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1. Introduction
It is well-known that solutions of a semilinear parabolic system

Ut — Ugz = f(V) (ra<z<a, t>0),
Vg — Vzz = g(u) (—a <z <a, t>0)with
u(xa,t) =0 (¢t >0), u(z,0)=up(z) (~a<z<a),
v(+ea,t) =0 (t>0), v(z,0)=vo(z) (~a<z<a)
may blow up in finite time if the reaction terms f and g are
positive, increasing and superlinear and if initial data ug and vg
satisfy that
up(z) <0, wp(z) <0, if0<z<a,
UQ(O) > 0, ’UQ(D) > 0, ’U.o(a) =0= ’Uo(a)
(see Friedman and Giga[l] and the references therein).

More recently Gang and Sleeman [5] and Nam, Ju and Kim [6]
established a result concerning the blow-up problem of the more
general form than above system.

In this paper, we consider a semilinear parabolic system
Ut — Upe = f(u,v) (ra<z<a, t>0)
vV — VUzz = g(u,v) (ra<z<a, t>0)

(1)
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with boundary conditions

(2) u(+a,t) =0, v(+a,t) =0, t>0,

and initial conditions

(3) u(z,0) = uo(z), v(z,0) = vo(z), —-a<z<a.

It is well-known that classical solutions of the system (1) may
blow up in finite time if f and g satisfy certain conditions (see
Gang and Sleeman([5]). We define

T* = sup{T > 0| (u,v) is bounded and solves (1) in [—a,a] x (0,T)}.

Then T™* is called the life span of solutions (u,v). If T is infinite,
the solutions are global. If T is finite one has

(@) lim (@ 0)lle =00 or lim [lo(z, Bl = o,

since otherwise solutions could be extended beyond T. When (4)
holds we say that the solution blows up in finite time.

Here we are interested in the question of global existence and
nonexistence or life span of the solutions of (1).

In section 2 we shall establish a blow-up for solutions (u,v) of
(1) satisfying (2) and (3). The main idea is based on the method
of Gang and Sleeman(5).

In section 3 for given special reaction terms in (1) we obtam
the life span such that solutions blow up in finite time.

2. Preliminaries

In this section we give a general theorem concerning the nonex-
istence of global solutions to the system (1) satisfying the initial-
boundary conditions.

Suppose that u(z,t) and v(z,t) are local solutions to the system
(1). From the standard theorem of PDE(see Smoller [7]), the
existence of such solutions are guaranteed on [—a,a] x [0,T) for
some T > 0.
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Let

91(t) = ) ¢(z)u(z,t)dz, 0 <t < T,
(5) oy
g2(t) = o(z)v(z,t)dz, 0<t < T

—-a

where ¢(zx) is the first normalized eigenfunction which solves the
eigenvalue problem

Gze +T9 =0, TE€ ("aaa)
¢(xa) = 0.

50) = [ sayu(z, iz

= [ $(@)une (e, )da + i " o) (u, v)da.

~a

An integration by parts and (6) shows that

(7) a1(t) = —rgi(t) + _a o(z) f(u,v)dz.
Similarly,
(8) ga(t) = —rga(t) + : é(x)g(u,v)dz.

-

Suppose that there exists a function G; : R*> - R (i = 1,2)
such that the inequality

" o(@) f (w v)de > G1(91(8), g2(t)),
(©) s
#(2)g(u, v)dz > Ga(gr(t), 02(2))

—a
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holds. If such a function G; can be suitably determined, then from
(7) and (8) we have the following differential inequalities

g1(t) = —rg1(t) + G1(g1(t), g2(t)),
ga(t) = —rg2(t) + G2(g1(t), 92(t))

with initial conditions

91(0) = ’ d(x)u(z, 0)dz,
(11) .

a

92(0) = [  ¢(z)v(z,0)dz.

-—Q

(10)

Now we consider the system of the following ordinary differential
equations associated with (10) and (11);

y1(t) = —ry1(t) + G1(y1(t), ya(t)),
ya(t) = —ry2(t) + Ga(y1(t), ya(t))

with initial conditions

(12)

y1(0) = 91(0),
y2(0) = g2(0).

Notice that blow-up behavior of solutions to the differential in-
equality (10) satisfying (11) associated with the system (12) is
achived if the functions G; can be chosen to be quasimonotone in
the following definition.

DEFINITION 2.1. A function G : D C R? — R? is said to be
quasimonotone nondecreasing if %%i > 0 for i # j where G =

(G1,G2),y = (y1,92)-
The next results is due to Gang and Sleeman][5].

