FIXED POINTS OF ASYMPTOTICALLY REGULAR MAPPINGS

Shin Min Kang and Li Ronglu

Abstract

In this paper, we prove some common fixed point theorems for compatıble mappings by using asymptotically regular mappings under the contractive type of G. E Hardy and T D Rogers, and also give some examples to illustrate our mann theorems Our results extend the results of M D. Guay and K L Singh and others

1. Introduction

The most well-known fixed point theorem is so called the Banach's fixed point theorem which asserts that if a contractive mapping from a complete metric space into itself exists, then the mapping has a unique fixed point in a complete metric space. A more generalized contractive condition was introduced by G. E Hardy and T. D. Rogers [4].

In 1976, G Jungek [5] initially proved a common fixed point theorem for commuting mappings which generalizes the well-known Banach's fixed point theorem. This result has been generalized, extended and improved in various ways by many authors ([2], [6]-[12])

On the other hand, S. Sessa [11] introduced a generalization of commutativity, which is called weak commutativity, and proved some common fixed point theorems for weakly commuting mappings which generalıze the results of K M. Das and K. V. Naik [2]. Recently, G Jungck [6] introduced the concept of more generalized commutativity, so called compatıbulity, which is more general than that of weak commutatıvity The utility of compatibility in the context of fixed point theory was initially demonstrated in extending a theorem of S Park and J S. Bae

[^0][10]. By employing compatible mappings in stead of commuting mappings and using four mappings in stead of three mappings, G. Jur gck [7] extended the results of M. S. Khan and M. Imdad [9], S. L. Singh and S. P. Singh [12] and, recently, also obtained an interesting: ; ;ult concerning with his concept in his consecutrve paper [8].

In this paper, we prove some common fixed point theorems for \mathfrak{y} ompatible mappings by using asymptotically regular mappings undes the contractive type of G. E. Hardy and T. D. Rogers [4], and alsf) give some examples to illustrate our main theorems. Our results extend the results of M. D. Guay and K. L. Singh [3] and others.

2. Preliminaries

For some definitions, terminologies and notations in this paper, we refer to [6], [7], and [11].

Definition 2.1. Let A and B be mappings from a metric space (X, d) into itself. Then A and B are said to be weakly commuting mappings on X if $d(A B x, B A x) \leq d(A x, B x)$ for all x in X

Clearly, commuting mappings are weakly commuting, but the converse is not necessarily true as in the following example:

Example 2.1. Let $X=[0,1]$ with the Euclidean metric d. Define A and $B: X \rightarrow X$ by

$$
A x=\frac{1}{2} x \quad \text { and } \quad B x=\frac{x}{2+x}
$$

for all x in X, respectively. Then A and B are weakly commuting mappings on X, but they are not commuting at $x(\neq 0)$ in X.

DEfinition 2.2. Let A and B be mappings from a metric space (X, d) into itself. Then A and B are said to be compatible mappings on X if $\lim _{n \rightarrow \infty} d\left(A B x_{n}, B A x_{n}\right)=0$ when $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t$ for some t in X.

Obviously, weakly commuting mappings are compatible, but the converse is not necessarily true as in the following example:

Example 2.2. Let $X=(-\infty, \infty)$ with the Euclidean metric d. Define A and $B: X \rightarrow X$ by

$$
A x=x^{3} \quad \text { and } \quad B x=2-x
$$

for all x in X, respectively. Then, since $d\left(A x_{n}, B x_{n}\right)=\left|x_{n}-1\right|$ $\left|x_{n}^{2}+x_{n}+2\right| \rightarrow 0$ if and only if $x_{n} \rightarrow 1$,

$$
\lim _{n \rightarrow \infty} d\left(B A x_{n}, A B x_{n}\right)=\lim _{n \rightarrow \infty} 6\left|x_{n}-1\right|^{2}=0 \quad \text { as } x_{n} \rightarrow 1
$$

Thus, A and B are compatible on X, but they are not weakly commuting mappings at $x(=0)$ in X. Thus, commuting mappings are also compatible, but the converse is not necessarily true.

We need the following lemma for our main theorems:
Lemma 21 . Let A and B be compatible mappings from a metric space (X, d) into 1tself. Suppose that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t$ for some t in X. Then $\lim _{n \rightarrow \infty} B A x_{n}=A t$ if A is continuous.

