REAL HYPERSURFACES SATISFYING $S \phi=\phi S$ IN A COMPLEX SPACE FORM

Jong Joo Kim

0. Introduction

An n-dımensional complex space form $M_{n}(c)$ is a Kaehlersan manufold of constant holomorphic sectional curvature c As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n} C$, a complex Euclidean space C_{n} or a complex hyperbolic space $H_{n} C$ according as $c>0, c=0$ or $c<0$

Let M be a real hypersurface of $M_{n}(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kaehlerian metric and complex structure J of $M_{n}(c)$. The structure vector field ξ is said to be princupal if $A \xi=\alpha \xi$, where A is the shape operator in the direction of the unit normal C and $\alpha=\eta(A \xi)$. We denote respectively by S and h the Ricci tensor of type (1.1) on M and by $\operatorname{tr} A$. It is known that if ξ is principal curvature vector, then α is constant, and $d h(\xi)=0$ [4], [9]. Takag1 [10] classıfied all homogeneous real hypersurfaces of $P_{n} C$ as six model spaces which are said to be $\left(A_{1}\right),\left(A_{2}\right),(B),(C),(D)$ and (E) and Cecil-Ryan [2] and Kimura [5] proved that they are realized as the tubes of constant radius over Kaehlerian submanifold if ξ is principal curvature vector. Namely, he [10] proved the following:

Theorem A. Let M be a homogeneous real hypersurface of $P_{n} C$. Then M is a tube of radius r over one of the following Kachlerian submanifolds.
$\left(A_{1}\right)$ a hyperplane $P_{n-1} C$, where $0<r<\pi / 2$,
(A_{2}) a totally geodesic $P_{k} C(1 \leq k \leq n-2)$, where $0<r<\pi / 2$,
(B) a complex quadric Q_{n-1}, where $0<r<\pi / 4$,
(C) $P_{1} C \times P_{(n-1) / 2} C$, where $0<r<\pi / 4$ and $n(\geq 5)$ is odd,

[^0](D) a complex Grassmann $G_{2,5} C$ where $0<r<\pi / 4$ and $n=9$,
(E) a Hermutian symmetric space $S O(10) / U(5)$, where $0<r<$ $\pi / 4$ and $n=15$.

Also Berndt [1] showed that all real hypersurfaces with constant principal curvatures of $H_{n} C$ are realized as the tubes of constant radius over certain submanifolds when the structure vector field ξ is principal, which are said to be of type $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right)$ and (B).

On the other hand, Kimura [6] and Ki-Suh [4] proved respectively the followings:

Theorem B. Let M be a real hypersurface in $P_{n} C, n \geq 3$ on which ξ is a principal curvature vector and the mean curvature of M is constant. If $S \phi=\phi S$, then M is locally congruent to one of $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right),(B),(C),(D)$ and (E).

Theorem C. Let M be a real hypersurface in $H_{n} C, n \geq 3$ on which ξ is a principal curvature vector. If $S \phi=\phi S$, then M is locally congruent to one of $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right)$ and (B).

Remark. In the proofs of Theorem A and Theorem B, they really used the condition that ξ is a principal curvature vector.

From these points of view, we prove in the present paper the following:

Theorem. Let M be a real hypersurface of $M_{n}(c), c \neq 0$ satisfying $S \phi=\phi S$. If $d h(\xi)=0$, then ξ is a principal curvature vector provided that $\alpha=\eta(A \xi)$ is constant.

All manifolds in this paper are assumed to be connected and of class c^{∞} and the real hypersurface are supposed to be orientable.

1. Structure equations of a real hypersurface

In this section, fundamental properties of a real hypersurface in a complex space form are recalled.

Let $M_{n}(c)$ be a real $2 n$-dimensional complex space form with parallel almost complex structure J and Reimannian metric tensor G which is J-Hermitian, and covered by a system of coordinate neighborhoods $\left\{\tilde{V} ; X^{A}\right\}$.

