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REAL HYPERSURFACES SATISFYING
S¢ = ¢S IN A COMPLEX SPACE FORM

JONG Joo KM

0. Introduction

An n-dimensional complex space form M, (c) is a Kaehlertan man-
ifold of constant holomorphic sectional curvature ¢ As is well known,
complete and simply connected complex space forms are isometric to
a complex projective space P, C, a complex Euclidean space C,, or a
complex hyperbolic space H,,C accordingas ¢ >0, c=0o0rc <0

Let M be a real hypersurface of My{c). Then M has an almost
contact metric structure (¢, £, 7, ¢) induced from the Kaehlerian metric
and complex structure J of My,(c). The structure vector field £ is said
to be prinapal if Af = af, where A i1s the shape operator 1n the
direction of the umit normal C and « = n(A£). We denote respectively
by S and h the Ricci tensor of type (1.1) on M and by trA. It is known
that if £ 1s principal curvature vector, then « is constant, and dh(§) =0
[4], [9]. Takag [10] classified all homogeneous real hypersurfaces of P, C
as six model spaces which are said to be (A1), (A2}, (B),{C), (D) and
(E) and Ceal-Ryan [2] and Kimura [5] proved that they are realized
as the tubes of constant radius over Kaehlerian submanifold if £ is
principal curvature vector. Namely, he {10] proved the following:

THEOREM A. Let M be a homogeneous real hypersurface of P,C.
Then M 1s a tube of radius r over one of the following Kaehlerian
submanifolds.

(A} a hyperplane P,,_,C, where 0 <r < 7/2

(A2) a totally geodesic PLC(1 < k <n—2), where 0 <r < 7/2,

(B) a complex quadric Q,_1, where 0 < r < w/4,

(C) PiC X Pn_1)2C, where 0 <r <m/4 and n(>5) is odd,
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(D) a complex Grassmann Gp5C where 0 <1 <w/4 and n =79,
(E) @ Hermatian symmetric space SO(10)/U(5), where 0 <1 <
w/4 and n = 15.

Also Berndt [1] showed that all real hypersurfaces with constant
principal curvatures of H,,C are realized as the tubes of constant radius
over certain submanifolds when the structure vector field £ is principal,
which are said to be of type (Ag), (A1), (A2) and (B).

On the other hand, Kimura [6] and Ki-Suh [4] proved respectively
the followings:

THEOREM B. Let M be a real hypersurface in P,C, n > 3 on
which £ is a principal curvature vector and the mean curvature of
M is constant. If S¢ = ¢S, then M is locally congruent to one of
(Ao}, (A1), (A2), (B),(C), (D) and (E).

THEOREM C. Let M be a real hypersurface in H,C, n > 3 on
which & is a principal curvature vector. If S¢ = ¢S, then M is locally
congruent to one of (Ap), {A;), (A2) and (B).

REMARK. In the proofs of Theorem A and Theorem B, they really
used the condition that £ is a principal curvature vector.

From these points of view, we prove in the present paper the follow-
ing:

THEOREM. Let M be a real hypersurface of M,(c), ¢ # 0 satisfying
S¢ = ¢S . If dh(€) = 0, then £ is a principal curvature vector provided
that a = n( Af) is constant.

All manifolds in this paper are assumed to be connected and of class
¢ and the real hypersurface are supposed to be orientable.

1. Structure equations of a real hypersurface

In this section, fundamental properties of a real hypersurface in a
complex space form are recalled.

Let M, (¢) be a real 2n-dimensional complex space form with parallel
almost complex structure J and Reimannian metric tensor G which is

J-Hermitian, and covered by a system of coordinate neighborhoods
{V;X4}.
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Let M be a real (2n-1)-dimensional hypersurface of M, (c) covered
by a system of coordinate neighborhoods {V;y"} and immersed iso-
metrically in M,(c) by the immersion » - M — M,{c). Throughout
this paper the following convention on the range of indices are used :

AB,---=1,2,---,2n ; 4,2 =12,-,2n—1.
This summation convention will be used with respect to those system
of indices. We represent the immersion 2 locally by =4 = 24(y"*) and
B, = (BJA) are (2n — 1)-linearly independent local tangent vectors of
M, where B,* = 9,24, 8, = 8/8y*. A unit normal C to M may be
chosen.

