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EXPERIMENTAL RESULTS OF W-CYCLE 
MULTIGRID FOR PLANAR LINEAR ELASTICITY

Jaechil Yoo

Abstract. In [3], Franca and Stenberg developed several Galerkin. 
least squares methods for the solution of the problem of linear elas­
ticity. That work concerned itself only with the error estimates of 
the method. It did not address the related problem of finding effec­
tive methods for the solution of the associated-linear systems. In 
this work, we present computational experiments of W-cycle multi­
grid method Computational experiments show that the conver­
gence is uniform as the parameter, u, goes to 1/2

1. Introduction

Let Q be a bounded convex polygonal domain m R? and 3Q be the 
boundary of Q. The pure displacement boundary value problem for 
planar linear 이asticity is given in the form

(1) • e(々)+「二矿▽▽•*} + / = 0 in Q,
1 — 2v

— 0 on 5Q

Here u = (*凡2)denotes the displacement, f = (/i,/*2)is the body 
fo호ce, v is Poisson's ratio and 卩，is the shear modulus given by // = 
£J/{2(1 + i/)} where E is the Young's modulus. Instead of using Pois­
son^ ratio v and Young's elasticity modulus E)we can also work with 
the Lame constants A and /i. These constants are related to each other 
by the following equations;

Eu X
=(1 + "-初,“=2(入 + 亦

Received July 27, 1998 Revised October 28, 1998
1991 Mathematics Subject Classification 65N22, 65N30
Key words and phrases Galerkin least squares method, W-cycle multigrid, 

elasticity



400 Jaechil Yoo

_ E _ 〃(，人 + 2“，)
“ = '=人 + 尹.

We restrict Poisson's ratio to 0 < < 1/2 where the upper limit
corresponds to an incompressible material.

Throughout this paper, we use mesh parameter and grid level k 
which may vary from occurrence to occurrence

We define various standard differential operators as follows, see [2]:

▽.f+票，
_ dx oy

=(dr^/dx + dr^/dyX ^ = (dv^/dx dv1/dy\
"\dr2i/dx + dr22/dy J ' V ~ \dv2/dx dv2/dy J

2 2 1
丁 ：頌&, and = - [Vu + (Vv)*] .

1=1 3=1

Let Jfm(Q) denote the usual Sobolev space of functions with L2(Q) 
derivatives up to order m. Hrn(Q) is equipped with the norm

We use the following convention for the Sobolev seminorms:

1
I이H"") ：= I [ V |泸切2 dxdy\ •

5 I 이 =m )

Let 理(Q) = {ve FTO(Q) : 끼g = 0}.
It is well known that for f € L2(Q), equation (1) has a unique solu­

tion u G H흐(Q) A 丑*(Q), see [4].
There is a great deal of literature dealing with approximation schemes 

for the equations of linear elasticity. To avoid the locking phenome­
non in linear elasticity problems, there are several different approaches: 
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nonconforming finite element methods, the methods of 호educed/selected 
integration, first order least squares methods, and Galerkin. least squares 
methods. For all of these approaches, mixed finite element methods 
involving a pair of finite element spaces are commonly used and we 
have to solve large linear systems arising from the finite element dis­
cretizations. With the usual mixed finite element methods, the system 
is indefinite and hence the problem poses difficulties.

In recent years, mode히! iterative methods such as multigrid and do­
main decomposition methods have been applied'to mixed finite element 
methods. Among those iterative methods, the multigrid method has 
been one of the most popular and fastest methods. So we study the 
multigrid method to solve the large sparse linear systems derived from 
the Galerkin least squares method for the pure displacement boundary 
value problem.

