gamma) \tilde{\alpha}_{2, k}$, for each i, k, we obtain, by multiplying (39) by d / γ,

$$
\begin{equation*}
\left\|j^{-1}\left(\left[D_{k}\right]_{B_{k}}\right)-\sum_{\imath=1}^{N} \alpha_{2, k}\left[P_{i, k}\right] T_{k}\right\|<(\epsilon / 2), \quad k=1,2 \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{N}\left|\alpha_{2, k}\right|<d / \gamma, \quad k=1,2 \tag{41}
\end{equation*}
$$

For each $i=1, \cdots, N$, by definition of $\mathcal{E}_{\theta}^{r}\left(T_{k}\right)$, there exist sequences $\left\{x_{n_{2}}^{(2, k)}\right\}_{n_{4}=1, k=1}^{\infty, 2}$ and $\left\{y_{n_{4}}^{\left(\mathrm{n}_{2}, k\right)}\right\}_{n_{2}=1, k=1}^{\infty, 2}$ in the unit ball of \mathcal{H} such that

$$
\begin{equation*}
\left\|\left[P_{z, k}\right] T_{T_{k}}-\left[x_{n_{\mathrm{z}}}^{(2, k)} \otimes y_{n_{\mathrm{t}}}^{(2, k)}\right]_{T_{k}}\right\|<\theta+(\epsilon / 2)(\gamma / d), \quad n_{\imath} \in \mathbb{N} \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n_{1} \rightarrow \infty}\left\|\left[x_{n_{2}}^{(2, k)} \otimes z\right] x_{k}\right\|=0, \quad{ }^{\forall} z \in \mathcal{H} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{y_{n_{2}}^{(2, k)}\right\}_{n_{2}=1}^{\infty} \tag{44}
\end{equation*}
$$

converges weakly to zero for each $k=1,2$. By (40) and (42), we get, for any choice of the N-tuple $\nu=\left(n_{1}, \cdots, n_{N}\right)$,

$$
\begin{align*}
& \left\|j^{-1}\left(\left[D_{k}\right]_{B_{k}}\right)-\sum_{\imath=1}^{N} \alpha_{2_{2}, k}\left[x_{n_{2}}^{(2, k)} \otimes y_{n_{2}}^{(2, k)}\right] T_{k}\right\| \tag{45}\\
& <\epsilon / 2+(d / \gamma)\{\theta+(\epsilon / 2)(\gamma / d)\}=\epsilon+(d \theta / \gamma)
\end{align*}
$$

and, we obtain, using (11),

$$
\begin{equation*}
\left\|\left[D_{k}\right]_{B_{k}}-\sum_{i=1}^{N} \alpha_{2_{2}, k}\left[x_{n_{2}}^{(i, k)} \otimes y_{n_{2}}^{(i, k)}\right]_{B_{k}}\right\|_{i}<\epsilon+(d \theta / \gamma) \tag{46}
\end{equation*}
$$

for every choice of ν. Take $r>0$ such that

$$
\begin{equation*}
(\theta \delta / \gamma)-\{(d \theta / \gamma)+\epsilon\}=5 \tau \tag{47}
\end{equation*}
$$

Using (14) and (37) we may combine (46) and (47) to yield

$$
\begin{align*}
& \left\|\left[L_{k}\right]_{B_{k}}-\left[Q a \otimes w_{k}\right]_{B_{k}}-(A)\right\| \\
& <(\theta \delta / \gamma)-5 \tau, \tag{48}
\end{align*}
$$

where

$$
(A)=\sum_{z=1}^{N} \alpha_{z_{2}, k}\left[Q x_{n_{i}}^{(i, k)} \otimes Q y_{n_{k}}^{(i, k)}\right]_{B_{k}}-\left[M_{k}(\nu)\right]_{B_{k}} \|
$$

