SURFACES SATISFYING $\Delta x=A x$ IN S^{4}

Changrim Jang, Keun Park and Byungin Park

1. Introduction

Let M^{n} be an n-dımensional connected submanıfold of the m-dimensional Euclidean space E^{m}, equipped with the induced metric Denote by Δ the Laplace operator of M^{n} and by x the position vector. Then the well-known Takahashi's theorem says that M^{n} satısfies $\Delta x=\lambda x$ for a constant λ if and only if M^{n} is minimal in $E^{m}(\lambda=0)$ or is minimal in a hypersphere of $E^{m}(\lambda \neq 0)[6]$. In [2], F. Dillen, J. Pas and L. Verstraellen generalized Takahashi's condition and posed to study submanifolds for which

$$
\begin{equation*}
\Delta x=A x+b, \tag{1.1}
\end{equation*}
$$

where A is an $m \times m$ matrix and b is a constant vector in E^{m}. Hypersurfaces satisfying (1.1) m space forms are completely classificd $[1,3,4]$. In [5] the first author classified Euclidean compact submanifolds of codimension 2 with constant mean curvature satisfying (1.1) and in [4] he proved that if an n-dimensional submanifold M^{n} of the ($n+2$)dimensional sphere S^{n+2} satisfy $\Delta x=A x$ and M^{n} is fully contained in E^{n+3}, then A must be symmetric. In this paper we study sufaces in S^{4} satisfying $\Delta x=A x$ and obtain the following classification theorem:

Theorem If M^{2} is a surface with constant mean curvature in S^{4} and satisfies $\Delta x=A x$ for a 5×5 matrix A, then M^{2} is one of the followings:
(1) an open part of 2-sphere,

Recerved August 5,1998 Revised October 15, 1998
1991 Mathematics Subject Classffication 53C40,53A05
Key words and phrases Laplacian, submanifolds satisfyng $\Delta x=A x+b$
The first and the third author were supported by 1997 UOU research grant
(2) a minimal surface of a hypersphere in S^{4},
(3) an open part of a product $S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$ such that $0<r_{1}^{2}+$ $r_{2}^{2} \leq 1, r_{1} \neq r_{2}$,
(4) a minimal surface of S^{4}.

2. Preliminaries

Let M^{2} be a surface in the unit hypersphere S^{4} centered at origin in E^{5}. We will use the same notation \langle,$\rangle for the Euclidean metric on E^{5}$ and the induced metric on M^{2}. Denote by ∇ and ∇^{\prime} the Levi-Civita connections on M^{2} and E^{5}, respectively. Let e_{1}, e_{2} be an orthonormal local tangent frame on M^{2}. Then the Laplacian Δ is given by

$$
\Delta=\sum_{i=1}^{2}\left(e_{2} e_{2}-\nabla_{e_{i}} e_{i}\right)
$$

Let H denote the mean curvature vector of M^{2}. Then we have

$$
\Delta x=H,
$$

where x denotes the position vector of M^{2}. Acting Δ to $\langle x, x\rangle=1$, we obtain

$$
\begin{equation*}
\langle\Delta x, x\rangle=-2 . \tag{2-1}
\end{equation*}
$$

Let e_{3}, e_{4}, e_{5} be an orthonormal normal frame on M^{2} such that $e_{3}=$ x. From now on, the indices i, j, k run over the range $\{1,2\}$ and the indices r, s over $\{3,4,5\}$ unless stated otherwise. Denote by $\omega_{B}^{A}, A, B=$ $1,2, \cdots, 5$, the connection forms. Then we have

$$
\begin{equation*}
\nabla_{e_{2}}^{\prime} e_{3}=\nabla_{e_{i}} e_{\jmath}+h\left(e_{\imath}, e_{\jmath}\right), \nabla_{e_{\imath}} e_{j}=\sum_{k} \omega_{j}^{k}\left(e_{\imath}\right) e_{k}, h\left(e_{\imath}, e_{j}\right)=\sum_{r} h_{\imath j}^{r} e_{r}, \tag{2-2}
\end{equation*}
$$