It is well-known that one way of driving stabilized mixed finite el­
ement methods is to combine the classical Galerkin formulation with 
least-squares forms of the differential equations. (See [3] and references 
therein). An advantage of this method is that the class of finite element 
spaces that can be used is considerablely enlarged, hence the methods 
are easily incorporated into existing finite element codes. In this pa­
per, we present a scheme of W-cycle multigrid method to solve the 
linear system arising from P-1 conforming finite element method for 
the mixed formulation of the pure displacement boundary value prob­
lem as in [1], [티 and [6]. We give the computational results of W-cycle 
multigrid method with a：/4 at the coarse grid and with the constant 
q, where a is the stabilization parameter in the Galerkin least squares 
method. Moreover, we show that the number of iterations for the W- 
cycle multigrid methods is reduced by a half when we take twice as 
many smoothings in the algorithm and also reduced by a half when we 
cut the mesh size by a half. S. Brenner [1] reports very similar results 
for the pure displacement boundary value problem with the noncon­
forming finite element method.

This paper is organized as follows. We explain the conforming finite 
element method in section 2. We discuss the W-cycle multigrid algo­
rithm in section 3. The computational results are presented in section 
4.
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2. The finite element method

For simplicity, we assume that 2产=1. Let p = —|V • u, where 
e = (1 — 2v)/u, Then (1) is equivalent to

—▽ . s(u) + Vp = f in Q,
(2) ep + V • u = 0 in Q,

u = 0 on

Hence, we have the following weak formulation: 
Find (iz,p) 6 H*(Q) x L2(fi) such that

/ e(w) : e(v) dxdy — 
Jq

p dxdy =I f • v dxdyy 
Jq

(3)

/ pq dxdy + 
Jq

q dxdy = 0,

Vv G 禺(Q),

« e L2(Q).

Let Tk be a family of triangulations of Q, where Tk+1 is obtained 
by connecting the midpoints of the edges of the triangles in Tk. Let 
hr =diam(T) for each T E Tk and 裁 = max 如, 나len hk = 2服+】.

TEk
Now lefs define the conforming finite element spaces for our multigrid 
method.

Vk ：= {v € C°(Q) ; 이f is linear for all T C Tk and = 0},

Pk ：= {q € C°(Q) ; q\r is linear for all T C Tk} and

Pk ~ {q C°(Q) ; q\r is linear for all T cTk and [ q dx = 0).

Then the discretized problem for (3) is the following:
Find {ukzPk) £ Vk x 耳 such that

(4) 瓦:=万(，黑，qQ V(必”0。WVk x R
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where

民;（（四，物:），（％皿））

£(지块) : e(%) dxdy qk dxdy k dxdy

dxdy

PkQk dxdy

and

伊”(％臨=/ dxdy.

Note that the bilinear form Bk is symmetric and indefinite.

3. Multigird algorithm

In this section, we discuss the W-cycle multigrid algorithm.
In order to define the fine-to-coarse operator we introduce the 

following mesh-dependent inner product:

((W，q))k ：=(3)£2(Q) +/*(0,g)z，2(Q).

Then I广:Vk x Pk Vk-i x P^-i is defined by 

for all (u,p) e Vk x F% and (v,q) e Vk-i x Pk-\.
Define Bk ： Vk x Pk Vk x Pk by

(切：(％0),(。,9))左=&』(sp),(u,q)),

for 시 1 (u,p), (v,q) G Vfc x Pk.
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Theorem 1. (i) Given (u,p) eVkx Pk,

(u,p) e vfc x pfc((u,0),(o,i))*： = 0.

(ii) Ii~l ：VkXpkT Vk-i x 瓦—，

Proof. See [1],

Theorem 2. The subspace 咋 x R is invariant under 玖 

Proof. See fl].

Theorem 3. The spectral radius of Bk is at most Ch：.

Proof. See [1]

Because of the result of Theorem 3 and indefiniteness of the system, 
the usual iterative methods are not appropriated to solve our Imeat 
system.

The mesh-dependent norms on Vk x R are defined as follows

|||(%0내s,k ：=、/((璘)s/2(u,：p), S，0)\ for all (sp) e Vfc X Pk.