and

$$
\begin{equation*}
\left[M_{k}(\nu)\right]_{B_{k}}=\left[A a \otimes b_{k}\right]_{B_{k}}+\sum_{i=1}^{N} \alpha_{2, k}\left[A x_{n_{2}}^{(2, k)} \otimes A y_{n_{k}}^{(2, k)}\right]_{B_{k}} \tag{49}
\end{equation*}
$$

for every choice of ν. Let us define, for arbitrary $\nu=\left(n_{1}, \cdots, n_{N}\right)$,

$$
\begin{equation*}
u_{\nu}=\sum_{k=1}^{2} \sum_{i=1}^{N} \beta_{i}^{(k)} x_{n_{i}}^{(\imath, k)}, \quad v_{\nu}^{(k)}=\sum_{i=1}^{N} \overline{\beta_{i}^{(k)}} y_{n_{i}}^{(2, k)}, \tag{50}
\end{equation*}
$$

where $\left(\beta_{i}^{(k)}\right)^{2}=\alpha_{i, k}$ for $i=1, \cdots, N, k=1,2$. Then, for every choice of ν,

$$
\begin{align*}
& {\left[Q\left(a+u_{\nu}\right) \otimes\left(w_{k}+Q v_{\nu}^{(k)}\right)\right]_{B_{k}}} \\
& =\left[Q a \otimes w_{k}\right]_{B_{k}}+\left[Q u_{\nu} \otimes w_{k}\right]_{B_{k}}+\left[Q a \otimes Q v_{\nu}^{(k)}\right]_{B_{k}} \tag{51}\\
& +\left[Q u_{\nu} \otimes Q v_{\nu}^{(k)}\right]_{B_{k}}, \quad k=1,2
\end{align*}
$$

and

$$
\begin{align*}
& \left\|\left[Q u_{\nu} \otimes Q v_{\nu}^{(k)}\right]_{B_{k}}\right\| \\
& \leq \sum_{i=1}^{N}\left|\alpha_{i, k}\right|\left\|\left[Q x_{n_{i}}^{(2, k)} \otimes Q y_{n_{2}}^{(i, k)}\right]_{B_{k}}\right\| \\
& \left.+\sum_{\substack{i, j=1 \\
i \neq j}}^{N}\left|\beta_{i}^{(k)} \beta_{j}^{(k)}\right|\| \| Q x_{n_{i}}^{(i, k)} \otimes Q y_{n_{j}}^{(j, k)}\right]_{B_{k}} \| \tag{52}\\
& +\sum_{k_{1}=1}^{2} \sum_{i, j=1}^{N}\left|\beta_{i}^{\left(k_{1}\right)} \beta_{j}^{(k)}\right|\left\|\left[Q x_{n_{i}}^{\left(\imath, k_{1}\right)} \otimes Q y_{n_{j}}^{(j, k)}\right]_{B_{k}}\right\|, \quad k=1,2
\end{align*}
$$

Thus we see from (51), (52), and $B_{k} \in C_{0}, k=1,2$, it suffices to choose the indices $n_{1}^{o}, \cdots, n_{N}^{o}$ (one at a time, in the indicated order) sufficiently large that for $\nu_{o}=\left(n_{1}^{o}, \cdots, n_{N}^{o}\right)$ the following properties are valid:

$$
\begin{align*}
& \left\|\left[Q a \otimes Q v_{\nu_{o}}^{(k)}\right]_{B_{k}}\right\|<\tau / 4 \tag{53}\\
& \left\|\left[Q u_{\nu_{o}} \otimes w_{k}\right]_{B_{k}}\right\|<\tau / 4 \tag{54}
\end{align*}
$$