$\nabla_{e_{\mathrm{e}}}^{\prime} e_{r}=\sum_{s} \omega_{r}^{s}\left(e_{z}\right) e_{s}-\sum_{j} h_{\imath j}^{r} e_{j}$,
where h is the second fundamental form and $h_{i j}^{r}$ are the coefficients of the second fundamental form h. Note that $h_{i j}^{3}=-\delta_{\imath j}$ and $\omega_{r}^{3}\left(e_{\imath}\right)=0$. Now assume that M^{2} satisfy

$$
\begin{equation*}
\Delta x=D x \tag{2-4}
\end{equation*}
$$

where $D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{5}\right]$ is an 5×5 diagonal matrix and the mean curvature function $|H|$ is constant. Then we get the following four equations:

$$
\begin{align*}
\langle x, x\rangle & =\sum_{\imath=1}^{5} x_{\imath}^{2}=1 \tag{2-5}\\
\langle D x, x\rangle & =\sum_{\imath=1}^{5} \lambda_{\imath} x_{\imath}^{2}=-2 \tag{2-6}\\
\left\langle D^{2} x, x\right\rangle & =\sum_{i=1}^{5} \lambda_{\imath}^{2} x_{\imath}^{2}=|H|^{2} \tag{2-7}\\
\left\langle D^{3} x, x\right\rangle & =\sum_{i=1}^{5} \lambda_{\imath}^{3} x_{\imath}^{3}=-\sum_{i=1}^{2}\left\langle D e_{2}, e_{\imath}\right\rangle
\end{align*}
$$

where x_{i} are coordinate functions of M^{2}. Equation (2.6) follows from $(2.1),(2.4)$ and equation (2.8) can be obtained by acting Δ to $\left\langle D^{2} x, x\right\rangle=$ $|H|^{2}$. Let

$$
\begin{equation*}
\left\langle D^{k} x, x\right\rangle=d_{k} \tag{2-9}
\end{equation*}
$$

for every nonnegative integer k. Note that $d_{0}=1, d_{1}=-2$ and $d_{2}=|H|^{2}$. If the normal vectors $x, D x$ and $D^{2} x$ are linearly independent, then these span the normal space of M^{2}. Moreover we have the following lemma.

Lemma 1. If $x, D x, D^{2} x$ are locally linearly independent, then M^{2} is an open part of a product $S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$, where $r_{1}^{2}+r_{2}^{2}<1$ and $r_{1} \neq r_{2}$.
proof. Assume that $x, D x, D^{2} x$ are linearly independent on an open subset U of M^{2}. Then by (2.5), (2.6), (2.7) and (2.9) the following three vectors form an orthonormal normal frame of U.

$$
\begin{equation*}
\xi_{1}=x, \xi_{2}=\frac{D x-d_{1} x}{\sqrt{d_{2}-d_{1}^{2}}}, \xi_{3}=\frac{D^{2} x-c\left(D x-d_{1} x\right)-d_{2} x}{\sqrt{d_{4}-d^{2}-c^{2}\left(d_{2}-d_{1}^{2}\right)}}, \tag{2-10}
\end{equation*}
$$

where $c=\frac{d_{3}-d_{1} d_{2}}{d_{2}-d_{1}^{2}}$. From (2.8) it follows that

$$
\begin{equation*}
-\left\langle D^{3} x, x\right\rangle+\left\langle D^{2} \xi_{1}, \xi_{1}\right\rangle+\left\langle D^{2} \xi_{2}, \xi_{2}\right\rangle+\left\langle D^{2} \xi_{3}, \xi_{3}\right\rangle=\operatorname{tr} D^{2} \tag{2-11}
\end{equation*}
$$

