SOME RESULTS ON k*-PARANORMAL OPERATORS

YOUNGSIK PARK AND CHEONSEOUNG RYOO

1. Introduction

Throughtout this paper, H will always denote a Hilbert space. The *-algebra of all bounded linear operators on H is denoted by L(H) and K(H) is the ideal of all compact operators on H. The spectrum, the approximate point spectrum and the essential spectrum of an operator T are denoted by $\sigma(T)$, $\sigma_{ap}(T)$ and $\sigma_e(T)$, respectively. Let $N_T(\mu)$ be the μ -space of T, that is, $N_T(\mu) = \{x \in H : Tx = \mu x\}$. The quotient algebra L(H)/K(H) is called the Calkin algebra. Let $\pi : L(H) \to L(H)/K(H)$ be the natural mapping. Then an operator T is said to be Fredholm if $\pi(T)$ is invertible. The essential spectrum $\sigma_e(T)$ of T is the set of all complex number λ such that $\lambda I - T$ is not a Fredholm operator and is denoted by $\sigma_e(T) = \sigma(\pi(T))$

In [4] and [2], T. Furuta, S.C. Arora and J.K Thukral introduced the concept of paranormal operators and *-paranormal operators. $T \in L(H)$ is said to be paranormal if $||Tx||^2 \leq ||T^2x|| ||x||$; *-paranormal $||T^*x||^2 \leq ||T^2x||$ for each unit vector x. Motivated by this, we introduce the following : An operator T is said to be a k^* -paranormal operator if $||T^*x||^k \leq ||T^kx||$ for each unit vector x in H. In [7,8], various examples have been constructed to show the proper inclusion relations among the classes of paranormal, *-paranormal, and k^* -paranormal operators. It is the aim of this paper to study the properties of the new class of k^* -paranormal operators which generalizes the class of *-paranormal operators. Moreover, we show some results on k^* -paranormal operators.

Received October 31, 1997 Revised March 10, 1998

This research is supported by the University of Ulsan Research Fund.

2. *-paranormal operators and k^* -paranormal operators

An operator T is said to be isometric if ||Tx|| = ||x|| for all $x \in H$. It is easy to verify that every isometric operator is hyponormal (i.e $||T^*x|| \le ||Tx||$ for all $x \in H$). An operator T is said to be unitarily equivalent to an operator S if $S = U^*TU$ for an unitary operator U.

In [5], T. Furuta and R. Nakamo have proved the following theorem.

THEOREM A. A hyponormal operator unitarily equivalent to its adjoint is normal.

We generalize the above theorem and prove similar results for the class of *-paranormal operators and k^* -paranormal operators. In [7, Theorem 2. 3], we have proved the following theorem.

THEOREM 2.1. Let T be a *-paranormal operator. Then an operator unitarily equivalent to T is *-paranormal.

We generalize Theorem A and have a similar result for k^* -paranormal operator.

THEOREM 2.2. An operator unitarily equivalent to a k^* -paranormal operator is k^* -paranormal.

Proof. Suppose $S = U^*TU$, T is k^* -paranormal and U unitary. Now, for each x in H, we have $||S^*x||^k = ||U^*T^*Ux||^k = ||T^*Ux||^k \le ||T^kUx|| ||Ux||^{k-1} = ||US^kx|| ||x|| = ||S^kx|| ||x||$. Thus S is a k^* -paranormal operator.

THEOREM 2.3. If T is an isometry and its adjoint is a k^* -paranormal operator, then T is unitary.

Proof. Since T is an isometry, T is k^* -paranormal. Then we have the following inequality : For any $x \in H$,

$$\begin{aligned} \|x\|^{k} &= \|T^{*}Tx\|^{k} \leq \|T^{2}x\|^{k} \leq \|T^{*k}Tx\| \|Tx\|^{k-1} = \|T^{*k-1}x\| \|x\|^{k-1} \\ &\leq \|TT^{*k-2}x\| \|x\|^{k-1} = \|T^{*k-2}x\| \|x\|^{k-1} \\ &\leq \|T^{*}x\| \|x\|^{k-1} \leq \|Tx\| \|x\|^{k-1} = \|x\|^{k} \end{aligned}$$

i.e, the equalities ||Tx|| = ||x|| and $||x|| = ||T^*x||$ imply $T^*T = I$ and $TT^* = I$, respectively. Therefore T is unitary.

