REAL HYPERSURFACES SATISFYING $S\phi = \phi S$ IN A COMPLEX SPACE FORM

Jong Joo Kim

0. Introduction

An n-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c As is well known, complete and simply connected complex space forms are isometric to a complex projective space P_nC , a complex Euclidean space C_n or a complex hyperbolic space H_nC according as c > 0, c = 0 or c < 0

Let M be a real hypersurface of $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kaehlerian metric and complex structure J of $M_n(c)$. The structure vector field ξ is said to be principal if $A\xi = \alpha\xi$, where A is the shape operator in the direction of the unit normal C and $\alpha = \eta(A\xi)$. We denote respectively by S and h the Ricci tensor of type (1.1) on M and by trA. It is known that if ξ is principal curvature vector, then α is constant, and $dh(\xi) = 0$ [4], [9]. Takagi [10] classified all homogeneous real hypersurfaces of P_nC as six model spaces which are said to be $(A_1), (A_2), (B), (C), (D)$ and (E) and Cecil-Ryan [2] and Kimura [5] proved that they are realized as the tubes of constant radius over Kaehlerian submanifold if ξ is principal curvature vector. Namely, he [10] proved the following:

THEOREM A. Let M be a homogeneous real hypersurface of P_nC . Then M is a tube of radius r over one of the following Kaehlerian submanifolds.

(A₁) a hyperplane $P_{n-1}C$, where $0 < r < \pi/2$,

- (A₂) a totally geodesic $P_k C(1 \le k \le n-2)$, where $0 < r < \pi/2$,
- (B) a complex quadric Q_{n-1} , where $0 < r < \pi/4$,
- (C) $P_1C \times P_{(n-1)/2}C$, where $0 < r < \pi/4$ and $n \geq 5$ is odd,

Received September 29, 1998

This paper was supported by Nulwon Research Fund 1997

Jong Joo Kim

- (D) a complex Grassmann $G_{2,5}C$ where $0 < r < \pi/4$ and n = 9,
- (E) a Hermitian symmetric space SO(10)/U(5), where $0 < r < \pi/4$ and n = 15.

Also Berndt [1] showed that all real hypersurfaces with constant principal curvatures of H_nC are realized as the tubes of constant radius over certain submanifolds when the structure vector field ξ is principal, which are said to be of type $(A_0), (A_1), (A_2)$ and (B).

On the other hand, Kimura [6] and Ki-Suh [4] proved respectively the followings:

THEOREM B. Let M be a real hypersurface in P_nC , $n \ge 3$ on which ξ is a principal curvature vector and the mean curvature of M is constant. If $S\phi = \phi S$, then M is locally congruent to one of $(A_0), (A_1), (A_2), (B), (C), (D)$ and (E).

THEOREM C. Let M be a real hypersurface in H_nC , $n \geq 3$ on which ξ is a principal curvature vector. If $S\phi = \phi S$, then M is locally congruent to one of $(A_0), (A_1), (A_2)$ and (B).

REMARK. In the proofs of Theorem A and Theorem B, they really used the condition that ξ is a principal curvature vector.

From these points of view, we prove in the present paper the following:

THEOREM. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$ satisfying $S\phi = \phi S$. If $dh(\xi) = 0$, then ξ is a principal curvature vector provided that $\alpha = \eta(A\xi)$ is constant.

All manifolds in this paper are assumed to be connected and of class c^{∞} and the real hypersurface are supposed to be orientable.

1. Structure equations of a real hypersurface

In this section, fundamental properties of a real hypersurface in a complex space form are recalled.

Let $M_n(c)$ be a real 2n-dimensional complex space form with parallel almost complex structure J and Reimannian metric tensor G which is J-Hermitian, and covered by a system of coordinate neighborhoods $\{\tilde{V}; X^A\}$. Let M be a real (2n-1)-dimensional hypersurface of $M_n(c)$ covered by a system of coordinate neighborhoods $\{V; y^h\}$ and immersed isometrically in $M_n(c)$ by the immersion $i \cdot M \to M_n(c)$. Throughout this paper the following convention on the range of indices are used :

$$A, B, \dots = 1, 2, \dots, 2n$$
; $i, j, \dots = 1, 2, \dots, 2n - 1$.