Note that Bk is nonsingular and symmetric, hence B； is positive defi­
nite with respect to (•, Therefore, this norm is well-defined for each 
s E R. Moreover, -

：= \/ll쌔务(Q) + 疏II끼I务(Q) for all (u,p) evkx Pk,

|&；((3,0),(Z"))| < |如,0)|||2,/내(。2내0,& for all (%?), (糾q) EVkX Pk,

and

魇((”,以(sq)) ~
——---------스 for all (%0)€ VqkRc.N（SP 내麝 = sup

（哄04〉詩八｛（o,o）｝ 111（糾 9）11 心
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Let

奖1(S,0),(S)

:/ s(u) : e(v) dxdy — - ujq dxdy — J dxdy

3 E ^t(-V - e(u) + Vp, -V - s(v) + Vg)L2(T) 
T^Tk~~1

—£ pq dxdy 
Jq

and

= / f-vdxdy-^ 孫(£—▽•沧)+ 财)

Note that and :F： are different from Bk-i and The difference
is in the least squares term. We divide the stabilization parameter a 
by 4 to define and

Define P^-1 :Vk ><■ Pk-^ Vk-i x Pfc-i by 

for all (u,p) eVk x Pk and (v,g) 6 Vk-i x 耳一侦

Now we describe the fc-th level iteration scheme of the conform­
ing W・cy이e multigrid algorithm. The fc-th level iteration with initial 
iterate zq) yields CMG(k, (?/o,约),(叫『)) as a confirming approx­

imate solution to the following problem.
Find (y, z) EVkxPk such that

- (w,r), where (wj)cVrxR.

For k = 
direct 
method.

1, (如，约)〉(初/)) is the solution obtained from a

In other words；
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For A: > 1, there are two steps.
Smoothing step : Let6 Vt x be defined recursively by 
the initial iterate (%)zq) and the equations

（血为）=（航_1,2」1） + 1 < Z < m,

where M ：= Ch； is greater than or equal to the spectral radius of 
Bfc, and m is the number of smoothings.
Correction step : The coarser-grid correction in x R is obtained 
by applying the (k — l)-th level conforming iteration. More precisely,

(如血)= (0,0) and
(0,贝)=CMG(k - 1, (vo, go), (w,f)), i = 1,2

where (w,f) G Vk-i x Pk-i is defined by (w, f) := —
Zm)) •

Then CMG(女。加 约), (叫尸)) = (切”既) + 豎_고(如, 如).

Remark 1. In the smoothing step； we use Bk instead of the restric­
tion of Bfc. Because the space Vk'xPk has a natural coordinate system 
which consists of the values of piecewise linear functions at mesh points 
on the triangles. In view of Theorem 1 and Theorem 2, the result of the 
smoothing step and the correction step belongs to Vk x R. Therefore, 
in the actual implementation of the multigrid method, we use only the 
natural coordinate system of Vk x Note that Bk is represented by 
a sparse banded matrix and is not invertible.

4. Experimental results

We apply the TV-cycle multigrid algorithm to the pure displacement 
boundary value problem (2) studied in [1]. The domain Q is the unit 
square, and the body force f — (/i,/2)is taken to be as follows :

fi =7r2[2 sin27r?/(—1 + 2cos 2ttx) — 0.5cos?r(x + g) + 
€ + 2

/2 =兀2[2 sin 2ttx(1 一 2 cos 2?rg) — 0.5 cos 7r(x + g) +

sin irx sin Try],

sin 7rx sin Try].
e + 2
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The exact solution u =(队is

=sin2g「g(—l + cos 2ttt) + sm irx sm 7T?/,
€ + 2

U2 = sm — cos &y、) + sm 7tx sm ny.

The programs execute until the discrete L2 relative error is less than 
5% of the initial error. We use the initial iterates, u° = (0% ag) = (0,0) 
and p° = 0. The computations were done in double-precision arithmetic 
for various a's, smoothing steps and Poisson's ratio z/5s. The numbers 
in the columns represent the number of iterations to achieve an L2 
relative error of less than 5% in the displacement.