3. Fixed point theorems

In this section, we shall prove some fixed point theorems for asymptotically regular mappings.

Definition 3.1. Let A and S be mappings from a metric space (X, d) into itself Then A is said to be asymptotzally regular at x_{0} in X with respect to S if $\lim _{n \rightarrow \infty} d\left(S A^{n} x_{0}, A^{n+1} x_{0}\right)=0$

If S is the identity mapping on X, then the above Defintion 31 coincides with that of F. E. Browder and W. V. Petryshyn [1].

Drawing inspration from the contractive condition of G E. Hardy and T. D. Rogers [4], we present the following theorems.

Theorem 3 1. Let A, S and T be mappings from a complete metric space (X, d) into itself satisfying the following condition:

$$
\begin{align*}
d(A x, A y) \leq & a_{1} d(A x, S x)+a_{2} d(A x, T x)+a_{3} d(A y, S y) \\
& +a_{4} d(A y, T y)+a_{5} d(A x, S y)+a_{6} d(A x, T y) \\
& +a_{7} d(A y, S x)+a_{8} d(A y, T x)+a_{9} d(S x, T y) \tag{3.1}\\
& +a_{10} d(S y, T x)
\end{align*}
$$

for all x, y in X, where $a_{i}, i=1,2, \cdots, 10$, are non-negative real numbers with

$$
\begin{gather*}
\max \left\{\left(a_{2}+a_{3}+a_{6}+a_{7}+a_{9}+a_{10}\right),\left(a_{3}+a_{4}+a_{7}+a_{8}\right),\right. \\
\left.\quad\left(a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}\right)\right\}<1 . \tag{3.2}
\end{gather*}
$$

Suppose that
(3.3) S and T are continuous,
(3.4) the pairs A, S and A, T are compatible,
(3.5) A is asymptotically regular at some point x_{0} in X with respect to S and T.
Then A, S and T have a unique common fixed point in X.
Proof. Let A be asymptotically regular at x_{0} in X with respect to S and T. Consider the sequence $\left\{A^{n} x_{0}\right\}$. Then by (3.1), we have for any positive integers n and m,

$$
\begin{aligned}
d\left(A^{n} x_{0}, A^{m} x_{0}\right) \leq & a_{1} d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right)+a_{2} d\left(A^{n} x_{0}, T A^{n-1} x_{0}\right) \\
& +a_{3} d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right)+a_{4} d\left(A^{m} x_{0}, T A^{m-1} x_{0}\right) \\
& +a_{5}\left[d\left(A^{n} x_{0}, A^{m} x_{0}\right)+d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right)\right] \\
& +a_{6}\left[d\left(A^{n} x_{0}, A^{m} x_{0}\right)+d\left(A^{m} x_{0}, T A^{m-1} x_{0}\right)\right] \\
& +a_{7}\left[d\left(A^{m} x_{0}, A^{n} x_{0}\right)+d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right)\right] \\
& +a_{8}\left[d\left(A^{m} x_{0}, A^{n} x_{0}\right)+d\left(A^{n} x_{0}, T A^{n-1} x_{0}\right)\right] \\
& +a_{9}\left[d\left(S A^{n-1} x_{0}, A^{n} x_{0}\right)+d\left(A^{n} x_{0}, A^{m} x_{0}\right)\right. \\
& \left.\quad+d\left(A^{m} x_{0}, T A^{m-1} x_{0}\right)\right] \\
& +a_{10}\left[d\left(S A^{m-1} x_{0}, A^{m} x_{0}\right)+d\left(A^{m} x_{0}, A^{n} x_{0}\right)\right. \\
& \left.+d\left(A^{n} x_{0}, T A^{n-1} x_{0}\right)\right],
\end{aligned}
$$

where $a_{2} \geq 0, i=1,2, \cdots, 10$. Therefore, we obtain

$$
\begin{aligned}
\left(1-a_{5}-a_{6}-a_{7}\right. & \left.-a_{8}-a_{9}-a_{10}\right) d\left(A^{n} x_{0}, A^{m} x_{0}\right) \\
\leq & \left(a_{1}+a_{7}+a_{9}\right) d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right) \\
& +\left(a_{2}+a_{8}+a_{10}\right) d\left(A^{n} x_{0}, T A^{n-1} x_{0}\right) \\
& +\left(a_{3}+a_{5}+a_{10}\right) d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right) \\
& +\left(a_{4}+a_{6}+a_{9}\right) d\left(A^{m} x_{0}, T A^{m-1} x_{0}\right)
\end{aligned}
$$

