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1. Introduction

Let be a separable, infinite dimensional, complex Hilbert space 
and let £(7Y) denote the algebra of all bounded linear operators on 
7Y. A dual algebra is a subalgebra of £(7Y) that contains the identity 
operator 1“ and is closed in the ultraweak operator topology on £(?<). 
For T € £(저以 tet At denote the subalgebra of £(") that
contains T and L” and is closed in the ultraweak operator topology. 
Moreover, let Q^T denote the quotient space Ci(7i)/丄An where C\(TC) 
is the trace class ideal in under the trace norm, and denotes 
the preannihilator of At in 여 (处) . For a brief notation, we shall denote 
Qat by Qt- One knows that At is the dual space of Qt and that the 
duality is given by

(1) (A,[L])-tr(AL), AoIt,因 £ Qn

The Banach space Qt is called a predual of Xr- For x and y in we 
can write x^y for the rank one operator in defined by

(2) (x ® = (tt, y)x, 버 u EH

The theory of dual algebras is applied to the study of invariant sub
spaces, dilation theory, and reflexivity. The classes (to be defined 
in Section 2) were defined by Be호covici-Foias-Pearcy in [3]. Also these 
classes are closely related to the study of the theory of dual algebras.
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Especially, B. Chevreau and C. Pearcy [7] defined the properties Eq 
(to be defined in Section 2), and B. Chevreau, G. Exner and C. Pearcy 
[6] obtained some new sufficient conditions for membership in the class 
Ai,而(to be defined in Section 2) concerning the properties EgIn 
this paper, we construct new classes and obtain a geometric criterion 
for membership in the classes (to be defined in Section 3).

2. Notation and preliminaries

The notation and terminology employed herein agree with those in 
[4], [5], [7], [12]. We 아denote by D the open unit disc in 나le 
complex plane C, and we write T for the boundary of D. The space 
Lp = ZKfr), 1 < p < oo, is 나le usual Lebesgue function space relative 
to normalized Lebesgue measure m on T. The space Hp = HP(T), 1 < 
p < oo, is the usual Hardy space. It is well-known that the space H°° 
is the dual^pace of DjH冨 where

/»2tt

(3) H^ = {f eL1 : / f(elt)etntdt = 0, for n = 0,1,2, • • ■ 
Jo

and the duality is given by the pairing

⑷ </，la]) = jT fgdm for [g] e £7^0-

Recall that any contraction T can be written as a direct sum T = 
Ti ® 72, where T\ is a completely nonunitary contraction and 均 is a 
unitary operator. If 7板 is absolutely continuous or acts on the space 
(0), T will be called an absolutely continuous contraction. The following 
Foias-Sz.Nagy functional calculus provides a good relationship between 
the function space H°° and a dual algebra At-

Theorem 2.1 [4, Theorem 4.1]. Let T be an absolutely continuous 
contraction in Then there is an algebra homomorphism : 
H°° At defined by $T(/) = f(T) such that

(а) ^r(l) = g, = T,
(б)
(c) is continuous if both H°° and At are given their weak* 

topologies,
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(d) the range of 虹 is weak* dense in At,
(e) there exists a bounded, linear, one-to-one map 顿 :Qt t 

L、TH如 such that =饥,and
(/) if ①t is an isometry, then is a weak* homeomorphism of 

H°° onto At and 如 is an isometry of Qt onto L1/Hq.

Definition 2.2 [3]. Let A C £(亢)be a dual algebra and let m and 
n be any cardinal numbers such that 1 < m,n < Ro* A dual algebra A 
will be said to have property (Am)n) if m x n system of simultaneous 
equations of the form
(5) 區 ® y3] = [LjL 0<i<m,0<j<n,
where o<t<m is an. arbitrary mxn array from has a solution 

0<j<n
{yj}o<3<n consisting of a pair of sequences of vecto호s from 

H. Furthermore, if m and n are positive integers and r is a fixed real 
iramber satisfying r > 1, a dual algebra A (with property (Am,n)) is 
said to have property (Am)n(r)) if for every s > r and every mxn array 

from such that the rows and columns of the matrix 
0<j<n

([乙,打)are summable, there exist sequences {xt}o<i<m and {?/j}o<j<n 
from H that satisfy (5) and also satisfy the following conditions:

(6a) II끼广 M s £ ||[^]||, 0 < i < m,
0<j<n

and
(아» II 妇 I? <s 0 < J < 'M-

0<i<m
Finally, a dual algebra A C £(H) has property (丁)) ( for some 
real number r > 1) if for every s > r and every array {区知j]} o<i<m 

0<j<oo 
from with summable rows, there exist sequences (xz}o<j<m and 
{幼}from H that satisfy (5) and (6a, 6) with the replacement 
of n by No・ P호operties (魚盹币(尸)) and (An。,血(丁)) are defined similary. 
For brief notation, we shall denote (An)n) by (An). Furthermore, if m 
and n are cardinal numbers such that 1 < m,n < Ko, we denote by 
Am)n = the set of all T in A(及)such that the singly generated
dual algebra At has property (Am5n).
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Definition 2.3 [7]. Suppose A C £(?i) is a dual algebra and 0 < 
0 < y < 1. We denote by £旨。4) (resp. £*(")) the set of all [L] in Qa 
such that there exist sequences {皿}邕 and {切}泠 of vectors from H 
satisfying

(a) limsup—8 II电 ® 必-[L]\\ < 6,
(b) II：이I < 1, ||见| < 1, 1 < i < oo,

(cr) II® z]|| —> 0 for all z in "(resp.(사)||[z ® gj|| t 0 for all z in 
7Y), and

(dr) {yt} converges weakly to zero (resp. (dz) {©z} converges weakly 
to zero).

For 0 < 0 < 7 < 1, the dual algebra A is said to have property 琮了 

(resp. E*“) if the closed absolutely convex hull of the set 徉(《4) (resp.
(人))contains the closed ball B。,、of radius 7 centered at the origin 

in Qa-

U) 향 (人)) n 柱니 : III」이II 으 7) =^o,7-

(resp. acd(Sff(A)) D BoQ

To establish our results, it will be convenient to use the minimal 
coisometric extension theorem [12]: every contraction T in £(亢)has 
a minimal coisometric extension B = Br that is unique up to uni
tary equivalence. Given such T and _B, one knows that there exists a 
canonical decomposition of the isometry B* as

(8) B* = S $ R*

corresponding to a decomposition of the space

(9) /C = S 由 R,

where, if S 供(0)： S is a unilateral shift operator of some multiplicity 
in £(S), and, if 72 尹(0), R is a unitary operator in Of course, 
either S of R may be (0). ([7])
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Lemma 2.4 [7, Lemma 3.2]. If T is an absolutely continuous con
traction in £(7i) with minimal coisometric extension B in £(/C), and 
the subspace TZ of 7C in (9) is nonzero, then the unitary operator R in 
(8) is absolutely continuous.

Lemma 2.5 [7, Lemma 3.5]. Suppose T G A(7i) and has minimal 
coisometric extension B in £(7C). Then B 6 A(/C),o eg' is an 
isometry and weak* homeomorphism from Ab onto At, and j = o 
(PT is a linear isometry of Qr onto Qb，Moreover,

(10) 顶(Q雨)=[Cx]b, AeB,
and

(11) = {x0y]B, € w.

Lemma 2.6 [7, Lemma 3.6]. IfT belongs to 瓦아and has minimal 
coisometric extension B in £(/C), x, y EH, and w,z E 1C, then

(12) = IIExwIbII,

(13) [z® 끼B = [z® 尸끼B,
and

(14) [w ® z\B = \Qw ® Q히b + [Aw ® Az]b-

Lemma 2.7 亿 Lemma 3.7]. Suppose T e A(亢)and has minimal 
coisometric extension B in £(/C), and {xn}^Li is a sequence from H 
such that

(15) Ms物t II — o, 七€ H、

then we have

(16) ||gn ® 히B|| — 0, Ek,
(17) ||[Qwg)히b|| t 0, 、Pz G 丿C,

and

(18) ||[&n ® 희b|| -> 0,
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Lemma 2.8 [7, Lemma 3.8]. Suppose T G A(W) and has B in £(7C) 
for its minimal coisometric extension. If {zn} is any sequence in JC that 
converges weakly to zero, then

(19) ||[w® zn]B|| —>0, 여힌d CS.