This summation convention will be used with respect to those system of indices. We represent the immersion *i* locally by $x^A = x^A(y^h)$ and $B_j = (B_j^A)$ are (2n-1)-linearly independent local tangent vectors of M, where $B_j^A = \partial_j x^A$, $\partial_j = \partial/\partial y^i$. A unit normal C to M may be chosen.

Since the immersion is isometric, the induced Riemannian metric tensor g with components g_{ji} is given by

$$g_{ji} = G_{BA} B_j{}^B B_i{}^A.$$

For the tangent vectors B_i and a unit normal C to M, we can put

$$JB_i = \phi_i{}^h B_h + \xi_i C, \ JC = -\xi^* B_i$$

in each coordinate neighborhood, where we have put $\phi_{ji} = G(JB_j, B_i)$ and $\xi_i = G(JB_i, C)$, ξ^h being components of a vector field ξ associated with ξ_i and $\phi_{ji} = \phi_j^r g_{ir}$. We notice here that ϕ_{ji} is skewsymmetric. By the properties of the almost complex structure J, it is seen that

$$\phi_{j}{}^{r}\phi_{r}{}^{h} = -\delta_{j}{}^{h} + \xi_{j}\xi^{h}, \qquad \xi^{r}\phi_{r}{}^{h} = 0, \qquad \xi_{r}\phi_{j}{}^{r} = 0, \qquad \xi_{i}\xi^{i} = 1,$$

namely, the aggregate (ϕ, g, ξ) defined an almost contact metric structure.

Denoting by ∇_j the operator of van der Waerdern-Bortolotti covariant differentiation with respect to g_{ji} , equations of the Gauss and Weingarten for M are respectively obtained:

$$\nabla_{\gamma}B_{i}=A_{\gamma}C, \qquad \nabla_{\gamma}C=-A_{\gamma}{}^{r}B_{r},$$

where $A = (A_j^h)$, which is related by $A_{ji} = A_j^r g_{ir}$ is the shape operator derived from C.

By means of above equations, the covariant derivatives of the structure tensors are yielded :

(1.1)
$$\nabla_{j}\phi_{i}{}^{h} = -A_{ji}\xi^{h} + A_{j}{}^{h}\xi_{i}, \qquad \nabla_{j}\xi_{i} = -A_{jr}\phi_{i}{}^{r}.$$

Since the ambient space is a complex space form, equations of the Gauss and Codazzi for M are respectively given by

(1.2)
$$R_{kjih} = \frac{c}{4} (g_{kh}g_{ji} - g_{jh}g_{ki} + \phi_{kh}\phi_{ji} - \phi_{jh}\phi_{ki} - 2\phi_{kj}\phi_{ih}) + A_{kh}A_{ji} - A_{ji}A_{ki},$$

(1.3)
$$\nabla_k A_{ji} - \nabla_j A_{ki} = \frac{c}{4} (\xi_k \phi_{ji} - \xi_j \phi_{ki} - 2\xi_i \phi_{kj}),$$

where R_{kjih} are components of the Riemannian curvature tensor of M. To write our formulas in convention forms, we denote in the sequal

by $A_{ji}^2 = A_{jr}A_i^r$, $h = t_r A = g_{ji}A^{ji}$, $\alpha = A_{ji}\xi^j\xi^i$ and $\beta = A_{ji}^2\xi^j\xi^i$. If we put $U_j = \xi^r \nabla_r \xi_j$, then U is orthogonal to ξ . Hence it is, using

If we put $U_j = \xi' \nabla_r \xi_j$, then U is orthogonal to ξ . Hence it is, using (1.1), clear that

(1.4)
$$\phi_{jr}U^r = A_{jr}\xi^r - \alpha\xi_j,$$

which shows that $g(U,U) = \beta - \alpha^2$. From the second equation of (1.1) we easily see that

(1.5)
$$U^r \nabla_j \xi_r = A_{jr}^2 \xi^r - \alpha A_{jr} \xi^r.$$

Differentiating (1.4) covariantly along M and using (1.1), we find

(1.6)
$$\xi_{j}(A_{kr}U^{r}+\alpha_{k})+\phi_{jr}\nabla_{k}U^{r}=\xi^{r}\nabla_{k}A_{jr}-A_{jr}A_{ks}\phi^{rs}+\alpha A_{kr}\phi_{j}^{r},$$

which enable us to obtain

(1.7)
$$(\nabla_k A_{rs})\xi^r \xi^s = 2A_{kr}U^r + \alpha_k,$$

where $\alpha_k = \partial_k \alpha$.