From (3.2) and (3.5), by taking the limit as $m, n \rightarrow \infty,\left\{A^{n} x_{0}\right\}$ is a Cauchy sequence in X and hence it converges to some point z in X.

$$
d\left(S A^{n-1} x_{0}, z\right) \leq d\left(S A^{n-1} x_{0}, A^{n} x_{0}\right)+d\left(A^{n} x_{0}, z\right) \rightarrow 0
$$

as $n \rightarrow \infty$, so $S A^{n-1} x_{0} \rightarrow z$. Similarly, we have $T A^{n-1} x_{0} \rightarrow z$ as $n \rightarrow \infty$. By (33), we obtain

$$
\begin{aligned}
& S A^{n} x_{0}, \quad S^{2} A^{n-1} x_{0} \text { and } S T A^{n-1} x_{0} \rightarrow S z, \\
& T A^{n} x_{0}, T^{2} A^{n-1} x_{0} \text { and } T S A^{n-1} x_{0} \rightarrow T z .
\end{aligned}
$$

as $n \rightarrow \infty$. By (3.4), it follows from Lemma 2.1 that

$$
A S A^{n-1} x_{0} \rightarrow S z \text { and } A T A^{n-1} x_{0} \rightarrow T z
$$

as $n \rightarrow \infty$. From (3.1) with $a_{\imath} \geq 0, i=1,2, \cdots, 10$, we have

$$
\begin{aligned}
& d\left(A S A^{n-1} x_{0}, A T A^{n-1} x_{0}\right) \\
& \leq a_{1} d\left(A S A^{n-1} x_{0}, S^{2} A^{n-1} x_{0}\right)+a_{2} d\left(A S A^{n-1} x_{0}, T S A^{n-1} x_{0}\right) \\
& \quad+a_{3} d\left(A T A^{n-1} x_{0}, S T A^{n-1} x_{0}\right)+a_{4} d\left(A T A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right) \\
& \quad+a_{5} d\left(A S A^{n-1} x_{0}, S T A^{n-1} x_{0}\right)+a_{6} d\left(A S A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right) \\
& \quad+a_{7} d\left(A T A^{n-1} x_{0}, S^{2} A^{n-1} x_{0}\right)+a_{8} d\left(A T A^{n-1} x_{0}, T S A^{n-1} x_{0}\right) \\
& \quad+a_{9} d\left(S^{2} A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right)+a_{10} d\left(S T A^{n-1} x_{0}, T S A^{n-1} x_{0}\right) \\
& \leq \\
& a_{1} d\left(A S A^{n-1} x_{0}, S^{2} A^{n-1} x_{0}\right) \\
& \quad+\left(a_{2}+a_{3}+a_{6}+a_{7}+a_{9}+a_{10}\right) \max \left\{d\left(A S A^{n-1} x_{0}, T S A^{n-1} x_{0}\right),\right. \\
& \quad d\left(A T A^{n-1} x_{0}, S T A^{n-1} x_{0}\right), d\left(A S A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right), \\
& \quad d\left(A T A^{n-1} x_{0}, S^{2} A^{n-1} x_{0}\right), d\left(S^{2} A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right), \\
& \left.\quad d\left(S T A^{n-1} x_{0}, T S A^{n-1} x_{0}\right)\right\}+a_{4} d\left(A T A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right) \\
& \quad+a_{5} d\left(A S A^{n-1} x_{0}, S T A^{n-1} x_{0}\right)+a_{8} d\left(A T A^{n-1} x_{0}, T S A^{n-1} x_{0}\right) .
\end{aligned}
$$

By taking $n \rightarrow \infty$, we have

$$
d(S z, T z) \leq\left(a_{2}+a_{3}+a_{6}+a_{7}+a_{9}+a_{10}\right) d(S z, T z)
$$

which, by (3.2), implies that $S z=T z$. Again, from (3.1) with $a_{\imath} \geq 0$, $i=1,2, \cdots, 10$, we obtain