Suppose U is an absolutely continuous unitary operator in £(人/*) 
with spectral measure Eu、and let be a scalar spcetral measure for 
U. Then one knows, via the absolute continuity, that there exists a 
Borel set S C T such that 卩，is equivalent to Lebesgue measure m|s 
(where this measure is defined to be zero on Borel subsets of T\S). For 
any vectors x and y in N、let us denote by 卩x,힘 the complex measure 
on T defined by

(20) ZAw(B) = (Eu(6)z3)

for every Borel subset B of T. Obviously all of these complex mea
sures ]」Lxr are absolutely continuous with respect to the measure m|z：・ 
Therefore, for each pair x,y & N, there is a function in L1(S), which 
is denote by x • y or x • that is the Radon- Nikodym derivatives of 
]•虹向 with respect to m\^. We thus have, of course,

(21) (l(U)x,y) = [ I = [ l{x - y}dm. I e L°°(E).
Jt Je

Lemma 2.9 [7, Lemma 3.9]. Suppose T G 쇼®/) and has B = S* ®R 
as its minimal coisometric extension, with R 丰(0). Then, for every 
pair of vectors w,z we have

R
(22) 切 . 히 =(pb{\w ® 히b).

Lemma 2.10. For k = 1,2} suppose T恥 belongs to A(处)and has 
minimal coisometric extension 岛：=S臬㊉ in £(/C) with TZk 尹(0). 
Let Sa： C T and R% C Rk be as in [7, Proposition 3.1이, 서湿 denote 
the projection of 1C onto R% by Aq^- Let also e and p be arbitrary
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real numbers such that e > Q and 0 < p < 1. If ⑶ C 7% % £ TZk and 
h* e 一are given, and we write 二二(A^ai •板:)+ h加 then 
there exist, for each k = 1,2, EH and % E R 長 such that

(23) ||^i,a： — 必(<如 + 하Q * 이< 勺

(24) ||0시*

(25) ||(-4fc — -4o,fc)nfc|| V €,

(26) \\uk\\ < 2||眼I/,

(27) II아:||V(/){|| 세+ ||시 if},

and

(28) ck——

where the notation || ||i indicates the norm on L1(S).

Proof. It is clear from [7, Theorem 3.11].

We shall employ the notation C q — C o(") for the 시ass of all (com
pletely nonunitary) contractions T in £(?/) such that the sequences 
(T*n} converges to zero in the strong operator topology and is de
noted by, as usual, Co = (C.o)*, and N is denoted by the set of all 
natural numbers.

Lemma 2.11 [8, Theorem 2.1]. Suppose {7舄當is any sequence of 
operators contained in the class Ak0 D Co, 津i is an arbitrary 
sequence (where [Lk\rk € Qrk), and {弘}辭二】is any sequence of positive 
numbers. Then there exists a dense set P C 7Y such that for every x in 
T>, there exists a sequence {gg}旗i C H satisfying

(29) [x ® 帰卷=[Lk\Tk, k £ N,

and

(30) II掀 ll>s keN.
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3. Main results

From the idea of lemma 2.11, we construct new classes as following:

Definition 3.1. Let m,n and I be any cardinal numbers such that 
1 < m,n, Z < No・ We denote by A氣」”) 산le class of all sets {7%}%=] 
such that Tk belong to A(处) for all k = 고, 2, … J and that every 
mx nx I system of simultaneous equations of the form

(31) k% ® yjk)]rk =[乙衆]m ,

where jTfc}o<t<m is an arbitrary mx n array from Qt駝 for each 
0<j<n

1 < A: < Z, has a solution {cjoavm, {仍*)}屿5 consisting of a pair 
一 l<fc<Z

of sequences of vectors from H. Furthermore, if m and n are positive 
integers and r is a fixed real number satisfying r > 1, then we denoted 
by (▲、」『)) 나le class of all sets {7农}七=1 such that Tk b야。ng to A(7/) 
for all k = 1,2, ••- , I and that every m x n x Z system of simultane
ous equations of the form (31) has a solution (xt}o<t<7n> {论 }o<j<n