Transforming (1.6) by $\phi_i^{\ j}$ and making use of (1.1) and (1.5), we have

(1.8)
$$\nabla_k U_i + \xi_i A_{kr}^2 \xi^r + \xi^r (\nabla_k A_{sr}) \phi_i^s = (\nabla_k \xi^r) (\nabla_r \xi_i) + \alpha A_{ki}.$$

Thus, it follows that

(1.9)
$$\xi^r \nabla_r U_j = -3U^s A_{rs} \phi_j^r + \alpha A_{jr} \xi^r - \beta \xi_j^r - \phi_{jr} \alpha^r,$$

where we have used (1.1) and (1.7).

We can put

(1.10)
$$A_{jr}\xi^r = \alpha\xi_j + \mu W_j,$$

where W is a unit vector field orthogonal to ξ . Then from this and (1.4) we see that $U = -\mu\phi W$ and $\mu^2 = \beta - \alpha^2$. Thus W is also orthogonal to U.

By (1.2) the Ricci tensor S with component S_{μ} of M is given by

(1.11)
$$S_{ji} = \frac{c}{4} \{ (2n+1)g_{ji} - 3\xi_j \xi_i \} + hA_{ji} - A_{ji}^2.$$

Since ξ and W are mutually orthogonal, it is, using (1.1), (1.4) and (1.10), seen that

$$\mu \xi_r \nabla_j W^r = A_{jr} U^r .tag1.12$$

REMARK. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. If the structure vector field ξ is principal, then α is constant [4], [9]. Furthermore, it is, using (1.4), (1.6), seen that $dh(\xi) = 0$, where dh is the exterior differential of h. But the converse problem as above is not yet proved

In the following, we assume that $\mu \neq 0$ on M, that is, ξ is not principal curvature vector field and we put $\Omega = \{p \in M | \mu(p) \neq 0\}$ Then Ω is an open subset of M, and from now on we discuss our argument on Ω .

2. Real hypersurfaces satisfying $S\phi = \phi S$

Let *M* be a real hypersurface of a complex space form $M_n(c), c \neq 0$ satisfying $S\phi = \phi S$. Then we have by (1.11)

(2.1)
$$(hA_{jr} - A_{jr}^{2})\phi_{i}^{r} + (hA_{ir} - A_{ir}^{2})\phi_{j}^{r} = 0.$$

Because of properties of the almost contact metric structure induced on M, it follows that

where we have put $\sigma = g(S\xi, \xi)$, which together with (1.11) implies that

(2.3)
$$A_{jr}^{2}\xi^{r} = hA_{jr}\xi^{r} + (\beta - h\alpha)\xi_{j},$$

where we have defined

(2.4)
$$\beta - h\alpha = \frac{c}{2}(n-1) - \sigma.$$

From (1.10) and (2.3), we have

(2.5)
$$A_{jr}W^r = \mu\xi_j + (h-\alpha)W_j.$$

because $\mu \neq 0$ on Ω , and hence

(2.6)
$$A_{jr}^{2}W^{r} = hA_{jr}\xi^{r} + (\beta - h\alpha)W_{j}.$$

Differentiating (2.5) covariantly along Ω , we obtain

(2.7)
$$(\nabla_k A_{jr})W^r + A_{jr}\nabla_k W^r = \mu_k \xi_j + \mu \nabla_k \xi_j + (h_k - \alpha_k)W_j + (h - \alpha)\nabla_k W_j.$$

Real hypersurfaces satisfying $S\phi = \phi S$ in a complex space form

Transvecting W^{j} and taking account of (1.12) and (2.5) yields

(2.8)
$$(\nabla_k A_{\tau s}) W^r W^s = -2A_{kr} U^r + h_k - \alpha_k$$

If we transvect also ξ^{j} to (2.7) and use (1.10), then we have

(2.9)
$$\mu(\nabla_k A_{rs})\xi^r W^s = (h-2\alpha)A_{kr}U^r + \frac{1}{2}\beta_k - \alpha\alpha_k,$$

where we have used the fact that $\mu^2 = \beta - \alpha^2$.