$$
\begin{aligned}
& d\left(A T A^{n-1} x_{0}, A z\right) \\
& \leq a_{1} d\left(A T A^{n-1} x_{0}, S T A^{n-1} x_{0}\right)+a_{2} d\left(A T A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right) \\
& \quad+a_{3}[d(A z, T z)+d(T z, S z)]+a_{4} d(A z, T z) \\
& \quad+a_{5} d\left(A T A^{n-1} x_{0}, S z\right)+a_{6} d\left(A T A^{n-1} x_{0}, T z\right) \\
& \quad+a_{7} d\left(A z, S T A^{n-1} x_{0}\right)+a_{8} d\left(A z, T^{2} A^{n-1} x_{0}\right) \\
& \quad+a_{9} d\left(S T A^{n-1} x_{0}, T z\right)+a_{10} d\left(S z, T^{2} A^{n-1} x_{0}\right) \\
& \leq a_{1} d\left(A T A^{n-1} x_{0}, S T A^{n-1} x_{0}\right)+a_{2} d\left(A T A^{n-1} x_{0}, T^{2} A^{n-1} x_{0}\right) \\
& \quad+\left(a_{3}+a_{4}+a_{7}+a_{8}\right) \max \left\{d(A z, T z), d\left(A z, S T A^{n-1} x_{0}\right)\right. \\
& \quad\left.d\left(A z, T^{2} A^{n-1} x_{0}\right)\right\}+a_{5} d\left(A T A^{n-1} x_{0}, T z\right) \\
&+a_{6} d\left(A T A^{n-1} x_{0}, S z\right)+a_{9} d\left(S T A^{n-1} x_{0}, S z\right) \\
&+a_{10} d\left(T z, T^{2} A^{n-1} x_{0}\right) .
\end{aligned}
$$

By taking $n \rightarrow \infty$, we have

$$
d(T z, A z) \leq\left(a_{3}+a_{4}+a_{7}+a_{8}\right) d(T z, A z)
$$

which imphes that $T z=A z$ From (3.1) with $a_{\imath} \geq 0, i=1,2, \cdots, 10$, we obtain

$$
\begin{aligned}
& d\left(A^{n} x_{0}, A z\right) \\
& \leq a_{1} d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right)+a_{2} d\left(A^{n} x_{0}, T A^{n-1} x_{0}\right) \\
& \quad+a_{3} d(A z, S z)+a_{4} d(A z, T z)+a_{5} d\left(A^{n} x_{0}, S z\right) \\
& \quad+a_{6} d\left(A^{n} x_{0}, T z\right)+a_{7} d\left(A z, S A^{n-1} x_{0}\right) \\
& \quad+a_{8} d\left(A z, T A^{n-1} x_{0}\right)+a_{9} d\left(S A^{n-1} x_{0}, T z\right) \\
& \quad+a_{10} d\left(S z, T A^{n-1} x_{0}\right) \\
& \leq \\
& a_{1} d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right)+a_{2} d\left(A^{n} x_{0}, T A^{n-1} x_{0}\right) \\
& \quad+\left(a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}\right) \max \left\{d\left(A z, S A^{n-1} x_{0}\right),\right. \\
& \left.\quad d\left(A z, T A^{n-1} x_{0}\right), d\left(A^{n} x_{0}, A z\right)\right\} .
\end{aligned}
$$

Thus, by taking $n \rightarrow \infty$, we have

$$
d(z, A z) \leq\left(a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}\right) d(z, A z)
$$

which implies $z=A z$ and hence z is a common fixed point of A, S and T.

In order to prove the uniqueness of z, let w be another common fixed points of A, S and T. Then by (3.1), we obtain

$$
\begin{aligned}
d(z, w)= & d(A z, A w) \\
\leq & a_{1} d(A z, S z)+a_{2} d(A z, T z)+a_{3} d(A w, S w) \\
& +a_{4} d(A w, T w)+a_{5} d(A z, S w)+a_{6} d(A z, T w) \\
& +a_{7} d(A w, S z)+a_{8} d(A w, T z)+a_{9} d(S z, T w) \\
& +a_{10} d(S w, T z) \\
= & \left(a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}\right) d(z, w),
\end{aligned}
$$

where $a_{2} \geq 0, i=1,2, \cdots, 10$. Hence $z=w$ by (3.2). This completes the proof.

In the following example, we show that the continuity of both mappings is essential.