Since the immersion is isometric, the induced Riemannian metric
tensor g with components g, is given by

g = GBABJBBzA~
For the tangent vectors B, and a unit normal C to M, we can put
JB, = $,"By + £,C, JC = —€'B,

in each coordinate neighborhood, where we have put ¢,, = G(JB,,B,)
and & = G(JB,,C), &" being components of a vector field £ asso-
ciated with &, and ¢,, = ¢,"g,,. We notice here that ¢,, is skew-

symmetric. By the properties of the almost complex structure J, it 1s
seen that

6, " = 6 et e =0, Lo, =0, E£ =1,

namely, the aggregate (¢, g,£) defined an almost contact metric struc-
ture.

Denoting by V, the operator of van der Waerdern-Bortolott1 co-
vanant differentiation with respect to g,,, equations of the Gauss and
Weingarten for M are respectively obtained:

V,B, = A,,C, V,C=-A,"B,,

where A = (Ajh), which is related by A,, = A," g, is the shape oper-
ator derived from C.
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By means of above equations, the covariant derivatives of the struc-
ture tensors are yielded :

(1'1) v]¢ih = “Ayth + AJh‘Eu vjE’t = *A;r(ﬁzr-
Since the ambient space is a complex space form, equations of the

Gauss and Codazzi for M are respectively given by

¢
Riyn = Z(gkhgjz — G3hGke + PknPy — GrnPre — 20kDen)
+ AkhA_;z - AjzAkza

(1.2)

(1'3) VkAgz - VJ Aka = E(gkd’p - £J¢ke - 2§z¢k1)a

where Ry,,, are components of the Riemannian curvature tensor of M.
To write our formulas in convention forms, we denote in the sequal
by Ajz2 = AgrAtr, h=tA= gjzAj‘a a= Ay&E and 8= Aﬂ2€]£z‘
If we put U, = £"V.,.§,, then U is orthogonal to {. Hence it is, using
(1.1), clear that

(1.4) ¢rU" = Ajr€" —afy,

which shows that g{(U,U) = 8 — o?. From the second equation of (1.1)
we easily see that

(1.5) UVt = A,;p 26" — aAg".

Differentiating (1.4) covariantly along M and using {1.1), we find

(16) 53 (AkrUr +ak) + ¢3rkar = érvagr - AjrAks¢rs +aAkr¢3rs

which enable us to obtain
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(L7) (VeAr )€€ = 24607 + o,
where o = k.
Transforming (1.6) by ¢,” and making use of (1.1) and (1.5), we

have

(1.8) ViU, 4+ &A% + £(VieAan)d' = (Ve ) V,E) + adp,.
Thus, it follows that .

(1.9) §'V Uy = —3U° Arshy” + A " — BE; — ¢y’

where we have used (1.1) and (1.7).
We can put

(1‘10) A]'rfr = a{, + f-‘Wja

where W is a unit vector field orthogonal to £. Then from this and (1.4)

we see that U = —u¢W and p? = 8 — a?. Thus W is also orthogonal
to U.

By (1.2) the Ricci tensor S with component S,, of M is given by

C
(1.11) Sp = 7420+ 1)g;. — 36,6} + hdy, AR

Since ¢ and W are mutually orthogonal, it 1s, using (1.1), (1.4)
and (1.10), seen that

& V,2W" = A, U tagl.12

REMARK. Let M be a real hypersurface of M, (c), ¢ # 0. If the
structure vector field £ 1s principal, then « is constant [4], {9]. Further-
more, it 1s, using (1.4), (1.6), seen that dh(§) = 0, where dh is the
exterior differential of h. But the converse problem as above 1s not
yet proved

In the following, we assume that u # 0 on M, that is, £ is not
principal curvature vector field and we put € = {p € Miu(p) # 0}
Then §2 is an open subset of M, and from now on we discuss our
argument on §2.
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2. Real hypersurfaces satisfying S¢ = ¢S