Let M be a real ($2 \mathrm{n}-1$)-dimensional hypersurface of $M_{n}(c)$ covered by a system of coordinate neighborhoods $\left\{V ; y^{h}\right\}$ and immersed isometrically in $M_{n}(c)$ by the immersion $\imath \cdot M \rightarrow M_{n}(c)$. Throughout this paper the following convention on the range of indices are used :

$$
A, B, \cdots=1,2, \cdots, 2 n \quad ; \quad i, \jmath, \cdots=1,2, \cdots, 2 n-1 .
$$

This summation convention will be used with respect to those system of indices. We represent the immersion \imath locally by $x^{A}=x^{A}\left(y^{h}\right)$ and $B_{j}=\left(B_{j}^{A}\right)$ are $(2 n-1)$-linearly independent local tangent vectors of M, where $B_{3}{ }^{A}=\partial_{j} x^{A}, \partial_{3}=\partial / \partial y^{2}$. A unit normal C to M may be chosen.

Since the immersion is isometric, the induced Riemannian metric tensor g with components g_{32} is given by

$$
g_{\jmath^{2}}=G_{B A} B_{j}{ }^{B} B_{2}{ }^{A} .
$$

For the tangent vectors B_{2} and a unit normal C to M, we can put

$$
J B_{2}=\phi_{2}{ }^{h} B_{h}+\xi_{2} C, J C=-\xi^{\imath} B_{2}
$$

in each coordmate neighborhood, where we have put $\phi_{92}=G\left(J B_{3}, B_{2}\right)$ and $\xi_{2}=G\left(J B_{2}, C\right), \quad \xi^{h}$ being components of a vector field ξ associated with ξ_{2} and $\phi_{32}=\phi_{3}{ }^{r} g_{2 r}$. We notice here that ϕ_{32} is skewsymmetric. By the properties of the almost complex structure J, it is seen that

$$
\phi_{3}{ }^{r} \phi_{r}{ }^{h}=-\delta_{3}{ }^{h}+\xi_{3} \xi^{h}, \quad \xi^{r} \phi_{r}{ }^{h}=0, \quad \xi_{r} \phi_{3}{ }^{r}=0, \quad \xi_{2} \xi^{\imath}=1
$$

namely, the aggregate (ϕ, g, ξ) defined an almost contact metric structure.

Denoting by ∇_{3} the operator of van der Waerdern-Bortolottı covariant differentiation with respect to $g_{j \imath}$, equations of the Gauss and Weingarten for M are respectively obtained:

$$
\nabla_{3} B_{2}=A_{32} C, \quad \nabla_{3} C=-A_{3}{ }^{r} B_{r},
$$

where $A=\left(A_{3}{ }^{h}\right)$, which is related by $A_{\jmath \imath}=A_{3}{ }^{r} g_{\imath r}$ is the shape operator derived from C.

By means of above equations, the covariant derivatives of the structure tensors are yielded :

$$
\begin{equation*}
\nabla_{\jmath} \phi_{2}{ }^{h}=-A_{\jmath 2} \xi^{h}+A_{\jmath}{ }^{h} \xi_{2}, \quad \nabla_{\jmath} \xi_{2}=-A_{\jmath r} \phi_{2}{ }^{r} . \tag{1.1}
\end{equation*}
$$

Since the ambient space is a complex space form, equations of the Gauss and Codazzi for M are respectively given by

$$
\begin{align*}
& R_{k \jmath \imath h}= \frac{c}{4}\left(g_{k h} g_{\jmath 2}-g_{\jmath h} g_{k z}+\phi_{k h} \phi_{\jmath \imath}-\phi_{\jmath h} \phi_{k \imath}-2 \phi_{k j} \phi_{\imath h}\right) \tag{1.2}\\
&+A_{k h} A_{\jmath 2}-A_{\jmath \imath} A_{k \imath}, \\
& \nabla_{k} A_{\jmath \imath}-\nabla_{\jmath} A_{k \imath}=\frac{c}{4}\left(\xi_{k} \phi_{\jmath \imath}-\xi_{\jmath} \phi_{k \imath}-2 \xi_{\imath} \phi_{k \jmath}\right),
\end{align*}
$$

where $R_{k j z h}$ are components of the Riemannian curvature tensor of M.
To write our formulas in convention forms, we denote in the sequal by $A_{32}{ }^{2}=A_{j r} A_{2}{ }^{r}, h=t_{r} A=g_{j 2} A^{j 2}, \alpha=A_{j 2} \xi^{\jmath} \xi^{\imath}$ and $\beta=A_{j_{2}}{ }^{2} \xi^{\jmath} \xi^{2}$.