Example 3.1. Let $X=[0,1]$ with the Euchidean metric d. Define A, S and $T: X \rightarrow X$ by

$$
A x=\frac{1}{8} x, \quad S x=\frac{1}{2} x \quad \text { and } \quad T x= \begin{cases}\frac{1}{2} & \text { if } x=0 \\ \frac{1}{2} x & \text { if } x \neq 0\end{cases}
$$

for all x in X. Then we have

$$
d(A T 0, T A 0)=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}<\frac{1}{2}=d(A 0, T 0)
$$

and so each of the pairs A, S and A, T is compatible. Furthermore,
we have

$$
d(A x, A y)= \begin{cases}0 \leq \frac{1}{4} d(S y, T x) & \text { if } x=y=0 \\ \frac{1}{8} x=\frac{1}{4} d(S y, T x) & \text { if } x>y=0 \\ \frac{1}{8} y=\frac{1}{4} d(S x, T y) & \text { if } y>x=0 \\ \frac{1}{8}|x-y|=\frac{1}{4} d(S x, T y) & \text { if } x, y \neq 0\end{cases}
$$

Thus, the conditions (3.1) and (3.2) are satisfied with $a_{\imath}=0, i=$ $1,2, \cdots, 8$, and $a_{9}=a_{10}=\frac{1}{4}$. We have

$$
\lim _{n \rightarrow \infty} d\left(A^{n+1} x_{0}, S A^{n} x_{0}\right)=0, \quad \lim _{n \rightarrow \infty} d\left(A^{n+1} x_{0}, T A^{n} x_{0}\right)=0
$$

at some point x_{0} in X. Thus, all the hypotheses of Theorem 3.1 are satisfied except the continuity of both S and T. Here, A, S and T do not have a common fixed point in X.

If we put $S=T$ in Theorem 3.1, then we have the following:
Corollary 3.2. Let A and S be mappings from a complete metric space (X, d) into itself satisfying the following condition:

$$
\begin{aligned}
d(A x, A y) \leq & b_{1} d(A x, S x)+b_{2} d(A y, S y) \\
& +b_{3} d(A x, S y)+b_{4} d(A y, S x)+b_{5} d(S x, S y)
\end{aligned}
$$

for all x, y in X, where $b_{2}, i=1,2, \cdots, 5$, are non-negative real numbers with

$$
\begin{equation*}
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}<1 \tag{3.6}
\end{equation*}
$$

Suppose that
(3.7) S is continuous,
(3.8) the pair A, S is compatible,
(3.9) A is asymptotically regular at some point x_{0} in X with respect to S.
Then A and S have a unique fixed point in X.
Now, we give some theorems by using four mappings in stead of three mappings:

Theorem 3.3. Let A, B, S and T be mappings from a complete metric space (X, d) into itself satisfying the following conditions (3.7), (3.8) and (3.10):

$$
\begin{align*}
d(A x, B y) \leq & b_{1} d(A x, S x)+b_{2} d(B y, T y) \\
& +b_{3} d(A x, T y)+b_{4} d(B y, S x)+b_{5} d(S x, T y) \tag{3.10}
\end{align*}
$$

for all x, y in X, where $b_{2}, i=1,2, \cdots, 5$, are non-negative real numbers with

$$
\begin{equation*}
\max \left\{\left(b_{1}+b_{3}\right),\left(b_{2}+b_{4}\right),\left(b_{3}+b_{4}+b_{5}\right)\right\}<1 \tag{3.11}
\end{equation*}
$$

Suppose that
(312) $d(x, T x) \leq d(x, S x)$ for all x in X,
(3.13) A and B are asymptotically regular at some points x_{0} and y_{0} in X with respect to S and T, respectively.
Then A, B, S and T have a unique common fixed point in X.
Proof. Let A and B be asymptotically regular at x_{0} and y_{0} in X with respect to S and T, respectively Consider the sequences $\left\{A^{n} x_{0}\right\}$ and $\left\{B^{n} y_{0}\right\}$ From (3.10), we have, for any positive integers m and n,

$$
\begin{aligned}
d\left(A^{m} x_{0}, B^{n} y_{0}\right) \leq & b_{1} d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right)+b_{2} d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right) \\
& +b_{3}\left[d\left(A^{m} x_{0}, B^{n} y_{0}\right)+d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right)\right] \\
& +b_{4}\left[d\left(B^{n} y_{0}, A^{m} x_{0}\right)+d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right)\right] \\
& +b_{5}\left[d\left(S A^{m-1} x_{0}, A^{m} x_{0}\right)+d\left(A^{m} x_{0}, B^{n} y_{0}\right)\right. \\
& \left.+d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right)\right],
\end{aligned}
$$

where $b_{\imath} \geq 0, \imath=1,2, \cdots, 5$, and so

$$
\begin{aligned}
& \left(1-b_{3}-b_{4}-b_{5}\right) d\left(A^{m} x_{0}, B^{n} y_{0}\right) \\
& \quad \leq\left(b_{1}+b_{4}+b_{5}\right) d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right) \\
& \quad+\left(b_{2}+b_{3}+b_{5}\right) d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right) .
\end{aligned}
$$

