Molecular chaperone as a sophisticated intracellular membership

세포내인자로서의 정교한 기능을 하는 molecular chaperone

  • Published : 1998.04.01

Abstract

Discovery of molecular chaperone has stimulate cell biologists and thus made it possible to re-examine the processes whereby proteins achieve and maintain their functional conformations within living cells. the term ‘Molecular chaperone’ was first coined to describe one particular protein involved in the assembly of nucleosomes, but the term has now been extended to describe the function of a wide variety of proteins that assist protein transport across membranes, folding of nascent polypeptide, the assembly and disassembly of oligomeric structures, and the recovery or removal of proteins damaged by various environmental stresses including heat shock. Progress of molecular chaperone research is still limited by the lack of 3-dimensional structural information and detailed interacts with taget proteins in the cell. However, several laboratories around the world are attempting to extend our knowledge on the functions of molecular chaperone, and such efforts seem justified to finally provide the answers to the most burning questions shortly.

Molecular chaperone의 발견은 생명과학자들에게 살아있는 세포 내에서 어떻게 생체활성단백질이 만들어지고 유지되는지에 대한 자극과 함께 그것을 증명하기 위한 실험동기를 부여하였다. 초기에는 Molecular chaperone이 nucleosomes의 assembly에 관여하는 단백질을 설명하기 위하여 사용되었으나, 지금은 기본적인 세포생리기능의 하나인 단백질의 folding과 assembly를 돕는 assistant protein으로 주로 사용된다. 단백질합성 뿐만 아니라 단백질수송, oligomeric structure의 assembly와 disassembly, heat shock을 포함한 각종 내, 외부스트래스에 의해서 변성된 단백질의 세로내분화와 회복에도 Molecular chaperone이 관여하고 있다. 그러나 아직까지는 Molecular chaperone들의 3차구조와 그들간의 상호작용에 관한 정보가 부족하여 크게 진전되지 못하고 있지만, 많은 연구자에 의한 정보축적으로 인하여 빠른 시일 내에 Molecular chaperone에 세포내역할이 분명하게밝혀질 것이다.

Keywords

References

  1. Nature v.275 Nucleosomes ate assembled by an acidic protein which binds histones and transfers them to DNA Laskey, R. A.;Honda, B. M.;Mill, A. D.;Finch, J. T.
  2. Science v.181 Principles that given the folding of protein chains Anfinsen, C. B.
  3. Biochem. Biophys. Acta. v.608 Protein synthesis in chloroplasts. Ⅸ. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact chloroplasts. Barraclough, R.;Ellis, R. J.
  4. Cell v.59 Speculations on the funtions of the major heat shock and glucose-regulated processes in cells. Pelhan, H. R. B.
  5. Biochem. Soc. Symp. v.55 The moleculat chaperone concept. Ellis, R. J.;van der Vies, S. M.;Hemmingsen, S. M.
  6. Cell v.59 Polypeptide chain binding prteins : catalysts of protein folding and related preocesses in cells Rothman, J. E.
  7. Nature v.355 Protein folding in the cell Gething, M. -J.;Sambrook, J.
  8. Curr. Opin. Struct. Biol. v.2 Role of accessory proteins in protein folding Lorimer, G.
  9. A. Rev. Biophys. Biomol. Struct. v.21 Protein folding in the cell : the role of moeculat chaperones hsp70 and hsp60. Hartl, F. U.;Martin, J.;Neupert, W.
  10. Nature v.333 Homologouse plant & bacterial proteins chaperone oligomeric protein assembly. Hemmingsen, S. M.;Woolford, C.;van der Vies, S. M.;Till, K.;Dennis, D. T.;Georogopoulos, C.;Hendrix, R. W.;Ells, R. J.
  11. J. Biochem. v.114 Chaperonin produced by an intracellular symbiont is an energy-coupling protein with phosphotransferase activity. Morioka, M.;Muraoka, H.;Ishikawa, H.
  12. Life Sci., NATOASI Ser. A v.1400 Plant moleculat chaperones Ellis, R. J.;van der Vies, S. M.;Hemmingsen, S. M.
  13. Plenum. v.697 D. von Wettstein;N -H.Chua.
  14. Nature v.328 Proteins as moleculat chaperones Ellis, R. J.
  15. Proc. Natl. Acad. Sci. U.S.A. v.41 Recinstruction of active TMV from its inactive protein and nucleic acid components Frankel-conrat, H.;Williams, R. C.
  16. Adv. Protein Chem. v.2 Protein denaturation and the properties of protein groups Anson, M. L.
  17. The proteins Creighton, T. E.
  18. Annu. Rev. Biochem. v.62 Moleculat chaperone functions of heat-shock proteins Hendrick, J. P.;Hartl, F. -U.
  19. E. Coli. Proc. Natl. Acad. Sci. U.S.A. v.89 Cooperation of GroEL/GroEs and DnaK/DnaJ heat shock proteins in preventing protein misfolding Gragerov, A.;Nudler, E.;Komissarova, N.;Gaitanaris, G. A.;Gottesman, M. E.
  20. American cell biology meeting Expression of moleculat chaperones in the endoplasmic reticulum of FRTL5 cells Kwon, O. -Y.;Arvan, P. R.;Kim, P. S.
  21. Wada's unpublished data (personal comminication)
  22. Science v.246 A role for a 70K hsp in lysosomal degradation of intracellular proteins. Chiang, H. -L.;Terlecky, S. R.;Plant, C. P.;Dice, J. F.
  23. J. Bacterial. v.173 Formation in vitro of complexes between an abnormal fusion protein and heat shock proteins from E. coli and yeast mitochodria Sherman, M. Y.;Goldberg, A. L.
  24. J. Cell Biol. v.133 An endoplasmic reticulum storage disease causing congenital goiter with hypothroidism Kim, P. S.;Kwon, O. -Y.;Arvan, P.
  25. Cell v.77 Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila Cutforth, T.;Rubin, G.
  26. CSHL The biology of heat shock proteins and molecular chaperones Bohen, S.;Yamamoto, K.
  27. Cell v.78 Heat shock proteins and moleculat chaperones : mediators of protein conformation and trunover in the cell Craig, E. A.;Weissman, J. S.;Horwich, A. L.
  28. Annu. Rev. Biochem. v.60 Moleculat chaperones Ellis, R. J.
  29. Annu. Rev. Biochem. v.5 Control of protein exit from the ER Pelham, H. R.
  30. Nature v.356 Successive action of DnaK, DnaJ and GroEL along the pathway of chaperonemediated protein folding Langer, T.;Lu, C.;Echols, H.;Flanagan, J.;Hayer, M. K.;Hartl, F. U.
  31. Nature v.341 The α-lytic protease proregion does not require a physical linkage to active the protease domain in vivo. Silen, J. L.;Agard, D. A.
  32. Nature v.370 Sequential interaction of the chaperones Bip & Grp94 with immunoglobulin chains. Melnick, J.;Dul, J. L.;Argon, Y.
  33. Cell v.65 The cyclophlin homolog ninaA is a tissue-speciffic integral membrane protein required for the proper synthesis of a subset of Drosophila rodopsins. Stamnes, M. A.;Shieh, B. -H.;Chuman, L.;Harris, G. L.;Zuker, C. S.