$$
\begin{equation*}
\sum_{\substack{i, j=1 \\ i \neq j}}^{N} \mid \beta_{\imath}^{(k)} \beta_{j}^{(k)}\| \|\left[Q x_{n_{i} o b}^{(\imath, k)} \otimes Q y_{n_{j} o}^{(j, k)}\right]_{B_{k}} \|<\tau / 4 \tag{55}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k_{1}=1}^{2} \sum_{2, j=1}^{N}\left|\beta_{2}^{\left(k_{1}\right)} \beta_{j}^{(k)}\right|\left\|\left[Q x_{n_{i}}^{\left(2, k_{1}\right)} \otimes Q y_{n_{j}}^{(j, k)}\right\}_{B_{k}}\right\|<\tau / 4 \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\left\{A u_{\nu_{o}} \otimes b_{k}\right\}_{B_{k}}\right\|<r \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{\nu_{o}}\right\|^{2}<2 \delta / \gamma, \quad\left\|v_{\nu_{o}}^{(k)}\right\|^{2}<\delta / \gamma, \quad k=1,2 \tag{58}
\end{equation*}
$$

Therefore, by combining (51)-(55), we obtain for each $k=1,2$,

$$
\begin{align*}
\|\left[Q a \otimes w_{k}\right]_{B_{k}}+ & \sum_{\nu=1}^{N} \alpha_{2, k}\left[Q x_{n_{2} o}^{(\tau, k)} \otimes Q y_{n_{4} o}^{(\tau, k)}\right]_{B_{k}} \tag{59}\\
& -\left[Q\left(a+u_{\nu_{o}}\right) \otimes\left(w_{k}+Q v_{\nu_{o}}^{(k)}\right)\right]_{B_{k}} \|<\tau .
\end{align*}
$$

We next define

$$
\begin{equation*}
a_{1}=a+u_{\nu_{o}}, \quad \tilde{w}_{k}=w_{k}+Q v_{\nu_{o}}^{(k)}, \quad k=1,2 \tag{60}
\end{equation*}
$$

and conclude from (60), (59) and (48) that

$$
\begin{gather*}
\left\|\left[L_{k}\right]_{B_{k}}-\left[Q a_{1} \otimes \tilde{w}_{k}\right]_{B_{k}}-\left[M_{k}\left(\nu_{o}\right)\right]_{B_{k}}\right\|<(\theta \delta / \gamma)-4 \tau, \tag{61}\\
k=1,2 .
\end{gather*}
$$

Moreover, if in $\left[M_{k}\left(\nu_{o}\right)\right]_{B_{k}}$ we replace a by a_{1}, and so define, for $k=$ 1,2 ,

$$
\begin{equation*}
\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}=\left[A a_{1} \otimes b_{k}\right]_{B_{k}}+\sum_{i=1}^{N}\left[A x_{n_{2} o}^{(2, k)} \otimes A y_{n_{2}}^{(2, k)}\right]_{B_{k}}, \tag{62}
\end{equation*}
$$

then by (49), (57), (60), and (61) we have

$$
\begin{gather*}
\left\|\left[L_{k}\right]_{B_{k}}-\left[Q a_{1} \otimes \tilde{w}_{k}\right]_{B_{k}}-\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}\right\|<(\theta \delta / \gamma)-3 \tau, \tag{63}\\
k=1,2 .
\end{gather*}
$$

Now suppose that $\mathcal{R}_{k}=(0)$, for all $k=1,2$. Then $b_{k}=0$, $\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}=0, Q a_{1}=a_{1}$, and

$$
\left\|\left[L_{k}\right]_{B_{k}}-\left[a_{1} \otimes \tilde{w}_{k}\right]_{B_{k}}\right\|<(\theta \delta / \gamma)-3 \tau, \quad k=1,2 .
$$