Since $d\left(A^{m} x_{0}, A^{n} x_{0}\right) \leq d\left(A^{m} x_{0}, B^{n} y_{0}\right)+d\left(A^{n} x_{0}, B^{n} y_{0}\right)$, we obta.

$$
\begin{aligned}
& d\left(A^{m} x_{0}, A^{n} x_{0}\right) \\
& \leq \\
& \quad \frac{b_{1}+b_{4}+b_{5}}{1-\left(b_{3}+b_{4}+b_{5}\right)} d\left(A^{m} x_{0}, S A^{m-1} x_{0}\right) \\
& \quad+\frac{b_{1}^{\prime}+b_{4}^{\prime}+b_{5}^{\prime}}{1-\left(b_{3}^{\prime}+b_{4}^{\prime}+b_{5}^{\prime}\right)} d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right) \\
& \quad+\left(\frac{b_{2}+b_{3}+b_{5}}{1-\left(b_{3}+b_{4}+b_{5}\right)}+\frac{b_{2}^{\prime}+b_{3}^{\prime}+b_{5}^{\prime}}{1-\left(b_{3}^{\prime}+b_{4}^{\prime}+b_{5}^{\prime}\right)}\right) d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right)
\end{aligned}
$$

where $b_{i}, b_{\imath}^{\prime} \geq 0, i=1,2, \cdots, 5$. From (3.11) and (3.13), by taking fle limit as $m, n \rightarrow \infty$, we deduce that $\left\{A^{n} x_{0}\right\}$ is a Cauchy sequence n . and hence it converges to a point z in X. Thus,

$$
d\left(S A^{n-1} x_{0}, z\right) \leq d\left(A^{n} x_{0}, S A^{n-1} x_{0}\right)+d\left(A^{n} x_{0}, z\right) \rightarrow 0
$$

as $n \rightarrow \infty$ and so $S A^{n-1} x_{0} \rightarrow z$. Similarly, it can be proved that $r y_{0}$ and $T B^{n-1} y_{0} \rightarrow z$ as $n \rightarrow \infty$. By (3.7), we have

$$
S A^{n} x_{0}, \quad S^{2} A^{n-1} x_{0} \rightarrow S z \quad \text { as } n \rightarrow \infty
$$

Since A and S are compatible, Lemma 2.1 implies

$$
A S A^{n-1} x_{0} \rightarrow S z \quad \text { as } n \rightarrow \infty
$$

Again, from (3.10) with $b_{\imath} \geq 0, i=1,2, \cdots, 5$, we obtain

$$
\begin{aligned}
& d\left(A S A^{n-1} x_{0}, B^{n} y_{0}\right) \\
& \leq\left(b_{1}+b_{2}\right) \max \left\{d\left(A S A^{n-1} x_{0}, S^{2} A^{n-1} x_{0}\right), d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right)\right\} \\
& \quad+\left(b_{3}+b_{4}+b_{5}\right) \max \left\{d\left(A S A^{n-1} x_{0}, T B^{n-1} y_{0}\right)\right. \\
& \left.\quad d\left(B^{n} y_{0}, S^{2} A^{n-1} x_{0}\right), d\left(S^{2} A^{n-1} x_{0}, T B^{n-1} y_{0}\right)\right\}
\end{aligned}
$$

By taking the limit as $n \rightarrow \infty$, we have

$$
d(S z, z) \leq\left(b_{3}+b_{4}+b_{5}\right) d(S z, z)
$$

and so $S z=z$ by (3.11). From (3.10) with $b_{\imath} \geq 0, i=1,2, \cdots, 5$, we obtain

$$
\begin{gathered}
d\left(A z, B^{n} y_{0}\right) \leq\left(b_{1}+b_{3}\right) \max \left\{d(A z, S z), d\left(A z, T B^{n-1} y_{0}\right)\right\} \\
+\left(b_{2}+b_{4}+b_{5}\right) \max \left\{d\left(B^{n} y_{0}, T B^{n-1} y_{0}\right)\right. \\
\left.d\left(B^{n} y_{0}, S z\right), d\left(S z, T B^{n-1} y_{0}\right)\right\}
\end{gathered}
$$