If we put $U_{3}=\xi^{r} \nabla_{r} \xi_{3}$, then U is orthogonal to ξ. Hence it is, using (1.1), clear that

$$
\begin{equation*}
\phi_{j r} U^{r}=A_{j r} \xi^{r}-\alpha \xi_{j} \tag{1.4}
\end{equation*}
$$

which shows that $g(U, U)=\beta-\alpha^{2}$. From the second equation of (1.1) we easily see that

$$
\begin{equation*}
U^{r} \nabla_{\jmath} \xi_{r}=A_{\jmath r}{ }^{2} \xi^{r}-\alpha A_{\jmath r} \xi^{r} . \tag{1.5}
\end{equation*}
$$

Differentiating (1.4) covariantly along M and using (1.1), we find
(1.6) $\xi_{\jmath}\left(A_{k r} U^{r}+\alpha_{k}\right)+\phi_{\jmath r} \nabla_{k} U^{r}=\xi^{r} \nabla_{k} A_{\jmath r}-A_{\jmath r} A_{k s} \phi^{r s}+\alpha A_{k r} \phi_{\jmath}{ }^{r}$,
which enable us to obtain

$$
\begin{equation*}
\left(\nabla_{k} A_{r s}\right) \xi^{r} \xi^{s}=2 A_{k r} U^{r}+\alpha_{k} \tag{1.7}
\end{equation*}
$$

where $\alpha_{k}=\partial_{k} \alpha$.
Transforming (1.6) by $\phi_{i}{ }^{3}$ and making use of (1.1) and (1.5), we have

$$
\begin{equation*}
\nabla_{k} U_{2}+\xi_{\imath} A_{k r}^{2} \xi^{r}+\xi^{r}\left(\nabla_{k} A_{s r}\right) \phi_{\imath}^{s}=\left(\nabla_{k} \xi^{r}\right)\left(\nabla_{r} \xi_{\imath}\right)+\alpha A_{k \imath} \tag{1.8}
\end{equation*}
$$

Thus, it follows that

$$
\begin{equation*}
\xi^{r} \nabla_{r} U_{j}=-3 U^{s} A_{r s} \phi_{j}{ }^{r}+\alpha A_{j r} \xi^{r}-\beta \xi_{j}^{-}-\phi_{3 r} \alpha^{r}, \tag{1.9}
\end{equation*}
$$

where we have used (1.1) and (1.7).
We can put

$$
\begin{equation*}
A_{3 r} \xi^{r}=\alpha \xi_{3}+\mu W_{3} \tag{1.10}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. Then from this and (1.4) we see that $U=-\mu \phi W$ and $\mu^{2}=\beta-\alpha^{2}$. Thus W is also orthogonal to U.

By (1.2) the Ricci tensor S with component $S_{\jmath 1}$ of M is given by

$$
\begin{equation*}
S_{32}=\frac{c}{4}\left\{(2 n+1) g_{\jmath \imath}-3 \xi_{3} \xi_{2}\right\}+h A_{32}-A_{3 \imath}{ }^{2} . \tag{1.11}
\end{equation*}
$$

Since ξ and W are mutually orthogonal, it is, using (1.1), (1.4) and (1.10), seen that

$$
\mu \xi_{r} \nabla_{3} W^{r}=A_{3 r} U^{r} . \operatorname{tag} 1.12
$$

Remark. Let M be a real hypersurface of $M_{n}(c), c \neq 0$. If the structure vector field ξ is principal, then α is constant [4], [9]. Furthermore, it 1 , using (1.4), (1.6), seen that $d h(\xi)=0$, where $d h$ is the exterior differential of h. But the converse problem as above is not yet proved

In the following, we assume that $\mu \neq 0$ on M, that is, ξ is not principal curvature vector field and we put $\Omega=\{p \in M \mid \mu(p) \neq 0\}$ Then Ω is an open subset of M, and from now on we discuss our argument on Ω.