Then, by (60) and (58), we have

$$
\left\|a-a_{1}\right\|<(2 \delta / \gamma)^{1 / 2} \quad \text { and } \quad\left\|w_{k}-\tilde{w}_{k}\right\|<(\delta / \gamma)^{1 / 2}, \quad k=1,2
$$

so (with $\tilde{b}_{k}=0$) the proof in this case is complete.
Hence we may suppose that $\mathcal{R}_{k} \neq(0), k=1,2$, we let $\Sigma_{k} \subset \mathbb{T}$ be as in Lemma 2.10, and we prepare to apply Lemma 2.10 to deal with the term $\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}$ in (63). By (62) and Lemma 2.9 we have

$$
\begin{equation*}
\varphi_{B_{k}}\left(\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}\right)=\left[A a_{1}{ }^{R} \cdot b_{k}\right]+\sum_{z=1}^{N} \alpha_{\imath, k}\left[A x_{n_{1}}^{(i, k)} \cdot R . A y_{n_{\imath}}^{(i, k)}\right] . \tag{64}
\end{equation*}
$$

Thus we define the function $h_{k}, k=1,2$, in $L^{1}\left(\Sigma_{k}\right)$ to be

$$
h_{k}=\sum_{\imath=1}^{N} \alpha_{2, k}\left(A x_{n_{2} o}^{(2, k)} \cdot R \cdot A y_{n_{1} \sigma}^{(2, k)}\right) .
$$

We note from (21) and (41) that $\left\|h_{k}\right\|_{1} \leq \delta / \gamma$, and we set $\epsilon^{\prime}=$ $\left\{\tau /\left(2\left(\left\|w^{\prime}\right\|+1\right)\right)\right\}(<\tau)$ where $\left\|w^{\prime}\right\|=\max _{k=1,2}\left\|\tilde{w}_{k}\right\|$. With a_{1} and $b_{k}, k=1,2$, as in (64), an application of Lemma 2.10 yields the existence of $\tilde{u}_{k} \in \mathcal{H}$ and $c_{k} \in \mathcal{R}_{k}, k=1,2$, such that

$$
\begin{gather*}
\| A a_{1}{ }^{R} b_{k}+\sum_{\imath=1}^{N} \alpha_{\imath, k}\left(A x_{n_{2} o}^{(2, k)} \cdot R\right. \tag{65}\\
<\epsilon_{n_{2}}^{\prime}+\tau<2 \tau, \quad k=1,2,
\end{gather*}
$$

$$
\begin{equation*}
\left\|Q\left(\sum_{k=1}^{2} \tilde{u}_{k}\right)\right\|<\tau /\left(\left\|w^{\prime}\right\|+1\right) \tag{66}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\sum_{k=1}^{2} \tilde{u}_{k}\right\| \leq 4(\delta / \gamma)^{1 / 2} \tag{67}
\end{equation*}
$$

(68) $\left\|c_{k}\right\| \leq(1 / \rho)\left\{\left\|b_{k}\right\|+\left\|h_{k}\right\|_{1}^{1 / 2}\right\}<\left\{\left\|b_{k}\right\|+(\delta / \gamma)^{1 / 2}\right\}, \quad k=1,2$.

Since $L^{1}\left(\Sigma_{k}\right) \subset L^{1}(\mathbb{T})$ and the norm in $L^{1}(\mathbb{T})$ dominates the norm in $\left(L^{1} / H_{0}^{1}\right)(\mathbb{T})$, we obtain using (62), (22), and (65),
(69) $\quad\left\|\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}-\left[A\left(a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes c_{k}\right]_{B_{k}}\right\|<2 \tau, \quad k=1,2$.

Thus from (63) and (69) we get

$$
\begin{align*}
& \left\|\left[L_{k}\right]_{B_{k}}-\left[Q a_{1}+\tilde{w}_{k}\right]_{B_{k}}-\left[A\left(a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes c_{k}\right]_{B_{k}}\right\| \\
& \leq\left\|\left[L_{k}\right]_{B_{k}}-\left[Q a_{1}+\tilde{w}_{k}\right]_{B_{k}}-\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}\right\| \tag{70}\\
& \quad+\left\|\left[M_{k}^{(1)}\left(\nu_{o}\right)\right]_{B_{k}}-\left[A\left(a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes c_{k}\right]_{B_{k}}\right\| \\
& \quad<(\theta \delta / \gamma)-3 \tau+2 \tau=(\theta \delta / \gamma)-\tau, \quad k=1,2,
\end{align*}
$$