By taking $n \rightarrow \infty$, we have

$$
\begin{aligned}
d(A z, z) \leq & \left(b_{1}+b_{3}\right) \max \{d(A z, S z), d(A z, z)\} \\
& +\left(b_{2}+b_{4}+b_{5}\right) d(z, S z) \\
= & \left(b_{1}+b_{3}\right) d(A z, z)
\end{aligned}
$$

which implies $A z=z$ by (3.11). From (3.12), we deduce that

$$
d(z, T z) \leq d(z, S z)=0
$$

Thus, $z=T z$. Furthermore, (3.10) mphes that

$$
\begin{aligned}
d(z, B z)= & d(A z, B z) \\
\leq & b_{1} d(A z, S z)+b_{2} d(B z, T z) \\
& +b_{3} d(A z, T z)+b_{4} d(B z, S z)+b_{5} d(S z, T z) \\
= & \left(b_{2}+b_{4}\right) d(z, B z)
\end{aligned}
$$

where $b_{2} \geq 0, i=1,2, \cdots, 5$. By (311), we have $B z=z$. Therefore, z is a common fixed point of A, B, S and T.

In order to prove the uniqueness of z, let w be another common fixed point of A and S. Then by (3.10), we obtain

$$
\begin{aligned}
d(w, z)= & d(A w, B z) \\
\leq & b_{1} d(A w, S w)+b_{2} d(B z, T z) \\
& +b_{3} d(A w, T z)+b_{4} d(B z, S w)+b_{5} d(S w, T z) \\
= & \left(b_{3}+b_{4}+b_{5}\right) d(z, w)
\end{aligned}
$$

where $b_{i} \geq 0, i=1,2, \cdots, 5$. Hence $z=w$. Similarly, we prove that z is a unique common fixed point of B and T. This completes the proof.

REMARK 3.1. Note that, if we do not assume the conditiur. ! : 2), i.e., " $d(x, T x) \leq d(x, S x)$ for all x in X ", in Theorem 3.3, thet his theorem need no longer be true. In the following example, wo :an construct mappings A, B, S and T, where S and T do not sut sfy the condition mentioned above, such that A and S have only on: : : , ion fixed point in X which is not the fixed point of B or T.

Example 3.2. Let $X=[0,1]$ with the Euclidean metric d. iJefine A, B, S and $T: X \rightarrow X$ by

$$
A x=0, B x=\left\{\begin{array}{ll}
\frac{1}{4} & \text { if } x=0, \\
\frac{1}{4} & \text { if } x \neq 0,
\end{array} \quad S x=x \text { and } T x= \begin{cases}1 & \text { if } x=0 \\
x & \text { if } x \neq 0\end{cases}\right.
$$

for all x in X, respectively. It is easily seen that A commutes with S and S is continuous. Since $d(0, T 0)=1>0=d(0, S 0)$, the condition (3.12) is not satisfied at the point zero. Furthermore, we have

$$
d(A x, B y)= \begin{cases}\frac{1}{4}=\frac{1}{3} d(B y, T y) & \text { if } y=0 \\ \frac{1}{4} y=\frac{1}{3} d(B y, T y) & \text { if } y \neq 0\end{cases}
$$

for all x, y in X. For some x_{0} and y_{0} in X,

$$
\lim _{n \rightarrow \infty} d\left(A^{n+1} x_{0}, S A^{n} x_{0}\right)=0, \quad \lim _{n \rightarrow \infty} d\left(B^{n+1} y_{0}, T B^{n} y_{0}\right)=0 .
$$

Thus, all the hypotheses of Theorem 3.3 are satisfied with $b_{2}=0$, $\imath=1,3,4,5$, and $b_{2}=\frac{1}{3}$ except the condition (3.12). Here, the point 0 is the common fixed point of A and S but the point 0 is not a fixed point of B and T.

Remark 3.2. A result which is analogous to Theorem 3.3 can be reformulated by supposing the continuity of T, " $d(x, S x) \leq d(x, T x)$ for all x in $X^{\prime \prime}$ and requiring the compatiblity of the pair B, T.