By a similar proof, we can show easily a parallel result for *-paranormal operators.

COROLLARY 2.4. If T is an isometry and its adjoint is a *-paranormal operator, then T is unitary.

In [6], S.M. Patel have proved the following theorem.

THEOREM B. Let A be a hyponormal operator and let B be *paranormal. If A and B are doubly commutative (i.e. AB = BA and $AB^* = B^*A$), then AB is a *-paranormal operator.

In the following theorem we show that if we replace a hyponormal operator and a *-paranormal operator by an isometric operator and a k^* -paranormal operator in Theorem B, then again the condition of commutativity is sufficient to ensure the k^* -paranormality of the product.

THEOREM 2.5. Let T be a k^* -paranormal operator such that T commutes with an isometric operator S. Then TS is a k^* -paranormal operator.

Proof. For a unit vector x in H,

$$||(TS)^{*}x||^{k} = ||S^{*}T^{*}x||^{k}$$

$$\leq ||ST^{*}x||^{k}$$

$$= ||T^{*}x||^{k}$$

$$\leq ||T^{k}x||$$

$$= ||ST^{k}x||$$

$$= ||S^{k}T^{k}x||$$

$$= ||(TS)^{k}x||$$

Hence, TS is a k^* -paranormal operator.

In [2], S.C.Arora and J.K Thukral showed that power and the inverse(if exists) of *-paranormal operator may not be *-paranormal. and also this class is not translation invariant.

Product of two commuting *-paranormal operators, in general, may not be *-paranormal [6, P.94]. The product of two commuting k^* paranormal operators may not be k^* -paranormal.

In the proof of [1, Theorem 3], T. Ando has showed the following.

LEMMA 2.6. Let T and S be doublely commuting paranormal operators. If $||TSx|| ||x|| \ge ||Tx|| ||Sx||$ (or $||T^2Sx|| ||x|| \ge ||T^2x|| ||Sx||$) for all $x \in H$, then TS is a paranormal operator.

With suitable modification in the inequalities of Lemma 2.6, the following can be showed.

THEOREM 2.7. Let T and S be doubly commuting *-paranormal operators.

- (1) If $||T^*Sx|| ||x|| \ge ||T^*x|| ||Sx||$ for all $x \in H$, then TS is *paranormal.
- (2) $\|H\|T^*S^2x\|\|x\| \ge \|T^*x\|\|S^2x\|$ for all $x \in H$, TS is *-paranormal.

Proof. (1) Assume that $||T^*Sx|| ||x|| \ge ||T^*x|| ||Sx||$ for all $x \in H$. Since T and S are double commuting *-paranormal operators, we have

$$\begin{split} \|T^2S^2x\|\|S^2x\|\|Sx\|^2\|T^*x\|\|x\|^2 &\geq \|T^*S^2x\|^2\|Sx\|^2\|T^*x\|\|x\|^2\\ &= \|S^2T^*x\|\|T^*x\|\|S^2T^*x\|\|Sx\|^2\|x\|^2\\ &\geq \|S^*T^*x\|^2\|S^2T^*x\|\|Sx\|^2\|x\|^2\\ &\geq \|S^*T^*x\|^2\|T^*Sx\|\|S^2x\|\|Sx\|\|x\|^2\\ &\geq \|S^*T^*x\|^2\|T^*x\|\|S^2x\|\|Sx\|^2\|x\|, \end{split}$$

Hence, $||(TS)^2 x|| ||x|| \ge ||(TS)^* x||^2$. Thus TS is a *-paranormal operator.

(2) By a similar method we have

$$\begin{aligned} \|T^{2}S^{2}x\|\|S^{*}x\|\|T^{*}x\|\|x\| &\geq \|T^{*}S^{2}x\|^{2}\|S^{*}x\|\|T^{*}x\|\|x\| \\ &\geq \|S^{*}T^{*}x\|^{2}\|S^{*}x\|\|x\|\|T^{*}S^{2}x\| \\ &\geq \|S^{*}T^{*}x\|^{2}\|T^{*}x\|\|S^{2}x\|\|S^{*}x\| \end{aligned}$$

Hence, $||(TS)^2 x|| ||x|| \ge ||(TS)^* x||^2$. Thus (TS) is a *-paranormal operator.