Let M be a real hypersurface of a complex space form M, (c},c# 0
satisfying S¢ = ¢S. Then we have by (1.11)

(2.1) (hA,r — Ay )0 + (BAyr — A, =0,

Because of properties of the almost contact metric structure induced
on M, it follows that

(2.2) S_yrgr = a‘f]a

where we have put o = g(5¢,£), which together with (1.11) implies
that

(2.3) A2 = hA, € + (B — ha)e,,

where we have defined
(2.4) B - ho = g(n—;)-a,
From (1.10) and (2.3), we have

(2.5) AW = pE, + (h— a)W,.

because ¢ # 0 on 2, and hence

(2.6) AW = hAE + (8 — ha)W,.
Differentiating (2.5) covariantly along ), we obtain

(vajf)Wr + AJTVkW”

2.7
BN Lty + 1Yk + (b — )W, + (h— ) VTV,
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Transvecting W7 and taking account of (1.12) and (2.5) yields

(2.8) (VkA,rs)WrWs = —2A3, U" + hy — ;.

If we transvect also &7 to (2.7) and use (1.10), then we have

1
(2‘9) ﬂ(vars)érWs = (h - 2a}AkrU’ + :"éﬁk - Q.
where we have used the fact that p? =8 — 2.
On the other hand, taking the inner product (2.1) with uW* and
making use of (1.4), (2.5) and (2 6}, we obtain
(2.10) A 2UT = hA, U + (8 - ha)U,.

Now, differentiating (2.3) covariantly along € and using (1.1) an
(2.1), we find

(VkAgr)Asrgs + Agr(vars)ss - h(VkAJ‘F)ér
(2.11) = hi A€ + (B — ha)t, + (Ak® — hAL")o,"
- ()8 e ha)Akr¢JT7

which together with (1.7} gives

(2.12) (ViAis)E ASET = RALUT + % Br.

If we take the inner product (2.11) with £* and make use of {1.3), (1.7),
(2.10) and (2.12), then we obtain

hA, U™ + (28 — 2ha — %)UJ + A0t + %ﬁj ~ ha,
= dh(g)Aﬁg‘” +d(8 — ha)(§)E;,

(2.13)
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where dh{£) = h,&! and d(B8 — ha)(€) = Bi€t — ha &t — ahett.

By the way, it is, using (1.3), (1.10), (2.8), (2.9) and (2.12), seen
that

(VeAjs) (A€ (ASE) + A, (Vi Ars)ET (A€
= (h* +2ha - 28— S)AJ,"U’ + {h{(8 — ha) — %ca}UJ

1 r
+ab; — Boy + 5 A5 + (B — a®)h,.
Thus, by transvecting A.%¢* to (2.11), we can get

(2har — 26 — £) Ay U + {h(8 — ha) - %ca + £y,

R0 L aa)s, o, + A+ (- o,

= dh(A£)}A;-£" + d(B — ha){AL)E,,

where we have used (1.3) and (2.12).

If we take the inner product with A,7¢* and W), to (2.14), and make
use of (110), (2.3) and (2.5), then we obtain respectively

(215)  ZudBOW) - ZadB(€) + Bda(t) = (B — 0?)ah(e),

(2.16) SAB(W) + uda(e) - ada(W) = pdh(€).

From the last two equations, it follows that

(2.17) %dﬁ(g) = adadg) + pda(W).
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3. Main result
First of all we prove the following :

LEMMA 1. Let M be a real hypersurface of My(c), ¢ # 0 satisfying
S¢ = ¢S. Suppose that dh(§) = 0 and a = const. Then we have
du{€, X)) = 0 for any vector field X on ), where «{X) = g(U, X) and
d is denoted by the operator of exterior derivative.