On the other hand, taking the inner product (2.1) with μW^i and making use of (1.4), (2.5) and (2.6), we obtain

(2.10)
$$A_{jr}^{2}U^{r} = hA_{jr}U^{r} + (\beta - h\alpha)U_{j}.$$

Now, differentiating (2.3) covariantly along Ω and using (1.1) an (2.1), we find

(2.11)
$$(\nabla_k A_{jr}) A_s^r \xi^s + A_j^r (\nabla_k A_{rs}) \xi^s - h (\nabla_k A_{jr}) \xi^r$$
$$= h_k A_{jr} \xi^r + (\beta - h\alpha)_k \xi_j + (A_{kr}^3 - hA_{kr}^2) \phi_j^r$$
$$- (\beta - h\alpha) A_{kr} \phi_j^r,$$

which together with (1.7) gives

(2.12)
$$(\nabla_k A_{ts})\xi^t A_r^{\ s}\xi^r = hA_{kr}U^r + \frac{1}{2}\beta_k.$$

If we take the inner product (2.11) with ξ^k and make use of (1.3), (1.7), (2.10) and (2.12), then we obtain

(2.13)
$$\begin{aligned} hA_{jr}U^r + (2\beta - 2h\alpha - \frac{c}{4})U_j + A_{jr}\alpha^r + \frac{1}{2}\beta_j - h\alpha_j \\ &= dh(\xi)A_{jr}\xi^r + d(\beta - h\alpha)(\xi)\xi_j, \end{aligned}$$

where $dh(\xi) = h_t \xi^t$ and $d(\beta - h\alpha)(\xi) = \beta_t \xi^t - h\alpha_t \xi^t - \alpha h_t \xi^t$.

By the way, it is, using (1.3), (1.10), (2.8), (2.9) and (2.12), seen that

$$\begin{aligned} (\nabla_k A_{js})(A_r{}^s\xi^r)(A_t{}^k\xi^t) + A_j{}^s(\nabla_k A_{rs})\xi^r(A_t{}^k\xi^t) \\ &= (h^2 + 2h\alpha - 2\beta - \frac{c}{2})A_{jr}U^r + \{h(\beta - h\alpha) - \frac{3}{4}c\alpha\}U_j \\ &+ \alpha\beta_j - \beta\alpha_j + \frac{1}{2}A_{jr}\beta^r + (\beta - \alpha^2)h_j. \end{aligned}$$

Thus, by transvecting $A_t^{\ k}\xi^t$ to (2.11), we can get

$$(2.14) \qquad (2h\alpha - 2\beta - \frac{c}{2})A_{jr}U^r + \{h(\beta - h\alpha) - \frac{3}{4}c\alpha + \frac{c}{2}h\}U_j$$
$$(2.14) \qquad + \frac{1}{2}(2\alpha - h)\beta_j - \beta\alpha_j + \frac{1}{2}A_{jr}\beta^r + (\beta - \alpha^2)h_j$$
$$= dh(A\xi)A_{jr}\xi^r + d(\beta - h\alpha)(A\xi)\xi_j,$$

where we have used (1.3) and (2.12).

