East Asian Math J 14 (1998), No 2, pp. 411-419

SURFACES SATISFYING $\Delta x = Ax$ IN S^4

CHANGRIM JANG, KEUN PARK AND BYUNGJIN PARK

1. Introduction

Let M^n be an *n*-dimensional connected submanifold of the *m*-dimensional Euclidean space E^m , equipped with the induced metric Denote by Δ the Laplace operator of M^n and by x the position vector. Then the well-known Takahashi's theorem says that M^n satisfies $\Delta x = \lambda x$ for a constant λ if and only if M^n is minimal in $E^m(\lambda = 0)$ or is minimal in a hypersphere of $E^m(\lambda \neq 0)[6]$. In [2], F. Dillen, J. Pas and L. Verstraellen generalized Takahashi's condition and posed to study submanifolds for which

(1.1)
$$\Delta x = Ax + b,$$

where A is an $m \times m$ matrix and b is a constant vector in E^m . Hypersurfaces satisfying (1.1) in space forms are completely classified[1,3,4]. In [5] the first author classified Euclidean compact submanifolds of codimension 2 with constant mean curvature satisfying (1.1) and in [4] he proved that if an *n*-dimensional submanifold M^n of the (n + 2)dimensional sphere S^{n+2} satisfy $\Delta x = Ax$ and M^n is fully contained in E^{n+3} , then A must be symmetric. In this paper we study suffaces in S^4 satisfying $\Delta x = Ax$ and obtain the following classification theorem:

THEOREM If M^2 is a surface with constant mean curvature in S^4 and satisfies $\Delta x = Ax$ for a 5×5 matrix A, then M^2 is one of the followings:

(1) an open part of 2-sphere,

Received August 5,1998 Revised October 15, 1998

¹⁹⁹¹ Mathematics Subject Classification 53C40,53A05

Key words and phrases Laplacian, submanifolds satisfying $\Delta x = Ax + b$

The first and the third author were supported by 1997 UOU research grant

Changrim Jang, Keun Park and Byungjin Park

- (2) a minimal surface of a hypersphere in S^4 ,
- (3) an open part of a product $S^1(r_1) \times S^1(r_2)$ such that $0 < r_1^2 + r_2^2 \le 1$, $r_1 \ne r_2$,
- (4) a minimal surface of S^4 .

2. Preliminaries

Let M^2 be a surface in the unit hypersphere S^4 centered at origin in E^5 . We will use the same notation \langle , \rangle for the Euclidean metric on E^5 and the induced metric on M^2 . Denote by ∇ and ∇' the Levi-Civita connections on M^2 and E^5 , respectively. Let e_1, e_2 be an orthonormal local tangent frame on M^2 . Then the Laplacian Δ is given by

$$\Delta = \sum_{i=1}^{2} (e_i e_i - \nabla_{e_i} e_i).$$

Let H denote the mean curvature vector of M^2 . Then we have

$$\Delta x = H,$$

where x denotes the position vector of M^2 . Acting Δ to $\langle x, x \rangle = 1$, we obtain

(2-1)
$$\langle \Delta x, x \rangle = -2.$$

Let e_3, e_4, e_5 be an orthonormal normal frame on M^2 such that $e_3 = x$. From now on, the indices i, j, k run over the range $\{1, 2\}$ and the indices r, s over $\{3, 4, 5\}$ unless stated otherwise. Denote by $\omega_B^A, A, B = 1, 2, \cdots, 5$, the connection forms. Then we have

$$\begin{aligned} &(2\text{-}2)\\ \nabla'_{e_i}e_j = \nabla_{e_i}e_j + h(e_i, e_j), \ \nabla_{e_i}e_j = \sum_k \omega_j^k(e_i)e_k, \ h(e_i, e_j) = \sum_r h_{ij}^r e_r, \\ &(2\text{-}3)\\ \nabla'_{e_i}e_r = \sum_s \omega_r^s(e_i)e_s - \sum_j h_{ij}^r e_j, \end{aligned}$$

412

where h is the second fundamental form and h_{ij}^r are the coefficients of the second fundamental form h. Note that $h_{ij}^3 = -\delta_{ij}$ and $\omega_r^3(e_i) = 0$. Now assume that M^2 satisfy

$$(2-4) \qquad \qquad \Delta x = Dx,$$

where $D = \text{diag}[\lambda_1, \dots, \lambda_5]$ is an 5×5 diagonal matrix and the mean curvature function |H| is constant. Then we get the following four equations:

(2-5)
$$\langle x, x \rangle = \sum_{i=1}^{5} x_i^2 = 1,$$

(2-6)
$$\langle Dx, x \rangle = \sum_{i=1}^{5} \lambda_i x_i^2 = -2,$$

(2-7)
$$\langle D^2 x, x \rangle = \sum_{i=1}^{3} \lambda_i^2 x_i^2 = |H|^2,$$

(2-8)
$$\langle D^3x, x \rangle = \sum_{i=1}^5 \lambda_i^3 x_i^3 = -\sum_{i=1}^2 \langle De_i, e_i \rangle,$$

where x_i are coordinate functions of M^2 . Equation (2.6) follows from (2.1), (2.4) and equation (2.8) can be obtained by acting Δ to $\langle D^2 x, x \rangle = |H|^2$. Let

(2-9)
$$\langle D^k x, x \rangle = d_k$$

for every nonnegative integer k. Note that $d_0 = 1$, $d_1 = -2$ and $d_2 = |H|^2$. If the normal vectors x, Dx and D^2x are linearly independent, then these span the normal space of M^2 . Moreover we have the following lemma.

LEMMA 1. If x, Dx, D^2x are locally linearly independent, then M^2 is an open part of a product $S^1(r_1) \times S^1(r_2)$, where $r_1^2 + r_2^2 < 1$ and $r_1 \neq r_2$.

proof. Assume that x, Dx, D^2x are linearly independent on an open subset U of M^2 . Then by (2.5), (2.6), (2.7) and (2.9) the following three vectors form an orthonormal normal frame of U.

(2-10)
$$\xi_1 = x, \ \xi_2 = \frac{Dx - d_1x}{\sqrt{d_2 - d_1^2}}, \ \xi_3 = \frac{D^2x - c(Dx - d_1x) - d_2x}{\sqrt{d_4 - d^2 - c^2(d_2 - d_1^2)}},$$

where $c = \frac{d_3 - d_1 d_2}{d_2 - d_1^2}$. From (2.8) it follows that

$$(2-11) \quad -\langle D^3x, x\rangle + \langle D^2\xi_1, \xi_1\rangle + \langle D^2\xi_2, \xi_2\rangle + \langle D^2\xi_3, \xi_3\rangle = \operatorname{tr} D^2.$$

Substituting (2.10) into (2.11), equation (2.11) becomes (2-12)

$$\begin{split} &(\sum_{i=1}^{5}\lambda_{i}^{3}x_{i}^{2})^{3} + 2d_{2}(1-d_{1})(\sum_{i=1}^{5}\lambda_{i}^{3}x_{i}^{2})^{2} + (d_{1}^{2}-d_{2})(\sum_{i=1}^{5}\lambda_{i}^{3}x_{i}^{2})(\sum_{i=1}^{5}\lambda_{i}^{4}x_{i}^{2}) \\ &-2(\sum_{i=1}^{5}\lambda_{i}^{3}x_{i}^{2})(\sum_{i=1}^{5}\lambda_{i}^{5}x_{i}^{2}) + (\sum_{i=1}^{5}\lambda_{i}^{4}x_{i}^{2})^{2} + (trD^{2}-d_{2}+d_{2}^{3})(\sum_{i=1}^{5}\lambda_{i}^{3}x_{i}^{2}) \\ &+ \{(d_{1}^{2}-d_{2})trD^{2}-2d_{2}^{2}\}(\sum_{i=1}^{5}\lambda_{i}^{4}x_{i}^{2}) + 2d_{1}d_{2}(\sum_{i=1}^{5}\lambda_{i}^{5}x_{i}^{2}) \\ &+ (d_{2}-d_{1}^{2})(\sum_{i=1}^{5}\lambda_{i}^{6}x_{i}^{2}) + d_{2}(d_{2}^{2}-d_{2}d_{1}^{2}-d_{1})trD^{2} + d_{2}^{2}d_{1}(1+d_{2}d_{1}) = 0. \end{split}$$