2. Real hypersurfaces satisfying $S \phi=\phi S$

Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0$ satisfying $S \phi=\phi S$. Then we have by (1.11)

$$
\begin{equation*}
\left(h A_{\jmath r}-A_{j r}{ }^{2}\right) \phi_{2}{ }^{r}+\left(h A_{2 r}-A_{2 r}^{2}\right) \phi_{3}^{r}=0 . \tag{2.1}
\end{equation*}
$$

Because of properties of the almost contact metric structure induced on M, it follows that

$$
\begin{equation*}
S_{\jmath r} \xi^{r}=\sigma \xi_{\jmath}, \tag{2.2}
\end{equation*}
$$

where we have put $\sigma=g(S \xi, \xi)$, which together with (1.11) implies that

$$
\begin{equation*}
A_{j r}^{2} \xi^{r}=h A_{j r} \xi^{r}+(\beta-h \alpha) \xi_{j}, \tag{2.3}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\beta-h \alpha=\frac{c}{2}(n-1)-\sigma . \tag{2.4}
\end{equation*}
$$

From (1.10) and (2.3), we have

$$
\begin{equation*}
A_{3 r} W^{r}=\mu \xi_{3}+(h-\alpha) W_{3} . \tag{2.5}
\end{equation*}
$$

because $\mu \neq 0$ on Ω, and hence

$$
\begin{equation*}
A_{\jmath r}{ }^{2} W^{r}=h A_{\jmath r} \xi^{r}+(\beta-h \alpha) W_{\jmath} . \tag{2.6}
\end{equation*}
$$

Differentiating (2.5) covariantly along Ω, we obtain

$$
\begin{align*}
& \left(\nabla_{k} A_{3 r}\right) W^{r}+A_{\jmath r} \nabla_{k} W^{r} \tag{2.7}\\
= & \mu_{k} \xi_{3}+\mu \nabla_{k} \xi_{3}+\left(h_{k}-\alpha_{k}\right) W_{\jmath}+(h-\alpha) \nabla_{k} W_{\jmath} .
\end{align*}
$$

Transvecting W^{3} and taking account of (1.12) and (2.5) yields

$$
\begin{equation*}
\left(\nabla_{k} A_{r s}\right) W^{r} W^{s}=-2 A_{k r} U^{r}+h_{k}-\alpha_{k} . \tag{2.8}
\end{equation*}
$$

If we transvect also ξ^{j} to (2.7) and use (1.10), then we have

$$
\begin{equation*}
\mu\left(\nabla_{k} A_{r s}\right) \xi^{r} W^{s}=(h-2 \alpha) A_{k r} U^{r}+\frac{1}{2} \beta_{k}-\alpha \alpha_{k}, \tag{2.9}
\end{equation*}
$$

where we have used the fact that $\mu^{2}=\beta-\alpha^{2}$.
On the other hand, takıng the inner product (2.1) with μW^{2} and making use of (1.4), (2.5) and (26), we obtain

$$
\begin{equation*}
A_{\jmath r}^{2} U^{r}=h A_{j r} U^{r}+(\beta-h \alpha) U_{3} . \tag{2.10}
\end{equation*}
$$

Now, differentiating (2.3) covariantly along Ω and using (1.1) an (2.1), we find

$$
\begin{align*}
& \left(\nabla_{k} A_{\jmath r}\right) A_{s}{ }^{r} \xi^{s}+A_{3}{ }^{r}\left(\nabla_{k} A_{r s}\right) \xi^{s}-h\left(\nabla_{k} A_{3 r}\right) \xi^{r} \\
= & h_{k} A_{3 r} \xi^{T}+(\beta-h \alpha)_{k} \xi_{3}+\left(A_{k r}{ }^{3}-h A_{k r}{ }^{2}\right) \phi_{3}{ }^{r} \tag{2.11}\\
& -(\beta-h \alpha) A_{k r} \phi_{j}{ }^{r},
\end{align*}
$$

which together with (1.7) gives

$$
\begin{equation*}
\left(\nabla_{k} A_{t s}\right) \xi^{t} A_{r}^{s} \xi^{r}=h A_{k r} U^{r}+\frac{1}{2} \beta_{k} \tag{2.12}
\end{equation*}
$$

If we take the inner product (2.11) with ξ^{k} and make use of (1.3), (1.7), (2.10) and (2.12), then we obtain

$$
\begin{align*}
& h A_{3 r} U^{r}+\left(2 \beta-2 h \alpha-\frac{c}{4}\right) U_{3}+A_{3 r} \alpha^{r}+\frac{1}{2} \beta_{3}-h \alpha_{3} \tag{2.13}\\
= & d h(\xi) A_{3 r} \xi^{r}+d(\beta-h \alpha)(\xi) \xi_{3},
\end{align*}
$$