Substituting (2.10) into (2.11), equation (2.11) becomes

$$
\begin{align*}
& \left(\sum_{\imath=1}^{5} \lambda_{\imath}^{3} x_{\imath}^{2}\right)^{3}+2 d_{2}\left(1-d_{1}\right)\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{3} x_{\imath}^{2}\right)^{2}+\left(d_{1}^{2}-d_{2}\right)\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{3} x_{\imath}^{2}\right)\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{4} x_{\imath}^{2}\right) \tag{2-12}\\
& -2\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{3} x_{\imath}^{2}\right)\left(\sum_{\imath=1}^{5} \lambda_{i}^{5} x_{\imath}^{2}\right)+\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{4} x_{\imath}^{2}\right)^{2}+\left(\operatorname{tr} D^{2}-d_{2}+d_{2}^{3}\right)\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{3} x_{\imath}^{2}\right) \\
& +\left\{\left(d_{1}^{2}-d_{2}\right) \operatorname{tr} D^{2}-2 d_{2}^{2}\right\}\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{4} x_{\imath}^{2}\right)+2 d_{1} d_{2}\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{5} x_{\imath}^{2}\right) \\
& +\left(d_{2}-d_{1}^{2}\right)\left(\sum_{\imath=1}^{5} \lambda_{\imath}^{6} x_{\imath}^{2}\right)+d_{2}\left(d_{2}^{2}-d_{2} d_{1}^{2}-d_{1}\right) \operatorname{tr} D^{2}+d_{2}^{2} d_{1}\left(1+d_{2} d_{1}\right)=0 .
\end{align*}
$$

Without loss of generality, U can be locally described as the set of points

$$
\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right), g\left(x_{1}, x_{2}\right), h\left(x_{1}, x_{2}\right)\right),
$$

where f, g, h are smooth functions defined on an open subset of E^{2}. If any two of $\lambda_{3}, \lambda_{4}, \lambda_{5}$ are equal, then (2.5), (2.6) and (2.7) imply that $D x$ and $D^{2} x$ are linearly dependent. Thus we may assume that $\lambda_{3}, \lambda_{4}, \lambda_{5}$ are mutually different. From (2.5), (2.6) and (2.7) we find

$$
\begin{align*}
& x_{3}^{2}=\frac{\sum_{z=1}^{2}\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{5}\right) x_{2}^{2}}{\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{5}-\lambda_{3}\right)}+\frac{d_{1}\left(\lambda_{4}+\lambda_{5}\right)-\lambda_{4} \lambda_{5}-d_{2}}{\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{5}-\lambda_{3}\right)}, \\
& x_{4}^{2}=\frac{\sum_{2=1}^{2}\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{5}\right) x_{2}^{2}}{\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{4}-\lambda_{5}\right)}+\frac{d_{1}\left(\lambda_{3}+\lambda_{5}\right)-\lambda_{3} \lambda_{5}-d_{2}}{\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{4}-\lambda_{5}\right)}, \tag{2-13}\\
& x_{5}^{2}=\frac{\sum_{2=1}^{2}\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right) x_{2}^{2}}{\left(\lambda_{4}-\lambda_{5}\right)\left(\lambda_{5}-\lambda_{3}\right)}+\frac{d_{1}\left(\lambda_{3}+\lambda_{4}\right)-\lambda_{3} \lambda_{4}-d_{2}}{\left(\lambda_{4}-\lambda_{5}\right)\left(\lambda_{5}-\lambda_{3}\right)} .
\end{align*}
$$

Substituting (2.13) into (2.12), we get a polynomial with respect to x_{1}, x_{2}, which vanishes identically on an open subset of E^{2}. However, the coefficients of $x_{2}^{6}, i=1,2$ is equal to $\left(\lambda_{2}-\lambda_{3}\right)^{3}\left(\lambda_{2}-\lambda_{4}\right)^{3}\left(\lambda_{2}-\lambda_{5}\right)^{3}$. Hence, we have $\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{5}\right)=0$. Thus the following two cases are possible

$$
\begin{array}{ll}
\text { case } 1 & \lambda_{1}=\lambda_{2}=\lambda_{3} \\
\text { case } 2 & \lambda_{1}=\lambda_{3}, \lambda_{2}=\lambda_{4}
\end{array}
$$

If case 1 holds, then x_{4} and x_{5} are constants. This imply $D^{2} x$ and $D x$ are linearly dependent. Thus this case cannot happen. Consider case 2. Then we have $x_{1}^{2}+x_{3}^{2}=$ constant , $x_{2}^{2}+x_{4}^{2}=$ constant and $x_{5}=$ nonzero constant. Hence M^{2} is an open part of $S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$, where r_{1}, r_{2} are positive reals such that $r_{1}^{2}+r_{2}^{2}<1$.