- l<k<l
consisting of a pair of sequences of vectors from H and also satisfy the 
following conditions:

(32) Iktll2 < S £ ll[^Jj)]Tfc|h 0<2<m, l<fc<Z
0<j<n

and

(33) o < 7 < n, l<k<l.
0<i<m

Remark 3.2. If {7%}津] are in 나le class A^o nC、, 나len €
A0 by lemma 2.11.
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Lemma 3.3. Suppose myn and I are cardinal numbers such that 
1 < m,n,Z < Ko and Tk 6 A(H) has minimal coisometric extension 
Bk in ® Rk) for k, 1 < k < I. Then {Tk}lk=l G A^)n if and 
only if for {[L^ ]Tfc}o<2<m C QrkA < fc < Z, there exists a Cauchy 

0<j<n
sequence {色,爵為 in H and sequences {讪? }釦 in Sk and {鷲慎i 
in 1Zk such that {w^ +b斜} is bounded and ||(g獄 o 97%)(卩《？屁)— 

Kp ® + «?)麗| TO.

Proof. It is clear from [7, Proposition 4.7].

Convention. In the following theorems we assume that 77* are 
either simultaneously (0) or not (0).

Theo표EM 34 For supposej) hasjninhnal
coisometric extension in Co(AS), and Ark has property E&、for 
some 0 < 0 < 7 < 1. Suppose also that, for each k = lj2t 0 < p < 
L [Lk\ €(2跖 a e ?t, Wk e S” bk € 72加 and 6 > Q are given such 
that

(34) 【1쎠허』区对% - 0 ® (wfc + 板;)]&l|} < 6.

Then there exist aeH,血 £ 膈 e Ry A: = 1,2, such that

(35) max(||[Lfc]Bfc - [a ® (wfc + 4)]Bfe||) < (〃y知 fc=l,2

and

阳 ~ 제 < 6(5/7)1/2, ||wfc - Wfc|| <(、이 1) 니 2
(36) ，、

11%11<1/。叩세 1 + 0/Y)/}, k = i,2.

Proof. Of course, either of 나le spaces Sr or TZk may be zero, for all 
知 but the proof is unchanged in these special cases. Let

(37) {Dk\Bk = [Lfc]Bfc - [a® (wfc + bfc)]sfc 
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and set d = 口边钦｛||[/시研』｝, so, 0 < d < 5. We may assume that 
d > 0, since otherwise we can simply take a = a,Wk — and 眼 = M 
for each k = 1,2. And, we choose e > 0 such that

(38) (〃7)d + €V(〃g)&

With j as in Lemma 2.5, note that ||(了/力顶一1(区시位)|| < % and 
thus, by hypothesis, for each k = 1,2, there exist TV € N, elements 
[3,对, …, [PN.k] from 宜and scalars &고,加 . - ・such that

N
(39) ||(泌)尸(区시殊) -〉关財頂,/血II < ("2)3/d),

t=l

and 心;I < 1, A: = 1,2. Upon setting a抒:= 0/丁)瓦g for each 
i, A:, we obtain, by multiplying (39) by d/y

N
(40) II厂如시诚 - 册田，的』< (e/2), k = 1,2,

and

N
(41) k = 1,2.

]

For each i = 1, ••- , TV, by definition of there exist sequences
｛瘟애°｝우;]3：=i and ｛舟幻｝::in the unit ball of H such that

(42) ||f이血 - 成*) ® 痛*)知II < 0 + ("2)3/d), 九 G N,

(43) lim II 成，" ® 끼:* II =0, e W, 
nt―>oo

and

(44) ｛认平垸=i
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converges weakly to zero for each fc = 1,2. By (40) and (42), we get, 
for any choice of the TV—tuple u =(叽--•,叫)，

N
肝T([끼庆) - 山討) ® 舟)知 II

1=1
< "2 + (〃了){0 + (e/2)(7/d)} = e + (曲/，y)

and, we obtain, using (11),

N
(46) II[끼庆 - £ %,血秋) 切/討膈 II < € + (她了)

1=1

for every choice of v. Take r > 0 such that

(47) 例/了) - {(c"y) + e} = 5r.