where $d h(\xi)=h_{t} \xi^{t}$ and $d(\beta-h \alpha)(\xi)=\beta_{t} \xi^{t}-h \alpha_{t} \xi^{t}-\alpha h_{t} \xi^{t}$.
By the way, it is, using (1.3), (1.10), (2.8), (2.9) and (2.12), seen that

$$
\begin{aligned}
& \left(\nabla_{k} A_{j s}\right)\left(A_{r}{ }^{s} \xi^{r}\right)\left(A_{t}{ }^{k} \xi^{t}\right)+A_{j}{ }^{s}\left(\nabla_{k} A_{r s}\right) \xi^{r}\left(A_{t}{ }^{k} \xi^{t}\right) \\
= & \left(h^{2}+2 h \alpha-2 \beta-\frac{c}{2}\right) A_{j r} U^{r}+\left\{h(\beta-h \alpha)-\frac{3}{4} c \alpha\right\} U_{j} \\
& +\alpha \beta_{j}-\beta \alpha_{j}+\frac{1}{2} A_{j r} \beta^{r}+\left(\beta-\alpha^{2}\right) h_{3} .
\end{aligned}
$$

Thus, by trañsvecting $A_{t}{ }^{k} \xi^{t}$ to (2.11), we can get

$$
\begin{align*}
& \left(2 h \alpha-2 \beta-\frac{c}{2}\right) A_{\jmath r} U^{r}+\left\{h(\beta-h \alpha)-\frac{3}{4} c \alpha+\frac{c}{2} h\right\} U_{\jmath} \\
& +\frac{1}{2}(2 \alpha-h) \beta_{\jmath}-\beta \alpha_{\jmath}+\frac{1}{2} A_{\jmath r} \beta^{r}+\left(\beta-\alpha^{2}\right) h_{\jmath} \tag{2.14}\\
= & d h(A \xi) A_{\jmath r} \xi^{r}+d(\beta-h \alpha)(A \xi) \xi_{\jmath},
\end{align*}
$$

where we have used (1.3) and (2.12).
If we take the inner product with $A_{s}{ }^{3} \xi^{s}$ and W_{j} to (2.14), and make use of (110), (2.3) and (2.5), then we obtain respectively

$$
\begin{equation*}
\frac{1}{2} \mu d \beta(W)-\frac{1}{2} \alpha d \beta(\xi)+\beta d \alpha(\xi)=\left(\beta-\alpha^{2}\right) d h(\xi) \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} d \beta(W)+\mu d \alpha(\xi)-\alpha d \alpha(W)=\mu d h(\xi) \tag{2.16}
\end{equation*}
$$

From the last two equations, it follows that

$$
\begin{equation*}
\frac{1}{2} d \beta(\xi)=\alpha d \alpha(\xi)+\mu d \alpha(W) \tag{2.17}
\end{equation*}
$$

3. Main result

First of all we prove the following :
Lemma 1. Let M be a real hypersurface of $M_{n}(c), c \neq 0$ satisfying $S \phi=\phi S$. Suppose that $d h(\xi)=0$ and $\alpha=$ const. Then we have $d u(\xi, X)=0$ for any vector field X on Ω, where $u(X)=g(U, X)$ and d is denoted by the operator of exterior derivative.

Proof. Because of (2.16) and (2.17), we have $d \beta(W)=d \beta(\xi)=0$ by virtue of $d h(\xi)=0$ and $\alpha=$ const. Thus (2.13) and (2.14) are reduced respectively to

$$
\begin{equation*}
h A_{3 r} U^{r}+\left(2 \beta-2 h \alpha-\frac{c}{4}\right) U_{3}+\frac{1}{2} \beta_{\jmath}=0 \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& \left(2 h \alpha-2 \beta-\frac{c}{2}\right) A_{\jmath r} U^{r}+\left\{h(\beta-h \alpha)-\frac{3}{4} c \alpha+\frac{c}{2} h\right\} U_{3} \tag{3.2}\\
& +\frac{1}{2}(2 \alpha-h) \beta_{\jmath}+\frac{1}{2} A_{j r} \beta^{r}+\left(\beta-\alpha^{2}\right) h_{\jmath}=0,
\end{align*}
$$

where we have used (1.10) Using (2 10) and (3.1), we get

$$
\frac{1}{2} A_{\jmath r} \beta^{r}+\left(h^{2}+2 \beta-2 h \alpha-\frac{c}{4}\right) A_{3 r} U^{r}+h(\beta-h \alpha) U_{j}=0 .
$$