Without loss of generality, U can be locally described as the set of points

$$(x_1, x_2, f(x_1, x_2), g(x_1, x_2), h(x_1, x_2)),$$

where f, g, h are smooth functions defined on an open subset of E^2 . If any two of λ_3 , λ_4 , λ_5 are equal, then (2.5), (2.6) and (2.7) imply that Dx and D^2x are linearly dependent. Thus we may assume that $\lambda_3, \lambda_4, \lambda_5$ are mutually different. From (2.5), (2.6) and (2.7) we find

$$x_{3}^{2} = \frac{\sum_{i=1}^{2} (\lambda_{i} - \lambda_{4})(\lambda_{i} - \lambda_{5})x_{i}^{2}}{(\lambda_{3} - \lambda_{4})(\lambda_{5} - \lambda_{3})} + \frac{d_{1}(\lambda_{4} + \lambda_{5}) - \lambda_{4}\lambda_{5} - d_{2}}{(\lambda_{3} - \lambda_{4})(\lambda_{5} - \lambda_{3})},$$

$$(2-13) \quad x_{4}^{2} = \frac{\sum_{i=1}^{2} (\lambda_{i} - \lambda_{3})(\lambda_{i} - \lambda_{5})x_{i}^{2}}{(\lambda_{3} - \lambda_{4})(\lambda_{4} - \lambda_{5})} + \frac{d_{1}(\lambda_{3} + \lambda_{5}) - \lambda_{3}\lambda_{5} - d_{2}}{(\lambda_{3} - \lambda_{4})(\lambda_{4} - \lambda_{5})},$$

$$x_{5}^{2} = \frac{\sum_{i=1}^{2} (\lambda_{i} - \lambda_{3})(\lambda_{i} - \lambda_{4})x_{i}^{2}}{(\lambda_{4} - \lambda_{5})(\lambda_{5} - \lambda_{3})} + \frac{d_{1}(\lambda_{3} + \lambda_{4}) - \lambda_{3}\lambda_{4} - d_{2}}{(\lambda_{4} - \lambda_{5})(\lambda_{5} - \lambda_{3})}.$$

Substituting (2.13) into (2.12), we get a polynomial with respect to x_1, x_2 , which vanishes identically on an open subset of E^2 . However, the coefficients of x_i^6 , i = 1, 2 is equal to $(\lambda_i - \lambda_3)^3 (\lambda_i - \lambda_4)^3 (\lambda_i - \lambda_5)^3$. Hence, we have $(\lambda_i - \lambda_3)(\lambda_i - \lambda_4)(\lambda_i - \lambda_5) = 0$. Thus the following two cases are possible

case 1
$$\lambda_1 = \lambda_2 = \lambda_3$$
,
case 2 $\lambda_1 = \lambda_3, \lambda_2 = \lambda_4$,

If case 1 holds, then x_4 and x_5 are constants. This imply D^2x and Dxare linearly dependent. Thus this case cannot happen. Consider case 2. Then we have $x_1^2 + x_3^2 = \text{constant}$, $x_2^2 + x_4^2 = \text{constant}$ and $x_5 = \text{nonzero}$ constant. Hence M^2 is an open part of $S^1(r_1) \times S^1(r_2)$, where r_1, r_2 are positive reals such that $r_1^2 + r_2^2 < 1$.

LEMMA 2 $If M^2$ is not minimal in S^4 and $D = diag[\lambda_1, \lambda_1, \lambda_1, \lambda_2, \lambda_2]$ with $\lambda_1 \neq \lambda_2$, then M^2 is an open part of a 2-sphere $(\lambda_2 = 0)$ or an open part of a product of two plane circles ($\lambda_2 \neq 0$).