The following Corollary 3.4 follows easily from Theorem 3.3 and Remark 3.2:

Corollary 3.4. Let A, B, S and T be mappings from a complete metric space (X, d) into itself satisfying the conditions (3.3), (3.13) and (310), where $b_{\imath}, i=1,2, \cdots, 5$ are non-negative real numbers with (3.11). Suppose that
(3.13) the pairs A, S and B, T are compatible.

Then A, B, S and T have a unique common fixed point in X.
We show that the condition of asymptotic regularity is also necessary in Theorem 3.1 and Corollary 3.4:

Example 3 3. Let $X=[1, \infty)$ with the Euclidean metric d. Define $A(=B)$ and $S=T: X \rightarrow X$ by

$$
A x=2 x \quad \text { and } \quad S x=4 x
$$

for all x in X, respectively Then the conditions (3.1) and (3.2) are satısfied with $a_{2}=0, i=1,2, \cdots, 8$, and $a_{9}=a_{10}=h$, where $\frac{1}{4} \leq$ $h<\frac{1}{2}$. Furhermore, the conditions (3.10) and (311) are satisfied with $b_{\imath}=0, \imath=1,2,3,4$ and $b_{5}=k$, where $\frac{1}{2} \leq k<1$ The other hypotheses of Theorem 3.1 and Corollary 3.4 are satisfied except the condition (3.5) and (3.13), respectively. Indeed, for some x_{0} in X,

$$
\lim _{n \rightarrow \infty} d\left(A^{n+1} x_{0}, S A^{n} x_{0}\right)=0 \quad \text { iff } \quad x_{0}=0
$$

but the point 0 does not belong to X. Here, none of mappings has a fixed point in X.

Remark 3 3. If we replace the condition (3.11) by the condition (3.6), then the conclusion of Corollary 3.4 is still true.

Remark 3.4 If we put $A=B$ and $S=T$ in Corollary 3.4, by Remark 3.3, Corollary 3.4 induces to Corollary 3.2 .

Remark 35 . If we put $S=I_{X}$ (: the identity mapping on X) in Corollary 34 with $b_{1}=b_{2}$ and $b_{3}=b_{4}$, then we obtann the results of M. D Guay and K. L. Singh [3] which generalize the results of several authors.

Acknowledgement. The first author was supported by Research Fund of Choo-Dam (Chung Seok Chang) Research and Scholarship Foundation, 1998.

References

[1] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functoonal equations in Banach spaces, Bull. Amer Math. Soc. 72 (1966), 571-575.
[2] K. M Das and K V. Naik, Common fixed poznt theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (1979), 369-373
[3] M D. Guay and K. L. Singh, Fuxed point of asymptotzcally regular mappings, Mat. Vesnik 35 (1983), 101-106
[4] G E. Hardy and T. D. Rogers, A generaluzatzon of a fixed point theorem of Rezch, Canad. Math. Bull. 16 (1973), 201-206.
[5] G Jungck, Commuting maps and fixed points, Amer Math. Monthly 83 (1976), 261-263.
[6] , Compatrble mappings and common fixed points, Internat. J. Math and Math Sc1 9 (1986), 771-779
[7] ——Compatable mappings and common fixed points (2), Internat J. Math. and Math Scı 11 (1988), 285-288
[8] ——_ Common fixed pornts for commuting and compatzble maps on compacta, Proc Amer Math. Soc 103 (1988), 977-983
[9] M. S Khan and M. Imdad, Some common fixed point theorems, Glasnuk Mat. 18(38) (1983), 321-326.
[10] S Park and J. S. Bae, Extenszons of a common fixed point theorem of Mzer and Keeler, Ark. Math. 19 (1981), 223-228.
[11] S Sessa, On a weak commutatzvity condztion of mappings an fixed point considerations, Publ Inst Math. 32(46) (1982), 149-153
[12] S. L Singh and S P. Singh, A fixed point theorem, Indian J Pure and Appl. Math. 11 (1980), 1584-1586

Shin Min Kang
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
Li Ronglu
Department of Mathematics
Harbin Institute of Technology
Harbin 150001
People's Republic of China

[^0]: Received September 25, 1998
 1991 Mathematics Subject Classification. 54 H 25
 Key words and phrases* Asymptotically regular mappings, common fixed points and compatible mappings