Combining with the last three equations, it follows that

$$
\begin{equation*}
f U_{3}+\left(h \alpha-2 \beta-\frac{c}{8}\right) \beta_{3}+h\left(\beta-\alpha^{2}\right) h_{j}=0 \tag{3.3}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
f=\left(2 h \alpha-4 \beta-\frac{c}{4}\right)\left(2 \beta-2 h \alpha-\frac{c}{4}\right)+2 h(2 \alpha-h)(\beta-h \alpha)-\frac{c}{4} h(h-\alpha) . \tag{3.4}
\end{equation*}
$$

Differentiating (3.3) covariantly along Ω, we find

$$
\begin{aligned}
& f_{k} U_{3}+f \nabla_{k} U_{j}+\left(h \alpha-2 \beta-\frac{c}{8}\right) \nabla_{k} \beta_{j}+h\left(\beta-\alpha^{2}\right) \nabla_{k} h_{j} \\
& +\left(\alpha h_{k}-2 \beta_{k}\right) \beta_{j}+\left(\beta-\alpha^{2}\right) h_{j} h_{k}+h \beta_{k} h_{j}=0
\end{aligned}
$$

from which, taking the skew-symmetric part,

$$
f_{k} U_{3}-f_{j} U_{k}+f\left(\nabla_{k} U_{j}-\nabla_{j} U_{k}\right)+(h-\alpha)\left(\beta_{k} h_{3}-\beta_{\jmath} h_{k}\right)=0 .
$$

Thus, it is clear that

$$
\begin{equation*}
f \xi^{k}\left(\nabla_{k} U_{j}-\nabla_{j} U_{k}\right)=0, \tag{3.5}
\end{equation*}
$$

because we have used (3.4) and the fact that $d \beta(\xi)=0$ and $d h(\xi)=0$.
Now, let Ω_{0} be a set of points in Ω such that $d u(\xi, X) \neq 0$ for any vector field X on Ω and suppose that Ω_{0} be not empty Then we have $f=0$ on Ω_{0} with the aid of (3.5), and hence

$$
\begin{aligned}
& \left(8 h \alpha-8 \beta-h^{2}+\frac{c}{4}\right) \beta_{3} \\
+ & \left\{6 \alpha \beta-6 h \alpha^{2}+2 \alpha h^{2}+2(\beta-h \alpha)(\alpha-h)-\frac{c}{4} h+\frac{c}{8} \alpha\right\} h_{3}=0 .
\end{aligned}
$$

Furthermore, by (33) we obtain

$$
\left(h \alpha-2 \beta-\frac{c}{8}\right) \beta_{3}+h\left(\beta-\alpha^{2}\right) h_{J}=0
$$

on Ω_{0}. From the last two equations we easily verify that β and h are both constant. Thus, from (3.1) we can see that $A_{j r} U^{r}=\lambda U_{3}$, where we have defined the function λ by

$$
\therefore h \lambda+2 \beta-2 h \alpha-\frac{c}{4}=0
$$

on Ω_{0} Because of (2.10) and (3.2), we also obtain respectively

$$
\begin{gathered}
\lambda^{2}=h \lambda+\beta-h \alpha \\
\lambda\left(2 h \alpha-2 \beta-\frac{c}{2}\right)+h(\beta-h \alpha)-\frac{3}{4} c \alpha+\frac{c}{2} h=0
\end{gathered}
$$

on Ω_{0}. By means of the last three equations we can verify that $\lambda=h-\alpha$ and hence $\beta-\alpha^{2}=0$, which is a contradiction. Hence Ω_{0} is empty. This completes the proof of Lemma 1.

Proof of Theorem. Since α is constant, (1.9) is reduced to

$$
\begin{equation*}
\xi^{k} \nabla_{k} U_{j}=-3 U^{s} A_{s r} \phi_{3}{ }^{r}+\alpha A_{j r} \xi^{r}-\beta \xi_{j} . \tag{3.6}
\end{equation*}
$$

