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APPROXIMATE FIBRATIONS AND 
APPROXIMATE LOCALLY TRIVIAL BUNDLES

Young Ho Im and Soo Hwan Kim

1. Introduction

Until now, mathematicians have used many properties or concepts 
of cell-like mappings and Hurewicz fibrations for the research of the 
upper semicontinuous decompositions of manifolds or mappings be
tween manifolds. But, the preimage of each point of cell-like mapping 
has a trivial shape, and so it is limited in some sense. Thus, we need 
to introduce the concept of approximate fibrations [1] which have the 
approximate homotopy lifting property for every topological space.

Y. H. Im [4] investigated conditions under which app호oximate fibra
tions can be approximated by locally trivial bundle.

In this paper, we newly define a generalized concept of locally trivial 
bundles, called an approximate locally trivial bundle, and show that it 
induces an approximate fibration as a locally trivial bundle implies a 
fibration.

2. Preliminaries

We use the following terminology and notation. If H • X x J —> Y is 
a homotopy, then Ht \ X Y is the map defined by Ht(x) = H{x^ f) 
Let / : X t Y and g . X —> Y be maps and 5 be a cover of Y. 
We say that f and g are 6-close if for each x E f(x) and g(x) are 
contained in some member of 6 Also / and g are 5-homotopic if f and 
g are homotopic by a homotopy h such that h({x} x I) is contained 
in some member of 6 for each x E X. Such a homotopy is called a 
^-homotopy [3].
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Definition 2.1. A surjective map p : E B between locally 
compact ANRs has the approximate homotopy lifting property with 
respect to a space X provided that, given a cover e oi B and maps 
g : X —승 E and H : X x I B such that pg = Ho, there exists 
a map G ： X x / E such that Gq = g and pG and H are e- 
이ose. The map G is said to be an e-lift of H. If p has the AHLP 
(approximate homotopy lifting property) for all spaces, we say that p 
is an approximate fibration.

A fiber structure (E,p, B) is called a fibration for class A if, for any 
space X £ >1, each continuous f : X x Q E and -each homotopy

: X x I t B of pf〉there exists a homotopy of / covering 如 
that is, p^> =(f>. A fiber space for the class of all spaces is called a 
Hurewicz fibration. A map p : B B is a weak approximate fibration 
if p satisfies the AHLP for Iq for all q < oo. In [2], p is a weak 
approximate fibration if and only if it is an approximate fibration.

The above Definition 2 1, of course, generalizes the usual homotopy 
lifting property, the definition of which is the same except that pG = H 
is required rather than that pG and H are e-close.

Definition 2.2. A map p ： E -누 B is a locally trivial bundle 
between topological spaces if for each b E B there exist a neighborhoods 
y of & in B and a homeomorphism 顿 of V x p~1(b) onto p"~1(V) such 
that p(f)v(y.x) = v for all G V x

In a locally trivial bundle, all fibers (i.e.)all subspaces of E of the 
form are homeomorphic.

We give a new notion as above so that we can apply for more general 
cases.

Definition 2.3. A map 但 ： E -스 B is an approximate locally trivial 
bundle between locally compact ANRs if given a cover c of B and b e B 
there exist a neighborhood V of 6 in B and a homeomorphism of 
初T(b) x V onto p~1(V) such that p(/)v(vyx) and x) are e-close 
for all (*u,x) e V x where ay : V x，厂'0) —> V is the first 
projection.



Approximate fibrations and approximate locally trivial bundles 229

3. Main Results

In [5, p 364] and [6, p 96], a locally trivial bundle p : E t B with a 
fiber F is a weak fibration By using the homotopy extension property 
of ANR's, we extend this fact to the case of app호oximate locally trivial 
bundles.

THEOREM 3.1. An approximate locally trivial bundle p : E -승 B 
with fiber F = p~x(6) is an (weak) approximate fibration.

Proof. Step 1. Let p : S > B be an approximate locally trivial 
bundle with fiber F. Then, given any cover € of B and b e B, there are a 
neighborhood V of b in B and a homeomorphism 顿 . Vx F —> p-1(V) 
such that p^>y(v,x), x) are €-이ose for all (v^x) G V x F, where 
ay : V x F V is the first projection Consider the commutative 
diagram

In 一J E

1 P
Inx I --------> B,

G

where t : In —> In x I is defined by i{x) = (x, 0).
We claim that there exists a map G . In x I E such that G(x, 0)— 
/(x) and pG and G are e-close.