Lemma 2 If M^{2} is not minimal in S^{4} and $D=\operatorname{daag}\left[\lambda_{1}, \lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right]$ with $\lambda_{1} \neq \lambda_{2}$, then M^{2} is an open part of a 2 -sphere $\left(\lambda_{2}=0\right)$ or an open part of a product of two plane circles $\left(\lambda_{2} \neq 0\right)$.

Proof. From (25) and (2.6) we find

$$
\begin{align*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =\frac{\lambda_{2}+2}{\lambda_{2}-\lambda_{1}} \tag{2-14}\\
x_{4}^{2}+x_{5}^{2} & =\frac{\lambda_{1}+2}{\lambda_{1}-\lambda_{2}} \tag{2-15}
\end{align*}
$$

Without loss of generality, we may assume that M^{2} is locally given by a set of points

$$
\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right), g\left(x_{1}, x_{2}\right), h\left(x_{1}, x_{2}\right)\right)
$$

or a set of points

$$
\begin{equation*}
\left(x_{1}, f\left(x_{1}, x_{4}\right), g\left(x_{1}, x_{4}\right), x_{4}, h\left(x_{4}\right)\right), \tag{2-16}
\end{equation*}
$$

where f, g, h are smooth functions defined on open subsets of E^{2} or E^{1}. In either case we can obtain a local tangent vector field X of M^{2} such that

$$
D X=\lambda_{1} X
$$

For example, if x_{1}, x_{4} are indendent variables, then we have $D \frac{\partial}{\partial x_{1}}=$ $\lambda_{1} \frac{\partial}{\partial x_{1}}$ from (2.16). Hence we can get a local orthonormal tangent frame e_{1}, e_{2} of M^{2} such that

$$
\begin{equation*}
D e_{1}=\lambda_{1} e_{1} . \tag{2-17}
\end{equation*}
$$

Since $\left\langle D e_{\imath}, e_{\jmath}\right\rangle=-\left\langle D x, h\left(e_{\imath}, e_{\jmath}\right)\right\rangle$ and $D x=h\left(e_{1}, e_{1}\right)+h\left(e_{2}, e_{2}\right)$, we get

$$
\begin{equation*}
\langle D x, D x\rangle=-\left\langle D e_{1}, e_{1}\right\rangle-\left\langle D e_{2}, e_{2}\right\rangle . \tag{2-18}
\end{equation*}
$$

From (2.14) and (2.15) we know that $\langle D x, D x\rangle=-\lambda_{1} \lambda_{2}-2\left(\lambda_{1}+\lambda_{2}\right)$. Thus from (2.17) and (2.18) it follows that

$$
\begin{equation*}
\left\langle D e_{2}, e_{2}\right\rangle=\lambda_{1} \lambda_{2}+\lambda_{1}+2 \lambda_{2} . \tag{2-19}
\end{equation*}
$$

Let e_{3}, e_{4}, e_{5} be a local orthonormal normal frame of M^{2} such that $e_{3}=x, e_{4}=\frac{1}{\alpha}(D x+2 x)$, where $\alpha=|D x+2 x|=\sqrt{-\left(\lambda_{1}+2\right)\left(\lambda_{2}+2\right)}$. Then the followings hold.