and since, by (66), we have

$$
\begin{align*}
\left.\| Q\left(\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes \tilde{w}_{k}\right]_{B_{k}} \| & \leq\left\|Q\left(\sum_{k=1}^{2} \tilde{u}_{k}\right)\right\| \cdot\left\|\tilde{w}_{k}\right\| \tag{71}\\
& <\left(\tau /\left(\left\|w^{\prime}\right\|+1\right)\right)\left\|w^{\prime}\right\|<\tau, \quad k=1,2
\end{align*}
$$

the inequality (70) yields

$$
\begin{align*}
& \left\|\left[L_{k}\right]_{B_{k}}-\left[Q\left(a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes \tilde{w}_{k}\right]_{B_{k}}-\left[A\left(a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes c_{k}\right]_{B_{k}}\right\| \tag{72}\\
& <(\theta \delta / \gamma), \quad k=1,2
\end{align*}
$$

Since $\tilde{w}_{k} \in \mathcal{S}_{k}$ and $c_{k} \in \mathcal{R}_{k}$, by using (14) one can rewrite (72) as

$$
\left\|\left[L_{k}\right]_{B_{k}}-\left[\left(a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}\right) \otimes\left(\tilde{w}_{k}+c_{k}\right)\right]_{B_{k}}\right\|<(\theta \delta / \gamma), \quad k=1,2 .
$$

So if we define

$$
\begin{aligned}
& \hat{a}=a_{1}+\sum_{k=1}^{2} \tilde{u}_{k}=a+u_{\nu_{o}}+\tilde{u}_{1}+\tilde{u}_{2} \\
& \hat{b}_{k} \doteq c_{k}, \quad \hat{w}_{k}=\tilde{w}_{k}, \quad k=1,2
\end{aligned}
$$

then (35) is satisfied. Moreover,

$$
\|\hat{a}-a\| \leq\left\|u_{\nu_{o}}\right\|+\left\|\sum_{k=1}^{2} \bar{u}_{k}\right\|<(2 \delta / \gamma)^{1 / 2}+4(\delta / \gamma)^{1 / 2}=6(\delta / \gamma)^{1 / 2}
$$

from (58) and (67), so the first inequality in (35) is satisfied. Furthermore, from (60) and (58) we have

$$
\left\|\hat{w}_{k}-w_{k}\right\| \leq\left\|Q v_{\nu_{\mathrm{o}}}^{(k)}\right\|<(\delta / \gamma)^{1 / 2}, \quad k=1,2 .
$$

Finally,

$$
\left\|\hat{b}_{k}\right\|=\left\|c_{k}\right\|<(1 / \rho)\left\{\left\|b_{k}\right\|+(\delta / \gamma)^{1 / 2}\right\}, \quad k=1,2 .
$$

We are ready to prove main theorems.
Theorem 3.5. For $k=1,2$, suppose that $T_{k}(\in \mathbb{A}(\mathcal{H}))$ has minimal coisometric extension B_{k} in $C_{0}(\mathcal{K})$, and $\mathcal{A}_{T_{k}}$ has property $E_{\theta, \gamma}^{r}$ for some $0 \leq \theta<\gamma \leq 1$. Suppose also that $\delta>0,\left[L_{k}\right] \in Q_{T_{k}}, a \in$ $\mathcal{H}, w_{k} \in \mathcal{S}_{k}$ and $b_{k} \in \mathcal{R}_{k}$ are given such that

$$
\begin{equation*}
\max _{k=1,2}\left\{\left\|\left[L_{k}\right]_{T_{k}}-\left[a \otimes \mathbb{P}\left(w_{k}+b_{k}\right)\right]_{T_{k}}\right\|\right\}<\delta \tag{73}
\end{equation*}
$$