Modifying the condition (1) in Theorem 2.7, we have a parallel result for a k^* -paranormal operator in the following.

REMARK. Let T and S be k^* -paranormal operators such that T and S are doubly commutative. If $||T^*S^kx|| ||x|| \ge ||T^*x|| ||S^kx||$ for all $x \in H$, where k is a positive integers $(k \ge 2)$, then TS is a k^* paranormal operator.

Proof. Assume that $||T^*S^kx|| ||x|| \ge ||T^*x|| ||S^kx||$ for all $x \in H$ and k is a positive integer $(k \ge 2)$. Since T and S are doubly commuting k^* -paranormal operators, we have

$$\begin{split} \|T^{k}S^{k}x\|\|S^{k}x\|^{k-1}\|T^{*}x\|^{k-1}\|x\|^{k} &\geq \|T^{*}S^{k}x\|^{k}\|T^{*}x\|^{k-1}\|x\|^{k} \\ &= \|S^{k}T^{*}x\|\|S^{k}T^{*}x\|^{k-1}\|T^{*}x\|^{k-1}\|x\|^{k} \\ &\geq \|S^{*}T^{*}x\|^{k}\|S^{k}T^{*}x\|^{k-1}\|x\|^{k} \\ &= \|S^{*}T^{*}x\|^{k}\|T^{*}S^{k}x\|^{k-1}\|x\|^{k} \\ &\geq \|S^{*}T^{*}x\|^{k}\|T^{*}x\|^{k-1}\|S^{k}x\|^{k-1}\|x\|^{k-1} \end{split}$$

Hence, $||(TS)^k x|| ||x|| \ge ||(TS)^* x||^k$. Thus TS is a k^* -paranormal operator.

3. Fredholm operators and k^* -paranormal operators

LEMMA 3.1 [3]. If $T \in L(H)$, the following are equivalent: (1) $T \in F_l$

- (2) ranT is closed and kerT is finite dimensional.
- (3) There is no sequence of unit vectors $\{x_n\}$ such that $\lim ||Tx_n|| = 0$ and $x_n \to 0$ weakly.
- (4) There is no orthonormal sequence $\{e_n\}$ such that $\lim ||Te_n|| \rightarrow 0$, where F_l , F_r and F denote the left Fredholm, right Fredholm, and Fredholm operators.

LEMMA 3.2 [3].

- (1) F_l , F_r and F are open.
- (2) $T \in F_l$ if and only if $T^* \in F_r$

LEMMA 3.3 [3]. If $T \in L(H)$, the following are equivalent:

- (1) T is right invertible
- (2) T is surjective
- (3) $\inf\{\|T^*x\|: \|x\|=1\} > 0$
- (4) T^* is left invertible
- (5) $ranT^*$ is closed and $ker(T^*) = (0)$

THEOREM 3.4. Let T be a k^* -paranormal operator.

- (1) T is invertible if and only if T is right invertible.
- (2) T is Fredholm if and only if $\pi(T)$ has a right inverse in L(H)/K(H).
- (3) $\sigma(T) = \sigma_r(T)$ and $\sigma_e(T) = \sigma_{re}(T)$ ($\sigma_r(T)$: right spectrum).

(4)
$$\sigma(T^*) = \sigma_{ap}(T^*).$$

Proof. (1) Suppose TB = I where $B \in L(H)$. Then $(TB)^* = B^*T^* = I$. Hence $kerT^* = (0)$; and since T is k^* -paranormal, we have ker(T) = (0). Hence T is injective and T is surjective by Lemma 3.3. Therefore T is invertible.

(2) By Lemma 3.1 and Lemma 3.2, $T^* \in F_l$ if and only if $T \in F_{\tau}$. Hence $ranT^*$ is closed and $KerT^*$ is finite dimensional, and ranT is closed if and only if $ranT^*$ is closed. Since T is k^* -paranormal, KerT is finite dimensional. Therefore F is a Fredholm operator.

(3) This is immediate from (1) and (2).