Let 6 二二(G*-1(V)|each coordinate neighborhood V of bundle}

be an open cover of the compact metric space In x I.
If A is the Lebesque number of the cover 毎 then any subset A C /n x I 
with diam(A) < X implies that G(A) U V for some V G c. Triangulate 
In so that every simplex a of In has rfzam(cr) < A/2. Partition 1:0 = 
切〈切 V 切 V …〈七m = 1 so that d%am\t3,t3^i\ =如口 — < A/2
for 0 < J < m Then diam(a x [t7,tj+ij) < 1/2入 + 1/2A = A for 
each a and j. Hence, for each a, there is a coordinate neighborhood 
V = Vaj such that G(g x C V.
Step 2. Let L denote the simplicial complex of the triangulation of In, 
and let denote fc-skeleton of L.
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We show that, by induction on fc > 0)there is a continnons map 
hk : £(*)x [0, ti] E such that

W) 一J E

z P

L(k)x [0,圮----- > B
G

and hk : W)x 一)E is e-lift of G
Let ay : VxF —» V, 0v : VxF —» F be the projections. If e G p~1(V), 
then

姊'(时=Sw頌'(e),阳疔(e)) eV x F,

and hence 折1(e) = (v, x) for some (v,x) G V xJ1;如x) = e. Since 
x), oiv(v,x) are e-closed, p(e), (e) are also e-closed.

(1) If /I € L(。), then there is a coordinate neighborhood V such that 
G({〃} x C V. Define homotopy /"). {«} x [ti/2,ti] -r p-1(V) 
by = 加(G(%£),卽折'『(〃)). Since B is an ANR, by def
inition, given a cover € of B, there is a cover 6 such that any two 
5-close maps into are 〃-homotopic, where 〃 twice star refines e. Hence 
we can define homotopy H : {#} x [0, ii/2] — p-1(V) by H(払 0)= 
■『(#),丑(％切/2)=秫(国以/2). Define h0 : {fi} x [0,圮->p-1(V) by

宀 八(心)(OWi/2)
/IQ (jLZ, tj —一 x - /I 棚 3，t) (ti/2<t<ti).

Thus 扁(払 0) = /(/i) and G(/很)are e-close. Since L的 is
discrete, one may glue these map 扁 together to obtain a continuous 
map 膈:乙(°)x [0,圮—> E.
(2) Suppose that for k — there is a continuous map ha : £(*一')x 
[0, ii] E such that
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h&(。、i)=

弟一1) —」e

z P

/l) x [0,0] ------- > B
G

and 眼_1 : 2애一1)x [0, fi] - E is c-lift of G.
(3) Let a be a 农simplex in L, and that let V be a coordinate neigh
borhood such that G(g x [0, 切]) U V. Since a 은 Ik, a 호etraction 
r : x I —> (1^ x {0}) U (j* x Z) induce a retraction ra . a x [0, ti] ―소 
cr x {0}) U ((7 x [0, ti]). Define

Va : (a x {0}) U (d- x [0, 切]) 一셔 P-1(V)

by 匸기八{아 = {아 이/ t41CTX(0)tll = 砍一牛ms by induction. 
Define

凡:：b X [ti/2,圮 T pT(V)

by 似：(心)=卽再;以“>(〃,*)) for “ e or u Z(k),提[o,圮. 

Similarly, 나lere is H : a x [0,ti/2] —> p^l(V) by H(o“0) =『(〃) and
切/2)=片4(払切/2). Define 膈.b x [0,ii] P~1(V) by

H(g£) (0 < t < 切/2)
hfk (ti/2<t<ti)

If 6 (cr x {0}) U (ti x [0, ti]) , 난len ra(/z,t) = by retraction. 
If ("{0}, then G(心)=G(的 0) ="(〃) and 如#,())〜=/(/i), 
hence 服(払0) = /(/i). If (/z,t) e a x [0,ti], then G(/i,t),phk~i are 
e-close by induction and 叼(払 Z) = Hence i), G(/z, t)
are e-close. Since simplexes in L intersect in lower dimension faces, the 
gluing lemma allow us to assemble all the map 况-说)x — E. 
Step 3. In particular k = n, there is a continuous map G고 = hn : 
In x [0,<i] t E. Now repeat this construction with [切, 시 playing 
the role of [姑,切]to obtain a map In x [切，板} t E agree with Gi on 
In x {切}. These maps can be glued together to obtain a map : 
In x [0, ^2] 一송 E making the appropriate diagram commute. Repeating, 
we obtain G = Gm defined on In x [0? = In x I
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Remark. In general, the set

B(E, B) = {p : E —* B\p is a locally trivial bundle}

is not closed in C(E,B) — (/ : E* —> B| / is continuous } with compact 
open topology but AB{Ey B) = {p : E B\ p is an approximate 
locally trivial bundle } is closed in C(E)B).

The following result follows from [1, proposition 1.1.].

Theorem 3.2 [1]. Let E and B be ANRJS. Suppose p : E —스 B 
is a surjection with the property that for each cover 6 of B there is a 
map m : E —송 B such that is F-close to p and has the homotopy 
lifting property with respect to a metric space X. Then p has the 
approximate homotopy lifting property with respect to X.