LEMMA 2.2. Suppose that G(y) = (Gi{y1,¥2), G2(y1,¥2)) is
quasimonotone nondecreasing and that solutions to the system
(12) and (13) exist only in a finite time interval. That is, there
exists a time 7 > 0 such that the solution to the system (12) exists
for t € [0,7) and y#(t) + y2(t) — oo ast — 7. Then the solution
of (10) exists for only a finite time interval 0 < t < to(tg < 7) and
g3(t) + g2(t) — oo as t — to.

(13)
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THEOREM 2.3. Suppose that the mequélities (9) hold in which
G(y) = (G1(y), G2(y)) is quasimonotone nondecreasing and that
the solutions of (12) blow up in finite time. Then the solutions to
the system (1) satisfying the initial-boundary coditions blow up
in finite time.

Proof. 1t follows from a direct consequence of Lemma 2.2.

An example which satisfies the inequalities (9) is as follows;

EXAMPLE 2.4. Let f(u,v) = du+ A?(u? — v?) and g(u,v) =
Av — 2X2yv (X > 0) and let ¢(z) be the first eigenfunction of the
eigenvalue problem (6). By using Hélder’s inequality, we obtain

a a 2 a
of (u,v)dzx > Agy(t) + A? ( du d:z:) -2 | ovidz.
Let R ¢ Q. = {(y,v)|u > 0,0 < v < ¢} be an invariant re-
gion(See Lemma 3.2). Then

a
pvidr < c?.

—a
Hence, .
f (u,v)dz > Ag1(t) + A3 (t) — A°c?
—a.
for all u,v in R.
Similarly

’ dg(u,v)dz > Aga(t) — 2)\%¢cg, (t)

-0
for all u,v in R.

If we choose Gy(y1,¥2) = Ay1 + A%(y? — ¢?) and Ga(y1,¥2) =
Ayz — 2A%cy;, then we see that G is quasimonotone nondecreas-
ing since %% = (. Consequently it is sufficient to consider the
associated ordinary differential inequality;

g1(t) = ~rgi(t) + Agi(t) + X*(g3(t) — c*)

91(0) = /j o(x)ug(x)dz.
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3. Blow-up of the Solution for the Special Reaction
Terms

In this section we analyse the following semilinear parabolic
system

Up — Uy = M+ A2 (u? — 0?), (ra<z<a, t>0)
Vp — VUgz = A0 — 22 %uw, (ra<z<a t>0)

(P)

satisfying (2) and (3), where ) is a positive constant.

First, we deduce some geometrical and qualitative properties
of (P).

LEMMA 3.1. The system (P) is symmetric about u—axis and
invariant under a rotation through an angle of 3%’—

Proof. We introduce the following notations;

= (447) - (575

Then we can write (P) in the form
JA = F(AY).

Let R; be a reflection about the u—axis and let R be a rotation
through an angle 4, i.e.,

1 0 [ cos@ siné
Rl*(O ml)’RZ——(—-sinH cosé)'

Then we can prove the followings;

J(R1A) = F ((R,A)")
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J (RZ(%’E)A) ~F {(RQ(%—;)AY] .

This complete the proof of our lemma.

and

By Lemma 3.1, we will only consider the system (P) in region
I' which is bounded from below by v = 0 and from the left by
v = v/3u rather than the (u, v)—plane.

LEMMA 3.2. Let

I‘cz{(u,v)luZ0,0Svgc,vsﬁu,cz —5\/;?3}

If any solution(u, v) of (P) satisfies all of its boundary and initial
values in T';, then (u,v) € T, for all (z,t) at which the solution is
defined. That is, I'. is an invariant region for the system (P).

Proof. The rescaling functions
(14) w=+v3u-vandz=v

satisfy the system

Wy — Wy = -—é——w(\/g—k Aw + 4)2)

V3

2t — Zpg = %z(ﬁ -2 w ~ 2)z).

The rescaling function (14) transform the region I' in (u, v)—plane
into the whole of the first quadrant in the (w, z)—plane and the
region I'. becomes a strip

(15)

Qc:{(w,z)inO,nggc,cz.é.‘/g}

in the first quadrant of the (w, z)—plane.
Notice that from the local existence theorem (see [7]), it is well-
known fact that there exists a solution to the system (P) for any
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initial value (wp, 20) € Q. and for (z,t) € [—a,a] x [0,€) where
€ > 0 is sufficiently small. Also, we may assume that [0,¢) is the
maximal time interval of the existence of the solution for (P).
Using Theorem 14.11 in [7] we know that the solution can not
escape the region 2. by crossing the lower boundary z = 0 and
the left boundary w = 0. Therefore we must only show that the
solution can not leave by crossing the upper boundary z = c.