Using (14) and (37) we may combine (46) and (47) to yield

IE II[乙对- \Qa ® Wk\Bk - (4)11
(48) <W7)-5r,

where
N

(A) = EsS討)® Qg"底-[Mk(y)]Bk\\
1=^1

and

N
(49) [Mk(y)]Bk = [Aa ® + »如』如£卢応 4必幻]位

1=1

for every choice of i人 Let us define, for arbitrary u = (ni, • • • , 5、))

2 N N ____
(50) 眼=借)=D疥舟八

fc=l Z = 1 2—1
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where (应저))? = for z = 1, • • - ,7V, A; = 1,2. Then, for every choice
of V、

[Q(a + z如)® (wfc + Q砂))]&

(51) = [S ® Wk\Bk + ® Wk\Bk + [Qa ® Q砂)]b*,

+ [Quu ® Q矽)k = l,2,

and

||[(&©0疥]鬲|

N
:DWII[Q*)®Q於；)]&||

«=1

N
(52) + £ I座％艸II ©逾膈Q婷板II

z.j=l 
的
2 N

+ E E 1砂叫吧IHQz肿)® Q婷)風，k = 1,2.
ki=l z,j=l

Thus we see from (51), (52), and Bk G Co, k = 1,2, it suffices to 
choose the indices n% …,( one at a time, in the indicated order 
)sufficiently large that for vo = (n®, • • - , n^) the following properties 
are valid:

(53) II[Qa ® Qv^]Bk\\ < t/4,

(54) II [Q如。® wfc]Bfe|| < t/4,

N
(55) £ I/瘠0*1110$脖 ® Q必치]< 7/4,

녀方

2 N
(56) £ E I#婷)111。財)® Qy^]Bk II < r/4,
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(57) II⑷如家小』< J

and

(58) H^JI2 < 2<5/7, |K||2 < 5/7, fc = l,2.

Therefore, by combining (51)-(55), we obtain for each fc = 1,2,

N
/ \ II [Qa ® Wk]Bk + 我;夕 ® Qynf)]Bk
(5W z=l

—[Q(a + uPo) ® (wfc + Qv^>)]Bk\\ < T.

We next define

(60) a^—a-V uUo, wk—wk + Qv^, k = 1,2, 

and conclude from (60), (59) and (48) that

(61) II [屁]& - [Qai ® 饥:L鬼 — "心。)]Bk II < 群이P) - 4丁,

k = L 2.

Moreover, if in [雄(縮)L&： we replace a by ai, and so define, for fc = 
1,2,

N
(62) [M^\yo)]Bk = [如 ® 세珏 + 洋) ® &爵板,

1=1

then by (49), (57), (60), and (61) we have

(63) \\[Lk]Bk - [Qa. ® wk]Bk - 网】)(妇底II < 伊이P) - 3r,

k = 1,2.

Now suppose that TZk = (0), for all k = 1,2. Then % = 0, 
[M^\uo)]Bk = 0, Qa、= ai, and

II卩시珏 - [ai ® g&|| < 億이吊 -3r, k = 1, 2.
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Then, by (60) and (58), we have

||a - ai|| < (26/7)1/2 and ||叫;一曲对| < 0/g)S, k = 1,2,

so (with bk = 0) the proof in this case is complete.
Hence we may suppose that 쿠丄 (0), A; = 1,2, we let C T be as 
in Lemma 2.10, and we prepare to apply Lemma 2.10 to deal with the 
term & in (63). By (62) and Lemma 2.9 we have

N
(64) 9&(网1)(%)氐)=[Aai 气J + £； %,对&冷夕朽 &偕].

2=]

Thus we define the function 龙加 A: = 1,2, in L1(Sfc) to be

N
服 = £ 5(쇼::? * A警懸).