where \mathbb{P} is the projection of \mathcal{K} onto the subspace \mathcal{H}. Then there exist $\hat{a} \in \mathcal{H}, \hat{w}_{k} \in \mathcal{S}_{k}$ and $\hat{b}_{k} \in \mathcal{R}_{k}$ such that

$$
\begin{align*}
& {\left[L_{k}\right]_{T_{k}}=\left[\hat{a} \otimes \mathbb{P}\left(\hat{w}_{k}+\hat{b}_{k}\right)\right]_{T_{k}}, \quad k=1,2,} \tag{74}\\
& \|\hat{a}-a\|<6(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right) \tag{75}
\end{align*}
$$

$$
\begin{equation*}
\left\|\hat{w}_{k}-w_{k}\right\|<(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right), \quad k=1,2 \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{b}_{k}\right\|<2\left\|b_{k}\right\|+2(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right), \quad k=1,2 \tag{77}
\end{equation*}
$$

Proof. Since if $\mathcal{A}_{T_{k}}$ has property $E_{0, \gamma}^{r}$ for each k, it also has property $E_{\theta, \gamma}^{\gamma}$ for all $0<\theta<\gamma$, the right-hand side of (75), (76), and (77) are continuous functions of θ and δ, it suffices to treat the case $0<\theta<$ γ. Suppose now that (73) holds, let $\left\{s_{n}\right\}$ be a sequence of positive numbers strictly decreasing to $3 / 4$ such that $s_{1}=1$, and define $\rho_{n}=$ $\left(s_{n+1} / s_{n}\right), n \in \mathbb{N}$. Set

$$
\left[\hat{L}_{k}\right]_{B_{k}}=\varphi_{B_{k}}^{-1} \circ \varphi_{T_{k}}\left(\left[L_{k}\right]\right), \quad k=1,2 .
$$

Then we have, by (73), (11), (12), and (13),

$$
\begin{equation*}
\max _{k=1,2}\left\{\left\|\left[\hat{L}_{k}\right]_{B_{k}}-\left[a \otimes\left(w_{k}+b_{k}\right)\right]_{B_{k}}\right\|\right\}<\delta . \tag{78}
\end{equation*}
$$

We now set

$$
a=a_{1}, w_{k}=w_{1, k}, b_{k}=\dot{b}_{1, k}, \quad \hat{k}=1, \overline{2},
$$

and apply Theorem 3.4 to obtain $a_{2} \in \mathcal{H}, w_{2, k} \in \mathcal{S}_{k}$ and $b_{2, k} \in$ $\mathcal{R}_{k}, \quad k=1,2$, such that

$$
\begin{equation*}
\max _{k=1,2}\left\{\left\|\left[\hat{L}_{k}\right]_{B_{k}}-\left[a_{2} \otimes\left(w_{2, k}+b_{2, k}\right)\right]_{B_{k}}\right\|\right\}<(\theta / \gamma) \delta, \tag{79}
\end{equation*}
$$

$$
\begin{align*}
& \left\|a_{2}-a_{1}\right\|<6(\delta / \gamma)^{1 / 2}, \quad\left\|w_{2, k}-w_{1, k}\right\|<(\delta / \gamma)^{1 / 2}, \\
& \left\|b_{2, k}\right\|<\left(1 / \rho_{1}\right)\left\{\left\|b_{1, k}\right\|+(\delta / \gamma)^{1 / 2}\right\}, \quad k=1,2 . \tag{80}
\end{align*}
$$