If we take the inner product with $A_s^{j}\xi^{s}$ and W_j to (2.14), and make use of (1 10), (2.3) and (2.5), then we obtain respectively

(2.15)
$$\frac{1}{2}\mu d\beta(W) - \frac{1}{2}\alpha d\beta(\xi) + \beta d\alpha(\xi) = (\beta - \alpha^2)dh(\xi),$$

(2.16)
$$\frac{1}{2}d\beta(W) + \mu d\alpha(\xi) - \alpha d\alpha(W) = \mu dh(\xi).$$

From the last two equations, it follows that

(2.17)
$$\frac{1}{2}d\beta(\xi) = \alpha d\alpha(\xi) + \mu d\alpha(W).$$

3. Main result

First of all we prove the following :

LEMMA 1. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$ satisfying $S\phi = \phi S$. Suppose that $dh(\xi) = 0$ and $\alpha = const$. Then we have $du(\xi, X) = 0$ for any vector field X on Ω , where u(X) = g(U, X) and d is denoted by the operator of exterior derivative.

Proof. Because of (2.16) and (2.17), we have $d\beta(W) = d\beta(\xi) = 0$ by virtue of $dh(\xi) = 0$ and $\alpha = const.$ Thus (2.13) and (2.14) are reduced respectively to

(3.1)
$$hA_{jr}U^{r} + (2\beta - 2h\alpha - \frac{c}{4})U_{j} + \frac{1}{2}\beta_{j} = 0,$$

(3.2)
$$(2h\alpha - 2\beta - \frac{c}{2})A_{jr}U^r + \{h(\beta - h\alpha) - \frac{3}{4}c\alpha + \frac{c}{2}h\}U_j + \frac{1}{2}(2\alpha - h)\beta_j + \frac{1}{2}A_{jr}\beta^r + (\beta - \alpha^2)h_j = 0,$$

where we have used (1.10) Using $(2 \ 10)$ and (3.1), we get

$$\frac{1}{2}A_{jr}\beta^r + (h^2 + 2\beta - 2h\alpha - \frac{c}{4})A_{jr}U^r + h(\beta - h\alpha)U_j = 0.$$

Combining with the last three equations, it follows that

(3.3)
$$fU_j + (h\alpha - 2\beta - \frac{c}{8})\beta_j + h(\beta - \alpha^2)h_j = 0,$$

where we have put

(3.4)
$$f = (2h\alpha - 4\beta - \frac{c}{4})(2\beta - 2h\alpha - \frac{c}{4}) + 2h(2\alpha - h)(\beta - h\alpha) - \frac{c}{4}h(h - \alpha).$$

Differentiating (3.3) covariantly along Ω , we find

Jong Joo Kim

$$f_k U_j + f \nabla_k U_j + (h\alpha - 2\beta - \frac{c}{8}) \nabla_k \beta_j + h(\beta - \alpha^2) \nabla_k h_j + (\alpha h_k - 2\beta_k) \beta_j + (\beta - \alpha^2) h_j h_k + h\beta_k h_j = 0,$$

from which, taking the skew-symmetric part,

$$f_k U_j - f_j U_k + f(\nabla_k U_j - \nabla_j U_k) + (h - \alpha)(\beta_k h_j - \beta_j h_k) = 0.$$

Thus, it is clear that

(3.5)
$$f\xi^k(\nabla_k U_j - \nabla_j U_k) = 0$$

because we have used (3.4) and the fact that $d\beta(\xi) = 0$ and $dh(\xi) = 0$.

Now, let Ω_0 be a set of points in Ω such that $du(\xi, X) \neq 0$ for any vector field X on Ω and suppose that Ω_0 be not empty Then we have f = 0 on Ω_0 with the aid of (3.5), and hence

$$(8h\alpha - 8\beta - h^2 + \frac{c}{4})\beta_j$$

+ $\{6\alpha\beta - 6h\alpha^2 + 2\alpha h^2 + 2(\beta - h\alpha)(\alpha - h) - \frac{c}{4}h + \frac{c}{8}\alpha\}h_j = 0.$

Furthermore, by $(3\ 3)$ we obtain

$$(h\alpha - 2\beta - \frac{c}{8})\beta_j + h(\beta - \alpha^2)h_j = 0$$

on Ω_0 . From the last two equations we easily verify that β and h are both constant. Thus, from (3.1) we can see that $A_{jr}U^r = \lambda U_j$, where we have defined the function λ by

$$h\lambda + 2\beta - 2h\alpha - \frac{c}{4} = 0$$

on Ω_0 Because of (2.10) and (3.2), we also obtain respectively

$$\lambda^2 = h\lambda + \beta - hlpha,$$

 $\lambda(2hlpha - 2eta - rac{c}{2}) + h(eta - hlpha) - rac{3}{4}clpha + rac{c}{2}h = 0$

on Ω_0 . By means of the last three equations we can verify that $\lambda = h - \alpha$ and hence $\beta - \alpha^2 = 0$, which is a contradiction. Hence Ω_0 is empty. This completes the proof of Lemma 1.