1=1

We note from (21) and (41) that |卩시h V 6]* and we set 4 = 
{丁/(2(||5I + 1))}(< 丁) where ||wz|| = max&=i,2 膈시]. With ⑶ and 
&A：, k = 1,2, as in (64), an application of Lemma 2.10 yields the exis
tence of ilfc 6 and G 1如 = 1,2, such that

N 2

H如 气+ £ a册(如£¥)' 成炒) - A(ai + £Rb) ¥ 이|1
I 허기 z=l k=l

< ef + r <2t, k = 1,2,

2

(66) iiQ(£Y"i<miwii+i),
fc=l

2

(67) ||£ufc||<4(<5/7)1/2,
k=l

(68) ||이匸(1加{脚|| + |卩니|；/2}<{||屜|| + (也)1/2}, fc = l,2.



A geometric criterion for membership m new classes Aij2(r) 57

Since L1(S/C) C 乙〔(F) and the norm in L1^) dominates the norm in 
we obtain using (62), (22), and (65),

2

(69) Il[^1)(^o)]sfc - [A{ax + ® Cfc]Bfc|| < 2r,人;=1,2.
化=고

Thus from (63) and (69) we get

2

IIL以底 - +?樹& 一 [A(ax +，[ 讯：) ® 이
k=i

(70) < II [屁]Bk - [Qai 4- Wfc]Bfc - 网D (%)]」％ II

+ II网％。)]位-[A(a1 + ^Mfc)®cfc]Bfe||

fc=l
< (們/t) — 3丁 + 2丁 = (05/7)— t, fc = 1,2)

and since, by (66), we have

2 2

f7n ll[Q(E 毒) ® 点시bJI M ||Q(»M)|| • ll&ll
u 丄丿 k=l k=l

< (丁/시以|| + 1))||以|| V t, 人; = 1,2,

the inequality (70) yields

2 2

, 、\\[Lk]ek - [Q(«i + E毎) ® wk]Bk — [A(ai + £：&Q ® 씨b』
丿 k=l k=l

〈(仍〃y), k = l,2.

Since Wk C & and 이; G R” by using (14) one can rewrite (72) as

2

||[z시Bk - [(ai + ® (血 + 아:)]风II < 旗이p), 人; = 1,2.
k=l
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So if we define
2

a = ax+ £ uk = a + u1/o+ui+ 苞 2 

fc=i

顷 = 여§〉 柱贝 = 旬kt % = 1, 2,

then (35) is satisfied. Moreover,
2

ll« - 제 < l&ll + |£御 < (a")” + 40冲〃 = 6阳)", 

k~l
from (58) and (67), so the first inequality in (35) is satisfied. Further
more, from (60) and (58) we have

II血-wjtll < ||Q<|| < (01)1/2, k = l,2.

Finally,
II如II = II이I < (1/小{|血』+ (“7)1/2}, k = 1,2.

We are ready to prove main theorems.
Theorem 3.5. For 人;=1,2, suppose that 7^(€ A(处))has minimal 

coisometric extension Bk in Cand Ark has property E払 for 
some 0 < 0 < 7 < 1. Suppose also that 6 > 0, [Lk\ € Q7妇 a G 
H, Wk € Sk and 皈 G Rk are given such that

(73) 피弩{||[以]m - [a® P(^fc + 成)]411} < 如 fc=l,2
where P is the projection of 1C onto the subspace H. Then there exist 
a e Wk € Sk and 嵐 G Rk such that

(74) [Lk\rk = [a ® P(wfc + 財:)]4，k = 1>2，

(75) |0 - 에 < 6(5/了)侦2(1/{1 - (〃了)堆}),

(76) II血-wjtH < (5/7)1/2(1/(1 - (0/7)1/2)), k = 1,2, 

and
(77) II헤 < 에세I + 2(5/7)1/2(1/(1 - (“I)"}), 人; = 1,2
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Proof, Since if 丿4庆 has property Eg,、for each fc, it also has property 
E払 for all 0 < 0 < 7, the right-hand side of (75), (76), and (77) are 
continuous functions of 0 and 5, it suffices to treat the case 0 < 0 < 
7. Suppose now that (73) holds, let (<sn} be a sequence of positive 
numbers strictly decreasing to 3/4 such that si — 1, and define pn = 
($n+i/sn)： n C N. Set