$$
\begin{align*}
& D e_{3}=-2 e_{3}+\alpha e_{4}, \tag{2-20}\\
& D e_{4}=\alpha e_{3}+\beta e_{4}, \tag{2-21}
\end{align*}
$$

where $\beta=\lambda_{1}+\lambda_{2}+2$. And we have

$$
\begin{align*}
& D e_{2}=\mu e_{2}+k e_{5}, \tag{2-22}\\
& D e_{5}=k e_{2}+l e_{5}, \tag{2-23}
\end{align*}
$$

for some functions μ, k, l. Since $\operatorname{tr} D=3 \lambda_{1}+\lambda_{2}$ and $\operatorname{det} D=\lambda_{1}^{3} \lambda_{2}^{2}$, we can see that

$$
\mu=\lambda_{1} \lambda_{2}+\lambda_{1}+2 \lambda_{2}, \quad l=-\lambda_{1} \lambda_{2}-\lambda_{2}, \quad k^{2}=\mu l-\lambda_{1} \lambda_{2}
$$

by (2.17) and (2.20) $\sim(2.23)$. The coefficients $\left(h_{i j}^{r}\right)$ of the second fundamental form h will be given by

$$
\left[h_{23}^{3}\right]=\left[\begin{array}{cc}
-1 & 0 \tag{2-24}\\
0 & -1
\end{array}\right], \quad\left[h_{23}^{4}\right]=\left[\begin{array}{cc}
-\frac{\lambda_{1}+2}{\alpha} & 0 \\
0 & -\frac{\mu+2}{\alpha}
\end{array}\right], \quad\left[h_{23}^{5}\right]=\left[\begin{array}{cc}
z & w \\
w & -z
\end{array}\right] .
$$

We will show that $k=0$. Suppose that $k \neq 0$. Differentiating $\left\langle D e_{5}, e_{5}\right\rangle=l$ in the direction e_{1} and using (2.3),(2.24), we have $\left\langle D e_{5},-z e_{1}-\right.$ $\left.w e_{2}\right\rangle=0$. Using (2.23), from this we can see that $w=0$. Differentiate (2.17) in the direction e_{2}. Then by (2.22) and $w=0$ we find

$$
\omega_{1}^{2}\left(e_{2}\right) D e_{2}=\lambda_{1} \omega_{1}^{2}\left(e_{2}\right) e_{2}
$$

From this, by (2.22) we get

$$
k \omega_{1}^{2}\left(e_{2}\right)=0, \omega_{1}^{2}\left(e_{2}\right)\left(\mu-\lambda_{1}\right)=0
$$

This means that $\omega_{2}^{\frac{1}{2}}\left(e_{2}\right)=0$. Using this and differentiating $\left\langle D e_{2}, e_{2}\right\rangle=$ μ in e_{2}, we have $-z k=0$. From which we deduce that $z=0$. Let's differentiate (2.23) in e_{1} again. Then we have $k \omega_{2}^{1}\left(e_{1}\right)=0$. And hence we get $\omega_{2}^{1}\left(e_{1}\right)=0$. This imply that the Gaussian curvature $K=\left\langle h\left(e_{1}, e_{1}\right), h\left(e_{2}, e_{2}\right)\right\rangle-\left|h\left(e_{1}, e_{2}\right)\right|^{2}$ of M^{2} must be zero. So we get $\left(\lambda_{1}+2\right)\left(\lambda_{2}-\mu\right)=0$. Thus we have $\lambda_{1}=-2$ or $\mu=\lambda_{2}$. If $\lambda_{1}=-2$, then (2.15) imply that $x_{4}=x_{5}=0$, which yields a contradiction. Thus we must have $\mu=\lambda_{2}$, which imply that $k=0$. Thus we may assume that $k=0$ in (2.22) and (2.23). Therfore $\mu=\lambda_{1}$ or $\mu=\lambda_{2}$. If the former holds, then x_{4} and x_{5} are constants. So M^{2} is an open part of 2 -sphere. Since M^{2} is not minımal in S^{4}, x_{4} or x_{5} will be nonzero. This imply that $\lambda_{2}=0$. If $\mu=\lambda_{2}$, Then M^{2} is a product $C_{1} \times C_{2}$, where C_{1} and C_{2} are curves in S^{2} and S^{1} respectively. Since $\Delta y=\lambda_{1} y$, where y is the position vector of $C_{1} \mathrm{in} S^{2}$, we can see that C_{1} is a circle.