However, the above result does not hold for an approximate locally 
trivial bundles. The following is a counterexample.

Example. Let W be 나le Warsaw circle in R? ； that is, W = WiUB, 
where

Wi = {(0,圳-1 < t < 1} U

and B is an arc which meets W\ only in its endpoints (0,0) and (1,0). 
That is, let xo be a base point in S1. Let % : S1 xS1 S1 be projection 
map onto second factor. Then there is a compactum A C S1 x S1 such 
that 厶 으 ”，and h : (S1 x 51) 一 4三x (S1 一 {如}). Define 
p ： S1 x S1 S1 by

[7rh(x) if x G (S1 x S') — A 
，(对={ .

[xo it x E A.

Then p is continuous and 卩一檢。)=4 and p~1(y) essential copy 
of S1 for all g # 旬.Now p can be uniformly approximated by locally 
trivial bundle. In fact, let 5 > 0 be given and let U be an open interval 
in 이 such that xq E U G 丿V(:q)0/2). Then, since 7厂'(이 — U) and 
pT(싱QJ)) 슥 S" x P\p~1(s1-u)extends to a map 豎 : S' x S' t S1 
which topological equivalent to 7r. Thus 彻 is locally trivial bundle 
and p6」P are 汉close. However, p is not an approximate locally trivial 
bundle since p-1(a；o) is not homeomorphic to y xq.
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From the above example, approximate fibrations can not be in gen
eral approximate locally trivial bundles. We investigate some condi
tions under which an approximate fibrations p : E — B can be an 
approximate locally trivial bundle.

Let Fm be a compact manifold. We denote by S(F) the set of 
equivalence classes of the form [f], where f . Mm — Fm is a homotopy 
equivalence of a compact manifold to Fm which is a homeomor
phism from dM to dF,

If Tn is the n-torus and e : Tn t Tn is any standard finite cover, 
then there is a transfer map e : S(Tn x F) — S(Tn x F) defined by 
e([/]) = [/], where f comes from the pull-back^diagram

M * > TnxF

eXtd

M 一上-T Tn x F.

We use So(Tn x F) to denote those elements of S(Tn x F) that are 
invariant under any of these transfer maps ([4]).

Lemma 3.3 [4]. Let n > 0 bean integer. For any e > 0, there exists 
a 6 > 0 so that if f : MTn+n —> BJ1 x Fm is a p--1 ((5)-equivalence for 
which - dM 欣 x dFm is a homeomorphism, where is 
a manifold ? Fm is a compact manifold with boundary and m + n > 5^ 
then there is an element a(/) of So(Tm x F) which vanishes if and only 
if f is p~r(6)-homotopic to a homeomorphism.

Theorem 3.4. Suppose that p : Mm+n 一스 Bn is a surjection with 
the property that for each cover 6 of B there is a map : M t B 
such that ps is 6-close to p and is the locally trivial bundle and 
S(Tm x F) — 0 for each fiber F. Then p is an approximate locally 
trivial bundle.

Proof. Assume that for all 5 > 0 and b C B〉there is a neighbor- 
hood V of & and a homeomorphism 如：V x F二W (V) such that 
pM〉v("£、) = = v,where ay : V x F U and for all €
VxF. Let pg and p be 5-close. By [4], the map :VxF p-1(V) is 
homotopy equivalence. Since S(Tm x F) = 0, V x E 스 p-1(V). Thus, 
since ps and p are 5-close, p(f)v{y,x) and pMw (板)q) are <5-close. Since 
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pM)v(a)w) = Qv(v,t), p(f>v(y,x) and ay(v,x) are 从close. Therefore 
p : M B is an approximate locally trivial bundle.

The next are some examples satisfying the condition of Theorem 
3.4.

Example 1. It follows from [4] that if Fm is a K(们 1) with % poly 
Z 이id m + n > 5, then S(Tn x = 0. Also any sphere satisfies 
S(Tn x Sm) = 0.

Example 2. Let Fm be a closed Riemannian manifold whose sec
tional cu호vaturevalue is nonpositive. Then, by Proposition 3.5 in [4], 
S(Fm x Z-7) = 0 for m + J > 5.

Crollary 3.5. Suppose p : A/나n _ Bn is an approximate 6bra- 
tion whose fiber is homotopy equivalent to a closed manifold Fm and 
m + n > 5, where either Fm is a K(7r, 1) with 기「poly Z or a closed 
Riemannian manifold whose sectional curvature is nonpositive. Then 
p is an approximate locally trivial bundle.

Proof. By [4, Theorem 4.이 and examples, p can be approximated 
by a locally trivial bundle. Hence the result follows from Theorem 34
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