Real hypersurfaces satisfying $S\phi = \phi S$ in a complex space form

PROOF OF THEOREM. Since α is constant, (1.9) is reduced to

(3.6)
$$\xi^k \nabla_k U_j = -3U^s A_{sr} \phi_j^r + \alpha A_{jr} \xi^r - \beta \xi_j.$$

On the other hand, using (1.5) and (2.3) we have

$$\xi^k \nabla_j U_k = (\alpha - h) A_{jr} \xi^r + (h\alpha - \beta) \xi_j$$

because ξ and U are mutually orthogonal. Thus, substituting this and (3.6) into $\xi^k (\nabla_j U_k - \nabla_k U_j) = 0$, we find

$$3U^{s}A_{sr} \phi_{j}^{r} = h(A_{jr}\xi^{r} - \alpha\xi_{j}),$$

where we have used the result of Lemma 1, which implies

$$(3.7) 3A_{\gamma r}U_r = hU_{\gamma}.$$

Therefore (2.10) gives

$$\beta - h\alpha = -\frac{2}{9}h^2.$$

From this we can get

(3.9)
$$\beta_j = (\alpha - \frac{4}{9}h)h_j.$$

Because of (3.7) and (3.8), the equation (3.1) turns out to be

(3.10)
$$\beta_{j} = (\frac{2}{9}h^{2} + \frac{c}{2})U_{j},$$

which together with (3.9) yields

(3.11)
$$(\alpha - \frac{4}{9}h)h_j = (\frac{2}{9}h^2 + \frac{c}{2})U_j,$$

which enable us to obtain

(3.12)
$$(\alpha - \frac{4}{9}h)h_t U^t = (\frac{2}{9}h^2 + \frac{c}{2})(h\alpha - \frac{2}{9}h^2 - \alpha^2).$$

Using (3.7) and (3.10), we also have from (3.2)

$$\{\frac{1}{3}h(\beta - h\alpha) - \frac{3}{4}c\alpha + \frac{c}{3}h + (\frac{1}{9}h^2 + \frac{c}{4})(2\alpha - \frac{2}{3}h)\}U_j + (\beta - \alpha^2)h_j = 0.$$

From this and (3.8), it follows that

(3.13)
$$h_t U^t = \frac{4}{27}h^3 - \frac{2}{9}\alpha h^2 + \frac{c}{4}\alpha - \frac{c}{6}h$$

Substituting this into (3.12), we see that h is constant because h is a root of the algebraic equation with respect to h with constant coefficient. Thus β is also constant since we have (3.9). Accordingly (3.10) and (3.13) will produce a contradiction. Therefore Ω is a empty set, that is, the structure vector field ξ is principal. This completes the proof.

References

- J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew Math 395 (1989), 132-141
- [2] T. E Cecil and P J Ryan, Focal sets and real hypersurfaces in complex, projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- [3] U-H KI, S J. Kim and S. B Lee, Some characterizations of a real hypersurface of type A, Math. J Okayama Univ. 32 (1990), 207-221
- U.-H.Ki and Y J Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
- [5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149
- [6] _____, Some real hypersurfaces of a complex projective space, Saitama Math J. 5 (1987), 1-5.
- [7] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- [8] S. Maeda and S. Udagawa, Real hypersurfaces of a complex projective space in terms of holomorphic distributions, Tsukuba J. Math. 14 (1990), 39-52

- Y Maeda, On real hypersurfaces of complex projective space, J Math Soc Japan 28 (1976), 529-540
- [10] R Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516

Department of Mathematics Dong-A University Pusan 604-714, Korea