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PROPERTIES OF PSEUDOCONFORMAL MAPPINGS
IN COMPLEX BANACH SPACES

KwaANG HO SHON AND Hyun Jung KiMm

1. Introduction

T. Higuchi{l] obtained the distribution theorem of holomorphic map-
pings in several complex variables. P. Liczberski[3] and T. Matsunol[4]
investigated the starlikeness of holomorphic mappings in complex vec-
tor spaces, separately. And H. J. Kim and K. H. Shon|2] obtained
some properties of starlikeness for pseudoconformal mappings in com-
plex Banach spaces. For (23,---,2zp) = z € C?, define |2| = max 12,

andlet D, = {z € C™:|2| <r}and D = D; Let F be the family of w :
wz(Z)]
20 >0

1

D — €™ which are holomorphic and satisfy w(0) =0, Re[

when |z] = |z| > 0, (1 <2 < n), where w = (w1, - - ,Wn).
In this paper, we investigate some properties of starlike mappings
with respect to pseudoconformal mappings in complex Banach spaces

2. Preliminaries

DEFINITION 2.1. A holomorphic mapping f : D — C” is starlike if
f is univalent, f(0) =0 and sf(D) C f(D) for all s € I = [0, 1].

DEFINITION 2 2 For a system of n holomorphic functions f, =
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iz (G=12,--- ,n),if
g'z% gz%
g g

then we call f a pseudoconformal mapping.

of
¢ 0z

From Theorems 1 and 2 of T. J Suffridge[5], we have the following
theorem.

THEOREM 2.3 The mapping f : D — C™ is starlike if and only
if there exists w € F such that a pseudoconformal mapping f = Jw,
where f and w are written as column vectors and f(0) = 0.

DEFINITION 2.4 If f : D — C" 18 a biholomorphic map of £ onto
a convex domain, we say that f is convex.

T. J. Suffridge[5] proved that for the pseudoconformal mappiny
f : D — C" being biholomorphic and f(0) = 0, the mapping f 1s
convex if and only if there exists f which is univalent of D onto convex
domains such that f(z) = T'(fi1(21), fa(22), - , fa(2n)), where T is a
nonsingular linear transformation.

3. Starlike mapping in complex Banach spaces

Let X and Y be complex Banach spaces and let B = {z € X :
llz]] < 1}. For 0 # 2 € X, let T'(z) be the collection of all continuous
real linear functionals z* on X satisfying z*(z} = = and z*(y) < {|y||
forall y € X. Let F(B) be the class of mappings w : B — X which are
holomorphic, and satisfy w(0) =0, and z*(w(z)) > 0 when 0 # r < B
and x* € T(x). Further let F(B) be the class of w € Fy(B) which
satisfy z*{w(z)) > 0 when 0 # z € B and 2* € T(x).

We can define a starlike map in the complex Banach spaces like a
definition of a starlike map in §2. That is, a holomorphic mapning
f: B —Y is starlike if f is one-to-one , f(0) = 0, and sf(B) C {(B)
for all s € I.
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THEOREM 3.1{6}. Suppose f : B — Y is starlike and that f~! is
holomorphic on an open subset f(B) of Y. There exists w € F(B)
such that f(z) = D f(x)w(z).

‘THEOREM 3.2[6]. Let f : B — Y be holomorphic and f(0) = 0.
Assume D f(z) has a bounded inverse for each * € B and for some
w € F(B), flz} = Df(z)w(z). Then f 1s starlike.

EXAMPLE 3.3. Define f : B — Y = I* by f(z) = (az1,bze,c23)
where a, b, ¢ are arbitrary constants, and ||z{|® = |z > + |z2|3 + |z3[® .

f(z)
Then = w(x) where w(x) = (x,,79,73) Butfor 0 <t <1, let
Df(x) ( ) ( ) ( 1 2 3)

v(z,y,t) . B — B be the restriction of the linear map having matrix

1-1¢ V-t -1 V1—-#2-1
vV1—t2-1 1-t V91—t -1

VI—2-1 Vi-t2-1 1-t
Then f is starhke.

Let Ko(B) be the class of all functions w B x Bx B — X
which are holomorphic i each variable and satisfy w(z,z,2) =0 and
r{w(z,y,2)) > 01f =* € T(z) and max{||yl],]|]z]|} < llzl|- Let K(B)
be the collction of all w € Ko(B) which satisfy «*(w{z,y, z)) > 0 when

z* € T(x) and max{||y|],|1z]|} < ||z||. The techmque of the following
theorem is based on the method in T J Suffridge[6].

i
THEOREM 3.4 If w € Ko(B) and |a| < 1 then —(;w(am,ay,az) €

Ko{B) (the limt value at o = 0 is Dw(0,0,0)(x,y, z}). Furthermore if
r* € T(z), 0 # « € B and max{||y||,||z||} < ||z||, then z*(w(z,y, 2)) =
0 if and only if x*(Dw(0,0,0)) = 0.

Proof. For 0 < |a| < 1, z* € T(z), define 2}, by
* x* T, Y, 2
xa((mwya Z)) =z (Ia[g)
«@
for all (=, y,z) € X x X x X. Then z, € T'(az). Thus,

0S l 2% (w(a, ay,az))—ﬁ (| Mﬂ%ﬁ*ﬁ)
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o (Memeve))

&

Since x* is continuous, we have
1
~wlaz, oy, az) € Ko(B)
«a

for |af < 1. Since z*{((z,y,2)) =Relz*((z,y, 2) — 12" (i(z,y, 2))] is the
real part of a continuous complex linear functional

- (w(ax,ay,az))

(84

%w(ax, ay,az) € Ko(B),

x* ((ax, ay’ az)) 2 0

o

we have

if z* € T(z). Hence w 1s holomorphic and so

. (w(am, ay, az) )

(8 4

— Re [x‘ (w(ax, ay,az)) - (Zw(ax, ay,az))]
o o
is harmonic Therefore
. (w(ax,c«y, Ozz)) -0

o

or

83

- (w(ax,ay,az)) =0

for fixed (z,¥, z). Hence we have z*(Dw(0,0,0)(z,y, z)) = 0.
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