Suppose now that vectors $\left\{a_{p}\right\}_{p=1}^{n}$ in $\mathcal{H},\left\{w_{p, k}\right\}_{p=1}^{n}$ in \mathcal{S}_{k}, and $\left\{b_{p, k}\right\}_{p=1}^{n}$ in \mathcal{R}_{k}, have been chosen so that for $p=2, \cdots, n, \quad k=1,2$,
$\left(81_{p}\right) \quad \max _{k=1,2}\left\{\left\|\left[\hat{L}_{k}\right]_{B_{k}}-\left[a_{p} \otimes\left(w_{p, k}+b_{p, k}\right)\right]_{B_{k}}\right\|\right\}<(\theta / \gamma)^{p-1} \delta$,

$$
\begin{equation*}
\left\|a_{p}-a_{p-1}\right\|<6(\delta / \gamma)^{1 / 2}(\theta / \gamma)^{(p-2) / 2} \tag{p}
\end{equation*}
$$

$$
\begin{equation*}
\left\|w_{p, k}-w_{p-1, k}\right\|<(\delta / \gamma)^{1 / 2}(\theta / \gamma)^{(p-2) / 2} \tag{p}
\end{equation*}
$$

and
$\left(84_{p}\right) \quad\left\|b_{p, k}\right\|<\left(1 / \rho_{(p-1)}\left\{\left\|b_{p-1, k}\right\|+(\delta / \gamma)^{1 / 2}(\theta / \gamma)^{(p-2) / 2}\right\}\right.$.
Then, applying Theorem 3.4, we deduce the existence of vectors a_{n+1} in $\mathcal{H}, w_{n+1, k}$ in \mathcal{S}_{k}, and $b_{n+1, k}$ in \mathcal{R}_{k} such that the inequalities $(81)_{n+1}$, $(82)_{n+1},(83)_{n+1}$, and $(84)_{n+1}$ are valid. Therefore, by induction, there exist sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ in $\mathcal{H},\left\{w_{n, k}\right\}_{n=1}^{\infty}$ in $\mathcal{S}_{k}, k=1,2$, and $\left\{b_{n, k}\right\}_{n=1}^{\infty}$ in $\mathcal{R}_{k}, k=1,2$, satisfying the appropriate inequalities for all n in \mathbb{N}, and it is clear from (82) $)_{p}$ and (83) $)_{p}$ that $\left\{a_{n}\right\}$ and $\left\{w_{n, k}\right\}$ are Cauchy, for each $k=1,2$. Define

$$
\begin{gathered}
\hat{a}=\lim _{n \rightarrow \infty} a_{n} \\
\hat{w}_{k}=\lim _{n \rightarrow \infty} w_{n, k}, \quad k=1,2,
\end{gathered}
$$

and observe that since

$$
\begin{aligned}
\|\hat{a}-a\| & =\left\|\sum_{p=2}^{\infty}\left(a_{p}-a_{p-1}\right)\right\| \\
& \leq \sum_{p=2}^{\infty}\left\|a_{p}-a_{p-1}\right\| \\
& =6(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)
\end{aligned}
$$

and

$$
\left\|\hat{w}_{k}-w_{k}\right\|<(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)
$$

inequalities (75) and (76) are satisfied.
Furthermore, by iterating (84) ${ }_{p}$, we see that

$$
\begin{aligned}
\frac{1}{2} \quad\left\|b_{n, k}\right\| & \leq s_{n}\left\|b_{n, k}\right\| \\
& \leq\left\|b_{k}\right\|+(\delta / \gamma)^{1 / 2} \sum_{p=1}^{n-1} s_{p}(\theta / \gamma)^{(p-1) / 2}
\end{aligned}
$$

and therefore that

$$
\left\|b_{n, k}\right\| \leq 2\left\|b_{k}\right\|+2(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right), \quad n \in \mathbb{N}, k=1,2
$$

Thus the sequence $\left\{b_{n, k}\right\}$ is bounded and w.l.o.g., we may suppose that $\left\{b_{n, k}\right\}$ converges weakly to \hat{b}_{k}. Hence

$$
\left\|\hat{b}_{k}\right\| \leq 2\left\|b_{k}\right\|+2(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right), \quad k=1,2
$$

which establishes (77). That (74) is valid now follows from (81) p_{p} as in the proof of Lemma 3.3.