Proof. From (25) and (2.6) we find

(2-14)
$$x_1^2 + x_2^2 + x_3^2 = \frac{\lambda_2 + 2}{\lambda_2 - \lambda_1}$$

(2-15)
$$x_4^2 + x_5^2 = \frac{\lambda_1 + 2}{\lambda_1 - \lambda_2}$$

Without loss of generality, we may assume that M^2 is locally given by a set of points

$$(x_1, x_2, f(x_1, x_2), g(x_1, x_2), h(x_1, x_2))$$

or a set of points

$$(2-16) (x_1, f(x_1, x_4), g(x_1, x_4), x_4, h(x_4)),$$

where f, g, h are smooth functions defined on open subsets of E^2 or E^1 . In either case we can obtain a local tangent vector field X of M^2 such that

$$DX = \lambda_1 X.$$

For example, if x_1, x_4 are indendent variables, then we have $D\frac{\partial}{\partial x_1} = \lambda_1 \frac{\partial}{\partial x_1}$ from (2.16). Hence we can get a local orthonormal tangent frame e_1, e_2 of M^2 such that

$$(2-17) De_1 = \lambda_1 e_1.$$

Since $\langle De_i, e_j \rangle = -\langle Dx, h(e_i, e_j) \rangle$ and $Dx = h(e_1, e_1) + h(e_2, e_2)$, we get

(2-18)
$$\langle Dx, Dx \rangle = -\langle De_1, e_1 \rangle - \langle De_2, e_2 \rangle$$

From (2.14) and (2.15) we know that $\langle Dx, Dx \rangle = -\lambda_1 \lambda_2 - 2(\lambda_1 + \lambda_2)$. Thus from (2.17) and (2.18) it follows that

(2-19)
$$\langle De_2, e_2 \rangle = \lambda_1 \lambda_2 + \lambda_1 + 2\lambda_2.$$

Let e_3, e_4, e_5 be a local orthonormal normal frame of M^2 such that $e_3 = x, e_4 = \frac{1}{\alpha}(Dx+2x)$, where $\alpha = |Dx+2x| = \sqrt{-(\lambda_1+2)(\lambda_2+2)}$. Then the followings hold.

(2-20)
$$De_3 = -2e_3 + \alpha e_4,$$

$$(2-21) De_4 = \alpha e_3 + \beta e_4,$$

where $\beta = \lambda_1 + \lambda_2 + 2$. And we have

$$(2-22) De_2 = \mu e_2 + k e_5,$$

$$(2-23) De_5 = ke_2 + le_5,$$

for some functions μ, k, l . Since $trD=3\lambda_1+\lambda_2$ and $detD=\lambda_1^3\lambda_2^2$, we can see that

$$\mu = \lambda_1 \lambda_2 + \lambda_1 + 2\lambda_2, \quad l = -\lambda_1 \lambda_2 - \lambda_2, \quad k^2 = \mu l - \lambda_1 \lambda_2$$

by (2.17) and (2.20)~(2.23). The coefficients (h_{ij}^r) of the second fundamental form h will be given by (2-24)

$$[h_{ij}^3] = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad [h_{ij}^4] = \begin{bmatrix} -\frac{\lambda_1+2}{\alpha} & 0 \\ 0 & -\frac{\mu+2}{\alpha} \end{bmatrix}, \quad [h_{ij}^5] = \begin{bmatrix} z & w \\ w & -z \end{bmatrix}.$$

We will show that k = 0. Suppose that $k \neq 0$. Differentiating $\langle De_5, e_5 \rangle = l$ in the direction e_1 and using (2.3),(2.24), we have $\langle De_5, -ze_1 - we_2 \rangle = 0$. Using (2.23), from this we can see that w = 0. Differentiate (2.17) in the direction e_2 . Then by (2.22) and w = 0 we find

$$\omega_1^2(e_2)De_2 = \lambda_1 \omega_1^2(e_2)e_2.$$

From this, by (2.22) we get

$$k\omega_1^2(e_2)=0,\;\omega_1^2(e_2)(\mu-\lambda_1)=0.$$

This means that $\omega_2^1(e_2) = 0$. Using this and differentiating $\langle De_2, e_2 \rangle = \mu$ in e_2 , we have -zk = 0. From which we deduce that z = 0. Let's differentiate (2.23) in e_1 again. Then we have $k\omega_2^1(e_1) = 0$. And hence we get $\omega_2^1(e_1) = 0$. This imply that the Gaussian curvature $K = \langle h(e_1, e_1), h(e_2, e_2) \rangle - |h(e_1, e_2)|^2$ of M^2 must be zero. So we get $(\lambda_1 + 2)(\lambda_2 - \mu) = 0$. Thus we have $\lambda_1 = -2$ or $\mu = \lambda_2$. If $\lambda_1 = -2$, then (2.15) imply that $x_4 = x_5 = 0$, which yields a contradiction. Thus we must have $\mu = \lambda_2$, which imply that k = 0. Thus we may assume that k = 0 in (2.22) and (2.23). Therfore $\mu = \lambda_1$ or $\mu = \lambda_2$. If the former holds, then x_4 and x_5 are constants. So M^2 is an open part of 2-sphere. Since M^2 is not minimal in S^4 , x_4 or x_5 will be nonzero. This imply that $\lambda_2 = 0$. If $\mu = \lambda_2$, Then M^2 is a product $C_1 \times C_2$, where C_1 and C_2 are curves in S^2 and S^1 respectively. Since $\Delta y = \lambda_1 y$, where y is the position vector of C_1 in S^2 , we can see that C_1 is a circle.