(4) By Lemma 3.3 and (3) in Theorem 3.4 we have $\sigma_l(T^*) = \sigma(T^*)$, where $\sigma_l(T^*)$ denote the left spectrum of T^* . And by [4,p 37] we have $\sigma_{ap}(T^*) = \sigma_l(T^*) = \sigma(T^*)$.

THEOREM 3.5. Let T be a k^{*}-paranormal operator. Then $\lambda \in \sigma_{ap}(T)$ if and only if there is a *-homomorphism $\phi: C^*(T) \to \mathbb{C}$ such that $\phi(T) = \lambda$ where $C^*(T)$ is the C^{*}-algebra generated by a single operator T.

Proof. Suppose $\phi : C^*(T) \to \mathbb{C}$ is a *-homomorphism such that $\phi(T) = \lambda$. If $\lambda \notin \sigma_{ap}(T)$, then there is a constant c > 0 such that $||(T - \lambda x)| \ge c||x||$ for all $x \in H$. This implies that $T^*T - \lambda T^* - \bar{\lambda}T + \bar{\lambda}\lambda - c^2$

is a positive operator. Hence $0 \leq \phi(T^*T - \lambda T^* - \bar{\lambda}T + \bar{\lambda}\lambda) - c^2 = -c^2$, a contradiction. Hence $\lambda \in \sigma_{ap}(T)$. Conversely, suppose $\lambda \in \sigma_{ap}(T)$. Let $\{x_n\}$ be a sequence of unit vectors in H such that $||(T - \lambda)x_n|| \rightarrow 0$. 0. Let LIM denote a Banach limit and define $\phi : L(H) \rightarrow \mathbb{C}$ by $\phi(B) = LIM < Bx_n, x_n >$. If $B \in L(H)$, then $||B(T - \bar{\lambda})x_n|| \rightarrow 0$. So $\phi(B(T - \lambda)) = LIM < B(T - \lambda)x_n, x_n >= 0$. Since T is k^* paranormal, $||(T - \lambda)^* x_n|| \rightarrow 0$. Therefore $\phi(B(T - \lambda)^*) = 0$ for every Bin L(H) and $\phi(I) = LIM ||x_n||^2 = 1$. Therefore if $p((T - \lambda), (T - \lambda)^*)$ is any non-commuting polynomial in $T - \lambda$ and $(T - \lambda)^*$ that has no constant term, $\phi(p((T - \lambda), (T - \lambda)^*) + \alpha) = \alpha$ for all α in \mathbb{C} . This implies that ϕ is multiplicative on a dense subalgebra of $C^*(T)$. Hence $\phi|_{C^*(T)}$ is multiplicative and

$$0 = \phi(T - \lambda) = LIM < (T - \lambda)x_n, x_n >$$

= $LIM < Tx_n, x_n > + LIM < -\lambda x_n, x_n >$
= $\phi(T) - \lambda$

So $\phi(T) = \lambda$ and $\phi(T^*) = LIM < T^*x_n, x_n >= \{LIM < Tx_n, x_n >\}^* = (\phi(T))^*$. Therefore ϕ is a *-homomorphism such that $\phi(T) = \lambda$.

References

- [1] T Ando, Operators with a norm condition, Acta Sci Math 33 (1972), 169-178
- S. C. Arora and J K Thukrai, On a class of operators, Galsnike Math 21(41) (1986), 381-386.
- [3] J B.Conway, Subnormal operators, Pitman, Boston, 1981
- [4] T. Furuta, On the class of paranormal operators, Proc. Japan Acad 43 (1967), 594-598.
- [5] T. Furuta and R. Nakamoto, On some theorems of Berberian and Sheth, Proc. of the Japan Academy 46(8) (1970), 814-845
- S. M. Patel, Contributions to the study of spectralaid operators, Ph.D. Thesis, Delhi University Press, 1974.
- Youngsik Park and Cheonseoung Ryoo, Note on jointly *-paranormality, Pusan Kyŏungnam Math Jr 8(2) (1992), 229-234
- Youngsik Park and Cheonseoung Ryoo, k*-paranormal operator, Pusan Kyŏungnam Math.J 11(2) (1995), 243-248.

Department of Mathematics

University of Ulsan Ulsan 680-749, Korea

Department of Mathematics Kyushu University 33 Fukuoka 812, Japan

34