3. Proof of theorem

Proof of Theorem. If A is not symmetric, then by Theorem4 in [4] M^{2} is contained in 4-dimensional linear subspace of E^{5}. Hence M^{2} is an open part of 2 -sphere or an open part of a product of two spheres or a minimal surface of $S^{3}[4]$. Now assume that A is symmetric. Then by a suitable coordinate change we may assume that A is diagonal. If $A x=-2 x$ at one point of M^{2}, then by the constancy of $|H| A x=-2 x$ holds on whole points of M^{2} This means that M^{2} is a minımal surface of S^{4}. Thus, if M^{2} is not minimal in S^{4}, then M^{2} has no points at which $A x+2 x$ vanishes. From now on suppose that M^{2} is not minimal
in S^{4}. If $x, A x, A^{2} x$ are locally linearly dependent on M^{2}, then by Lemma 1 we can see that M^{2} is an open part of a product of two plane circles. Otherwise we may assume that there exist smooth functions α, β on M^{2} such that

$$
\begin{equation*}
A^{2} x=\alpha A x+\beta x . \tag{3-1}
\end{equation*}
$$

Then we have $-2 \alpha+\beta=|H|^{2}$ by (2.1) and $\left\langle A^{2} x, x\right\rangle=|H|^{2}$. Also since (3.1) imply that $\left\langle A^{2} x, A X\right\rangle=0$ for any tangent vector X of M^{2}, we find $\left\langle A^{2} x, A x\right\rangle=\alpha|H|^{2}-2 \beta=$ constant. Thus since $4-|H|^{2} \neq 0$, we know that α and β are constant and from (3.1) we get the following equations:

$$
\begin{equation*}
\left(\lambda_{i}^{2}-\alpha \lambda_{2}-\beta\right) x_{i}=0, i=1, \cdots, 5, \tag{3-2}
\end{equation*}
$$

where λ_{2} are the diagonal entries of A and x_{2} are the coordnate functions of M^{2}. Assume that M^{2} is locally described as the set of points

$$
\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right), g\left(x_{1}, x_{2}\right), h\left(x_{1}, x_{2}\right)\right),
$$

where f, g, h are smooth functions defined on an open subset of E^{2}. Then by (3.2) we can expect the following three cases:
case $1 \quad \lambda_{1}=\lambda_{3} \neq \lambda_{2}=\lambda_{4} \quad$ and $\quad x_{5}=0$,
case $2 \lambda_{1}=\lambda_{3}=\lambda_{4} \neq \lambda_{2}=\lambda_{5}$,
case $3 \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4} \quad$ and $\quad x_{5}$ is a nonzero constant $\left(\lambda_{5}=0\right)$.
If case 1 holds, then we can see that M^{2} is an open part of a product of two spheres. If case 2 holds, then M^{2} is an open part of 2 -sphere or an open part of a product of two plane circles by Lemma 2. And if case 3 holds, then M^{2} is a minimal surface of a hypersphere in S^{4}.

References

[1] B.-Y. Chen and M. Petrovic, On spectral decompositzon of Immerszons of Finite Type, Bull. Austral. Math Soc , 44 (1991), 117-129.
[2] F. Dillen, J. Pas and L. Verstraelen, On surfaces of finte type in Euchdean 3-space, Kodal math. Jour. 13 (1990), 10-21
[3] C. Jang and J. Park, Hypersurfaces satzsfyzng $\Delta x=R x+b m S_{1}^{n+1}$ and in H^{n+1}, Comm. Korean Math Soc 11 (1996), 215-224.
[4] C. Jang, Some hnearly independent ammerszons into their adjount hyperquadracs, Jour. of Korean Math.Soc 33 (1996), 169-181
[5] _, A class of compact submanıfolds with constant mean curvature, Bull Korean Math Soc 34 (1997), 155-171.
[6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. of Math Soc Japan 18 (1966), 380-385.

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