On the other hand, using (1.5) and (2.3) we have

$$
\xi^{k} \nabla_{\jmath} U_{k}=(\alpha-h) A_{\jmath r} \xi^{r}+(h \alpha-\beta) \xi_{\jmath}
$$

because ξ and U are mutually orthogonal. Thus, substituting this and (3.6) into $\xi^{k}\left(\nabla_{\jmath} U_{k}-\nabla_{k} U_{3}\right)=0$, we find

$$
3 U^{s} A_{s r} \phi_{j}^{r}=h\left(A_{\jmath r} \xi^{r}-\alpha \xi_{J}\right),
$$

where we have used the result of Lemma 1 , which imples

$$
\begin{equation*}
3 A_{3 r} U_{r}=h U_{j} . \tag{3.7}
\end{equation*}
$$

Therefore (2.10) gives

$$
\begin{equation*}
\beta-h \alpha=-\frac{2}{9} h^{2} . \tag{3.8}
\end{equation*}
$$

From this we can get

$$
\begin{equation*}
\beta_{3}=\left(\alpha-\frac{4}{9} h\right) h_{j} . \tag{3.9}
\end{equation*}
$$

Because of (3.7) and (38), the equation (3.1) turns out to be

$$
\begin{equation*}
\beta_{3}=\left(\frac{2}{9} h^{2}+\frac{c}{2}\right) U_{3}, \tag{3.10}
\end{equation*}
$$

which together with (3.9) yields

$$
\begin{equation*}
\left(\alpha-\frac{4}{9} h\right) h_{3}=\left(\frac{2}{9} h^{2}+\frac{c}{2}\right) U_{3}, \tag{3.11}
\end{equation*}
$$

which enable us to obtain

$$
\begin{equation*}
\left(\alpha-\frac{4}{9} h\right) h_{t} U^{t}=\left(\frac{2}{9} h^{2}+\frac{c}{2}\right)\left(h \alpha-\frac{2}{9} h^{2}-\alpha^{2}\right) \tag{3.12}
\end{equation*}
$$

Using (3.7) and (3.10), we also have from (3.2)

$$
\left\{\frac{1}{3} h(\beta-h \alpha)-\frac{3}{4} c \alpha+\frac{c}{3} h+\left(\frac{1}{9} h^{2}+\frac{c}{4}\right)\left(2 \alpha-\frac{2}{3} h\right)\right\} U_{3}+\left(\beta-\alpha^{2}\right) h_{y}==0
$$

From this and (3.8), it follows that

$$
\begin{equation*}
h_{t} U^{t}=\frac{4}{27} h^{3}-\frac{2}{9} \alpha h^{2}+\frac{c}{4} \alpha-\frac{c}{6} h . \tag{3.13}
\end{equation*}
$$

Substituting this into (3.12), we see that h is constant because h is a root of the algebraic equation with respect to h with constant roofficient. Thus β is also constant since we have (3.9). Accordingly (3 10) and (3.13) will produce a contradiction. Therefore Ω is a empty set, that is, the structure vector field ξ is principal. This completes the proof.

References

[1] J. Berndt, Real hypersurfaces with constant prancipal curvatures in a complex hyperbolic space, J. Reine Angew Math 395 (1989), 132-141
[2] T. E Cecil and P J Ryan, Focal sets and real hypersurfaces in complea. projectve space, Trans. Amer. Math Soc. 269 (1982), 481-499.
[3] U-H Kı, S J. Kim and S. B Lee, Some characterzzatıons of a real hypersurface of type A, Math. J Okayama Unıv. 32 (1990), 207-221
[4] U.-H.Kı and Y J Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Unıv. 32 (1990), 207-221.
[5] M. Kımura, Real hypersurfaces and complex submanvfolds in complex are, 1 in e space, Trans. Amer. Math Soc 296 (1986), 137-149
[6] _._Some real hypersurfaces of a complex projectve space, Sautamd Math J. 5 (1987), 1-5.
[7] M. Kımura and S Maeda, On real hypersurfaces of a complex projectrve spare, Math Z. 202 (1989), 299-311.
[8] S. Maeda and S Udagawa, Real hypersurfaces of a complex projective $9 \boldsymbol{y}$ terms of holomorphzc distributzons, Tsukuba J. Math 14 (1990), 39 .
[9] Y Maeda, On real hypersurfaces of complex projectrve space, J Math Soc Japan 28 (1976), 529-540
[10] R Takag, Real hypersurfaces in a complex projective space with constant pmincipal curvatures I,II, J. Math Soc. Japan 27 (1975), 43-53, 507-516

Department of Mathematics
Dong-A University
Pusan 604-714, Korea

[^0]: Recerved September 29, 1998
 This paper was supported by Nulwon Research Fund 1997