Theorem 3.6. Under the hypotheses of Theorem 3.5, suppose that $H\left[L_{1}\right] T_{1} \|$ and $\left\|\left[L_{2}\right] T_{2}\right\|$ are equal. Then, we have $\left\{T_{1}, T_{2}\right\} \in \mathbb{A}_{1,1}^{2}(r(\theta, \gamma))$,where

$$
\begin{equation*}
r(\theta, \gamma)=(18 / \gamma)\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)^{2} . \tag{85}
\end{equation*}
$$

Proof. By theorem 3.5, the set $\left\{T_{1}, T_{2}\right\}$ certainly belongs to some $\mathbb{A}_{1,1}^{2}(r)$. To see that r may be taken to be as in (85), let $\epsilon>0$ and set $a=0, w_{k}=0, b_{k}=0$ and $\delta=\max _{k=1,2}\left\{\left\|\left[L_{k}\right]_{T_{k}}\right\|\right\}+\epsilon$ in (73). Then from (75), (76) and (77), we see that

$$
\begin{aligned}
& \|\hat{a}\|\left\|P\left(\hat{w}_{k}+\hat{b}_{k}\right)\right\| \\
& \leq\|\hat{a}\|\left(\left\|\hat{w}_{k}\right\|+\left\|\hat{b}_{k}\right\|\right) \\
& <6(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right) . \\
& \quad\left[(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)+2(\delta / \gamma)^{1 / 2}\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)\right] \\
& =18(\delta / \gamma)\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)^{2} \\
& =(18 / \gamma)\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)^{2}\left(\left\|\left[L_{k}\right\}_{T_{k}}\right\|+\epsilon\right),
\end{aligned}
$$

by the hypothesis. Therefore, we have

$$
\left\{T_{1}, T_{2}\right\} \in \mathbb{A}_{1,1}^{2}(r(\theta, \gamma))
$$

where

$$
r(\theta, \gamma)=(18 / \gamma)\left(1 /\left\{1-(\theta / \gamma)^{1 / 2}\right\}\right)^{2}
$$

References

[1] C. Apostol, H Bercovicı, C Foias and C. Pearcy, Invariant subspaces, dilation theory, and structure of the predual of a dual algebra. I, Funct. Anal. 63 (1985), 369-404
[2] H Bercovici, B Chevreau, C. Folas and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. II, Math Z 187 (1984), 97-103
[3] H. Bercovici, C. Foias and C. Pearcy, Dilation theory and systems of sumultaneous equattons in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
[4] -_Dual algebras unth applicatzons to anvariant subspaces and dzlation theory, C.B.M.S Regional Conference Series, 56, A M.S., Providence, R. I (1985).
[5] A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag, New York, 1977.
[6] B. Chevreau, G. Exner, and C Pearcy, On the structure of contraction operators, III, Michigan Math. J. 36 (1989), 29-62.
[7] B. Chevreau, and C Pearcy, On the structure of contraction operators, I, J. Funct. Anal 76 (1988), 1-29
[8] On common noncyche vectors for familes of operators, Houston J. of Math 17 (1991), 637-650
[9] G. Exner and P. Sulivan, Normal operators and the classes \mathbb{A}_{n}, J. Operator Theory 19 (1988), 81-94.
[10] I. Jung, Dual operator algebras and the classes $\mathrm{A}_{m, n} I, \mathrm{~J}$ Operator Theory (to appear).
[11] M. Marsall, A classtfication of operator algebras, J Operator Theory 24 (1990), 155-163.
[12] B. Sz-Nagy and C. Foias, Harmonic analyszs of operators on Hulbert spaces, North Holland Akademial Kiado, Amsterdam/Budapest, 1970.

Department of Mathematics
College of Natural Science
Kyungpook National University
Taegu 702-701, Kогеа
Department of Mathematics Education
Cheju National University of Education
Cheju 690-061, Korea

[^0]: Recerved November 12, 1997.
 The first author was supported by the Basic Science Research Institute Program, Ministry of Education, 1998, Project No BSRI-98-1401