[以]如 = 海*。ST」卩시), k = l，2-

Then we have, by (73), (11), (12), and (13),

(78) max(||[Lfc]Bfc - [a® (wfc + 屜)]&||} < 6.
k=1,2

We now set

a =\虹,秋k — wx^fc, &A； = k = LN

and apply Theorem 3.4 to obtain 匝 G H, 秒以 E 风 and &2,fc C 
穴加 fc = 1,2, such that

(79) gl驚{||L鬲B*, - [«2 ®(W2,fc + &2,fc)]Bfe||) < 泌， 
k~1,2

5 帅2 - Gill < 6(6/7)1/2, \\w2,k - Wl)jfc|| <
(ov) .

1例,对|<(1/内){|卩％|| + 0/祁/2}, fc = l,2.

Suppose now that vectors {ap}^=1 in 7Y, (wp)fc}^=1 in S加 and {6p)fc}p=1 
in 72松 have been chosen so that for p = 2, ••- ,n, fc — 1,2,

(8£) max{||[Lfc]Bfe — [ap ® (wP]fc + 如,痂位1|} < (〃了广带，

(8%) ||ap - ap_i|| < 6(硏)l/2"y)g)/2,

(8电 ||wPifc - Wp_1>fc|| < 泌/祁〃(所)(p-2)/2,
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and
(84p) M < (1/P(p_1)(||bp_1.fc|| + 幼沪2(所)(1)/2}.

Then, applying Theorem 3.4, we deduce the existence of vectors 如+고 
in H, wn+i^ in Sy and in 72* such that the inequalities (81)n+i, 
(82)n-|_i, (83)n+i, and (84)n_|_i are valid. Therefore, by induction, there 
exist sequences (an}^=i in H, {叫玷}註i in &, k = 1,2, and (&n,fc}^=i 
in 1하” k = 1,2, satisfying the appropriate inequalities for all n in N, 
and it is clear from (82)p and (83)p that (an} and (wn)fc} are Cauchy, 
for each k = 1,2. Define

a = 一

= li^n—>oo^n,fc) k = 1, 2,

and observe that since
II® ~ 제 = I시=2(% - ap-l)ll

—y ?iiQp ~ ap-iii

= 60/沪2(1/{1 - I이Y)니'}、),
and

II血-Wfcll < (^/?)1/2(1/(1 - (0/7)1/2}),
inequalities (75)and (76) are satisfied.
Furthermore, by iterating (84)p, we see that

5 W 5n||^n,fc||
厶

< II세I + (0沪=&任/了)3-1)/2,

and therefore that
\\bn,k\\ < 2||bfc|| +2(5/7)1/2(i/{1 _ (0/7)V2})5 ncN, k = 1,2.

Thus the sequence {bnjk} is bounded and w.l.o.g., we may suppose that 
{bn占} converges weakly to 預.Hence

I庇II < 이庇|| + 2(硏)】/2(1/{1-(小)1/2}), A; = 1,2, 

which establishes (77). That (74) is valid now follows from (81)p as in 
the proof of Lemma 3.3.
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Theorem 3.6, Under the hypotheses of Theorem 3.5, suppose that 
and ||[屁]:시 | are equal. Then, we have (Ti, Th} G 启,1(丁(°,了)) 

where

(85) /任,7)= (18/7)(1/(1 -(所)访})2.

Proof, By theorem 3.5, the set {7、73} certainly belongs to some 
A?,고(尸), To see that r may be taken to be as in (85), let € > 0 and set 
q = 0, Wfc = 0, bk =0 and 6 = maxk=i,2{|| 卩시局』} + c in (73). Then 
from (75), (76) and (77), we see that

1011 ||P(血;+ R) Il
< II이 1(脚니I + II처I)
< 6(硏)1/2(1/{1 -(〃护2}).

[(硏)1/2(1/{1 -(〃刁1/2}) + 雄冲/2(1/{1 -(所)I/%

=18(<5/7)(1/{1 -(所)1/2})2

= (18/7)(1/(1 - (〃戸/2})2(||卩시招I + €),

by the hypothesis. Therefore, we have

{马上} 如(《刁)，

where
吨点)=(18/时(1/{1 - ("y)】/2})2.
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