We know that the number of iterations for the W-cycle multigrid 
is reduced in half when we take twice as many smoothings and cut 
m half when we have the mesh size by a half We also observe that 
our multigrid is robust for the moderate a's in that the convergence is 
uniform as the parameter, Poisson's ratio 匕 goes to 1/2

Also, we give the numerical experiments with the fixed a for all 
levels and with a/4 at the coarse grid for W・cy시e multigrid methods. 
A very attractive feature of using the fixed a for all levels in our CMG 
algorithm is its inherent simplicity, the bilinear form at the coarse grid 
is the same form at the fine grid. In other word, the structure of the 
linear system at the coarse grid is same as that of the linear system 
at the fine grid. The numerical experiments show that the number of 
iterations of W-cy시e multigrid method is nearly same m both cases 
with a fixed and a modified.

Note that the size of our linear system is 12675 by 12675 for the 
case of N = 64 and 3267 by 3267 for the case of N=32.

Table 1: ci/4 at the coarse grid and v — 0.3

N = 32 N = 64
smoo Q=1 a—0 3 Q=0 1 Q=0 01 a=0 3 o=0 1 a =0 01

1 1096 1084 1081 1080 554 552 551 551
2 548 542 541 540 277 276 276 276
3 366 362 361 360 185 184 184 184
4 274 271 271 270 139 138 138 138
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Table 2: a/4 at the coarse grid and v = 0.45

N = 32 N = 64
smoo a=l a=0 3 a=0 1 a=0.01 a=l a=0.3 a—0 1 Q'=0 01

1 1084 1079 1082 1084 551 552 552 553
2 542 540 541 542 276 276 276 277
3 362 360 361 362 184 184 184 185_
4 271 270 271 271 138 138 138 139

Table 3: a/4 at 나蛇 coarse grid and v = 0.495

N = 32 N = 64
smoo a=l a=0 3 a~0 1 。=0 01 a=l a=0 3 a=0 1

1 1091 1102 1113 1119 564 568 570 570
2 546 551 557 560 282 284 285 285
3 371 368 371 372 188 190 191 190
4 273 276 279 280 141 142 143 43

Table 4: m/4 at the coarse grid and v — 0.4995

N = 32 N = 64
smoo a=0.3 a=0 1 a=0 01 a—1 。=0.3 a—0 1 a—0 01

1 div div 1118 1125 566 571 573 574
2 div div 559 563 284 286 287 287
3 div div 373 376 div 191 191 192
4 div div 280 282 div 143 144 144

Table 5: Fixed a for all levels and v = 0.3

N = 32 丿V = 64
smoo a—1 a=0.3 a=0 1 a=0.01 a=l a=0 3 a=0 1 a=0 01

1 1180 1097 1088 1081 609 563 556 552
2 590 549 544 541 305 282 278 276
3 394 366 363 361 203 188 186 184
4 295 275 272 271 153 141 139 138
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Table 6: Fixed a for all levels and v = 0.45

N = 32 TV = 64
smoo a—0.3 a=0 1 Q=0 01 a—1 a=0.3 。=0 L a=0 01

1 1177 1101 1092 1084 611 568 559 553
2 589 551 546 542 306 284 280 277
3 393 367 364 362 204 190 187 185
4 295 276 273 271 153 142 140 139

Table 7: Fixed a for all levelsand v = 0.495

一 N = 32 N = 64
smoo a=0.3 Q=0 1 a=0 01 a=l a—Q 3 a=0 1 a=0 01

1 1174 1100 1094 1109 610 569 561 565
2 587 550 547 555 305 285 281 283
3 391 367 365 370 204 190 187 189
4 294 275 274 278 153 143 143 142

Table 8, Fixed a for all levels an3 v = 0.4995

N = 32 TV = 64
smoo a=l a=0 3 a=0 1 Q=0 01 Q=1 a=0 3 a—Q 1 Q=0 01

1 1173 1100 1094 1114 610 569 561 568
2 587 550 547 557 305 285 281 284
3 391 367 365 372 204 190 187 190
4 294 275 274 279 153 143 141 142
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