Proof. Because of (2.16) and (2.17), we have dB(W) = dgB(¢) =0
by virtue of dh({) = 0 and a = const. Thus (2.13) and (2.14) are
reduced respectively to

1
(3.1) hA, U™ + (28 — 2ha — E)U, + 56, =0,

(2ha— 28 — S)A,.U" + {h(B — ha) — Sca+ SAIT,
(3.2) 2 . 4 2
+ 52— h)B + 54557+ (8 - a®Yh, =0,
where we have used (1.10) Using (2 10) and (3.1), we get

1

5A5B7 + (h* + 26 = 2ha - E)AJTU" +h(8 ~ ha)U, = 0.

Combining with the last three equations, it follows that

(3.3) FU, + (hoo— 26 — g)ﬁj +h(B ~ a)h; =0,

where we have put

(34) f= (2hr:r—4;3——E)(2/3—2ha—£)+2h(2a—h)(ﬁ—ha)-—zh(h-a).

Differentiating (3.3) covariantly along 1, we find
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$iUy + [V + (ho: =28 = 2)Vib, + h(B — o) Vich;
+ (ahi ~ 2618, + (B — o®Yhy by + hfBih; =0,
from which, taking the skew-symmetric part,
iU, = £,Ux + f(ViU; — V,Ux) + (h — a){Bxh; — Bhi) = 0.
Thus, it is clear that

(3.5) FER(VRU, — V;Ux) =0,

because we have used (3.4) and the fact that d3(£) = 0 and dh(¢) = 0.

Now, let (g be a set of points in € such that du(¢, X) # 0 for any
vector field X on ( and suppose that §2p be not empty Then we have
f =0on Qo with the aid of (3.5), and hence

(8ha — 88 — h? + z)ﬂ,
+ {6aB — 6ha® + 2ah? + 2(8 — ha)(a — h) — gh + -ga}h, = 0.
Furthermore, by (3 3) we obtain
c
(ha — 28 — -S-)ﬁ, +h{(B-a®)h, =0

on {Jp. From the last two equations we easily verify that 8 and £ are
both constant. Thus, from (3.1) we can see that A, . U” = AU,, where
we have defined the function A by

hA+ 28~ 2ha — =0
on {}y Because of {2.10) and (3.2), we also obtain respectively

A2 =hA+ 3 — ha,

/\(2ha—2,6~—§)+h(ﬂ—ha)—%c&+%h=0

on {)p. By means of the last three equations we can verify that A = h—a
and hence 8 — a? = 0, which is a contradiction. Hence (g is empty.
This completes the proof of Lemma 1.
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ProoF oF THEOREM. Since ¢ is constant, (1.9} is reduced to
(3.6) VU, = —3U° Ay, + a7 — 5.
On the other hand, using (1.5) and (2.3) we have
5V, Uk = (@ — h) A, 8" + (ha ~ B)E,

because £ and U are -mutually orthogonal. Thus, substituting this
and (3.6) into &~ (V,Uy — ViU,) = 0, we find

3U*Aqr ¢,7 = h( A" —af; ),

where we have used the result of Lemma 1, which implies

(3.7) 3A,,U, = hU,.

Therefore (2.10) gives

(3.8) 8 —ha= —;‘;-h?.

From this we-can get

(3.9) 8, = (a- gh)h;,.

Because of (3.7) and (3 8), the equation (3.1) turns out to be

(3.10) B, = (ghz + %)UJ’

which together with (3.9) yields

4 2.9 ¢
(311) (()C - §h)h3 = (gh + §)UJ,
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which enable us to obtain

9

3.12 a—fth%=3ﬂ+ffmﬁ3M—a?
9 9 2

Using (3.7) and (3.10), we also have from (3.2)

1 3 1 2 _
{§Mﬁ—h®—~wa+§h+@ﬁ?+?@a-éhn@+4ﬁ—uﬁm:4L

4

From this and (3.8), it follows that

(3.13) mW—iﬁ-ﬂm+

2 ¢

C
97 9 1% g

Substituting this into (3.12), we see that h is constant because 15 a
root of the algebraic equation with respect to h with constant ¢ coffi-
cient. Thus 8 is also constant since we have (3.9). Accordingly (3 L0}
and (3.13) will produce a contradiction. Therefore 2 is a empty set,
that is, the structure vector field £ is principal. This completes the
proof.
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