3. Proof of theorem

Proof of Theorem. If A is not symmetric, then by Theorem4 in [4] M^2 is contained in 4-dimensional linear subspace of E^5 . Hence M^2 is an open part of 2-sphere or an open part of a product of two spheres or a minimal surface of S^3 [4]. Now assume that A is symmetric. Then by a suitable coordinate change we may assume that A is diagonal. If Ax = -2x at one point of M^2 , then by the constancy of |H| Ax = -2x holds on whole points of M^2 . This means that M^2 is a minimal surface of S^4 . Thus, if M^2 is not minimal in S^4 , then M^2 has no points at which Ax + 2x vanishes. From now on suppose that M^2 is not minimal

in S^4 . If x, Ax, A^2x are locally linearly dependent on M^2 , then by Lemma 1 we can see that M^2 is an open part of a product of two plane circles. Otherwise we may assume that there exist smooth functions α, β on M^2 such that

$$(3-1) A^2 x = \alpha A x + \beta x.$$

Then we have $-2\alpha + \beta = |H|^2$ by (2.1) and $\langle A^2 x, x \rangle = |H|^2$. Also since (3.1) imply that $\langle A^2 x, AX \rangle = 0$ for any tangent vector X of M^2 , we find $\langle A^2 x, Ax \rangle = \alpha |H|^2 - 2\beta = \text{constant}$. Thus since $4 - |H|^2 \neq 0$, we know that α and β are constant and from (3.1) we get the following equations:

(3-2)
$$(\lambda_i^2 - \alpha \lambda_i - \beta) x_i = 0, i = 1, \cdots, 5,$$

where λ_i are the diagonal entries of A and x_i are the coordinate functions of M^2 . Assume that M^2 is locally described as the set of points

$$(x_1, x_2, f(x_1, x_2), g(x_1, x_2), h(x_1, x_2)),$$

where f, g, h are smooth functions defined on an open subset of E^2 . Then by (3.2) we can expect the following three cases:

case 1
$$\lambda_1 = \lambda_3 \neq \lambda_2 = \lambda_4$$
 and $x_5 = 0$,
case 2 $\lambda_1 = \lambda_3 = \lambda_4 \neq \lambda_2 = \lambda_5$,
case 3 $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4$ and x_5 is a nonzero constant $(\lambda_5 = 0)$.

If case 1 holds, then we can see that M^2 is an open part of a product of two spheres. If case 2 holds, then M^2 is an open part of 2-sphere or an open part of a product of two plane circles by Lemma 2. And if case 3 holds, then M^2 is a minimal surface of a hypersphere in S^4 .

References

 B.-Y. Chen and M. Petrovic, On spectral decomposition of Immersions of Finite Type, Bull. Austral. Math. Soc., 44 (1991), 117-129.

- [2] F. Dillen, J. Pas and L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai math. Jour. 13 (1990), 10-21
- [3] C. Jang and J. Park, Hypersurfaces satisfying $\Delta x = Rx + b$ in S_1^{n+1} and in H^{n+1} , Comm. Korean Math. Soc. 11 (1996), 215-224.
- [4] C. Jang, Some linearly independent immersions into their adjoint hyperquadrics, Jour. of Korean Math.Soc 33 (1996), 169–181
- [5] _____, A class of compact submanifolds with constant mean curvature, Bull Korean Math Soc 34 (1997), 155-171.
- [6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. of Math. Soc. Japan 18 (1966), 380-385.

Department of Mathematics University of Ulsan Ulsan 680-749, Korea