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HOLOMORPHIC LINE BUNDLES OF COHOMOLOGY 
GROUPS FOR A COMPLEX TORUS

Kwang Ho Shon, Su Mi Kwon and Jinkee Lee

1. Introduction

Let r be a discrete subgroup of Cn. Then we can construct a com
plex Lie group Tn from the subgroupHence we construct a coho
mology group for the structure sheaf O of Tn. In the case of weakly 
pseudoconvex manifolds the ^-problem depends not only on boundary 
conditions, but also on complex structures (see [2,3,8]). H. Grauert 
[1] showed that there exists a C°° weakly pluriharmonic exhaustion 
function on a Picard set. H. Kazama and K. H. Shon [4,5] obtained a 
criterion for the 分-cohomology in the Picard group, using the theory of 
Diophantine approximation. In this paper we investigate the properties 
of weakly pseudoconvex manifolds not containing the strictly pseudo
convex manifold and holomorphic line bundles of cohomology groups 
for a complex torus

2. Preliminaries

Let T9 be a complex torus of complex dimension q and r be a
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discrete subgroup of C% that is,

T(U1, «2, - - - ,7知 가q+l, … ,u2q)
=(mini + m2U2 T---- F mqug + mq+iuq+1 H---- 卜 m2<7«29

:Vmi 6 Z, 1 < « < 2q}.

Then T9 =C9/r(ui,u2, • • • ,u2q) is a compact complex Lie group.

Definition 2.1. A manifold X of complex dimension n is said to 
be a strictly pseudoconvex manifold if there exists a C°° function : 
X R such that

(1) The Levi form f—一is everywhere positive.

(2) Xc := {w £ X : p(T) < c} CC X, Vc G R.

Definition 2.2. A manifold X of dimension n is said to be a weakly 
pseudoconvex manifold (or weakly 1-complete manifold) if there exists 
a C°° function 9 : X -냐 R such that

(1) The Levi form is everywhere positive semi-definite.
(2) XcCCX,VceR.

Consider an exact sequence of sheaves

jzMdb—o,
O — Zt c-+ c*d,

where $(/x)=史”二巩,G (9, (9 is the sheaf of germs of complex- 
valued C°° functions, 0* is the nonzero sheaf, C is the sheaf of germ 
of continuous functions and C* is the nonzero sheaf. Let
be the cohomology group of all holomorphic line bundles on T9. Then 
we have the following exact sequences

0 T Z) T H°(T9,0) T H°(T9, O*)

-r Hl3, Z) T O) X HX(T9, O*) T H2(T\ Z) t …，
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and

------ > Z) C) — C*) - H2(Tq, Z) — ....

Since the holomorphic line bundle L G O*) is topological trivial 
if and only if the first Chern class ci(L) = 0, we have the group of all 
topological holomorphic line bundles 告，

3 = {L € ：力0) = 0}
=Im $

은 H'3,O*KeT $
= H1(T9,O)/H1(T9,Z)
=• E").

On the complex torus, we have

dime = q

Hence

H\Tq, 0} = {m1U1 + …+ m2qu2q : e Z)) 은 宇

and

P°(T9) = H1 (T9,0、)出\(T9, Z)
으 (*7「(仪1, 追, … ,U2q)
=a complex q - dimensional torus,

in the sense of complex space. Thus we have the following lemma.

Lemma 2.3. Let $ be the group of holomorphic line bundles on Tq 
with the first Chern class zero. Then $ is a family of weakly pseudo- 
convex manifold.

Let (t4}zG/ be an open covering of T9 and L = x C}/ f 
where U is a disjoint union and、八 is an equivalence relation. Then for a 
projection tt : L T9, we have an isomorphism 9? : 7「一〔(仇) 으 氧 x C 
and 난lere exists a family {fi3} 6 O*).
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Proposition 24 If {/2J} 6 上门({0},0*), then |九(圳=1.

Proof. From the properties of a compact Kdller manifold X of A. 
Morrow - K. Kodaira [7], we have an (1, l)-form tp on X such that for 
a C°°, 1-form 饱 satisfying 屮 = dp. Hence the호e is a C^-form f on 
X with ip = ddf. By Lemma 2.3, the topological trivial holomorphic 
line bundle L on Tq is weakly pseudoconvex. By H. Kalama and T. 
Umeno [6], we have \ f%3 \ = 1.

Theorem 2.5. If the holomorphic line bundle L e H1(Tqi O*) is 
topological trivial, then the bundle L is weakly 1-complete.

Proof. By Proposition 2.4, we have {fZJ} € 7f1(Tg)O*) satisfy
ing = 1. We define a mapping 9 : 一L — R as follows. For p E L and 
an open covering {Uz} of T% there exists i El such that p C n 一丄(UJ. 
Hence there exists a biholomorphic mapping

9 : /似)一w X C

satisfying =(7r(p), 2z(p)) G C4 x C. We define := |^t(p)|2 > 0. 
Then Lc := {p E L \ <p(p) < c} CC L. In fact, since the torus Tq is 
compact, we have a finite open covering {Uz}^=1 of T9. Therefore

Lcn7r-1(lZJ = {p e 7「t(8) : |z&)|2 < C,代(0)=(7「(0),切3)}

= x {z : I끼2 < c})
CC L.

Thus, we have

Lc = U^=1(Lcn7T-1(C/l)) CC L.
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