To show this, setting I (2(z,t)) = 2(z,t) —c(c > -%\5), we obtain
Q. ={(w,2) |w>0,2>0,I<0}.
Assume that there is an ¢ € (—a,a) and ¢y € (0, €) such that

I(2(z,t)) <0, (z,t)€ (—a,a)x(0,t0)
I (z(zg,t0)) = 0.

Then since £ 1 (2(z,t)) = zee + j\gz(\/ﬁw 2Aw — 2Az) from (15),
(16)

3 2 2 V3

e (2(xo,t0)) = 2zz(0, to) — 7-5/\2102 - -\75/\22(2 T
2 2 V3

= 2z4(Zo,t0) — —\7.:3-)\2102 - 7—3)\25(5}' + 6)

< Zzg (:EO: tO)

where § = z(zo,t0) — %(5- > 0.

Let K(z) = z(z,to) — ¢. Then K(zo) = I(2(z0,t0)) = 0 and
K'(z) = zz(z, to).

If K'(zg) = 2,(xo0,t0) is positive in some interval (zo,zo +
n), then K(z) is also positive in that interval (zo,zo + 1) for 5
sufficiently small.

Therefore,

z(z,t) — ¢ > 0 for (z,t) € (zo,zo + 1) X (to,to + 1)

This is a contradiction to z(z,t)—c¢ < 0 for (z,t) € (—a,a) x (0,to)
So K'(zo) > 0 is impossible.
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Similarly, we can show that K'(z¢) < 0 is impossible. Hence
K’(IEQ) = 0.

Notice that since K (o) = 0, K'(z¢) =0, and K(z) < 0, K(z)
has a local maximum at ¢ = z¢ and K" (x9) = 22(z0,%0) < 0.
So, from the inequality (16),

0

E;I(Z(wo,to)) < zzz(o,t0) <0
which means that the solution can not leave {2, by crossing the
upper boundary z = ¢. Therefore 2, is invariant.

Here, we establish the nonexistence of the global solution for
the system (P).
First, we consider the system (P) with initial condition

(17) (uo(z),vo(z)) € T, for = € [—a,a],c > —é\/-;;

From the local existence theorem for parabolic system, we see that
there is a solution to the initial value problem (P) satisfying (17)
which exists for 0 < t < T. From Lemma 3.2 and the initial
condition (17), we obtain that

V3

(18) u(z,t) 20,0 <wv(z,t) e 2 EYY

for (z,t) € [~a,a] x [0,T).

LeEMMA 3.3. For the eigenvalue problem (6), r = T%S'f is the
least eigenvalue and ¢(z) = Zj’;;(cos;’%a: + sing-x) is the corre-
sponding normalized eigenfunction.

From Example 2.4, we consider the following system of ordinary
differential inequalities

yi(t) = —ryi(t) + Ay () + A3 (yi(t) — ),

U ) > —raalt) + daalt) - 22 ()
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with initial conditions

1) = [ $(z)uo(e)dz,
(20) ~a
y2(0) = é(x)vo(x)dz.

—-Q

THEOREM 3.4. If the system of ordinary differential inequali-
ties (19) satisfying (20) has a unbounded solution, then the system
(P) satisfying (17) blows up in finite time.

Proof. Since the first inequality of (19) does not depend on the
variable y,, we need only consider the following equation associ-
ated with the first inequality;

2= (A=r)z+ 22?2 - )

(21)
z (0) =N (0)

Since (A — r)% + 4\*c? is positive, we can separate the right-hand
side of the first equation of (21} into

2222 4+ (A —r)z = A%t = Az~ z1) (2 — 22),

where z1 + 22 = 5, 2122 = —¢?, and z; < 0 < 2.
Consequently, (21) implies that

(22) 2= Az = 1) (2 — 22)

and also z; and z; are the equilibria of (22) in which z = 2; is
stable while z == 2, is unstable.

In the region below z = zz, all the solutions of (21) exist
globally. So we will only consider the region above z = 23, i.e.,
2> 29> 0> 2.

Integrating (22) from O to ¢ in this region, we obtain

1 dz  dz ) = A2dt
29 — 2y Z— 23 zZ— 2
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1 f dz 1 f dz =/t)\2dt
22 21 Jzy 2 22 22721 Jp 22 0

where 25 < z5 < 2. So

Z—Z2p (2 — 22 oA (2221t
zZ =21 20 — 21

or

or
z2(20 — 21) ~ 21(20 — zz)e'\z(h*n)t
(20 — 21) — (20 — 29)e* (2= =)t

2 =

where z3(20 — 21) — 21 (20 — 22)€* (22=1)¢ ig positive.
On solving the equation (29 — 21) — (20 — zz)e"z(“““)t =0, we
obtain the life span t = T* of the system (P),

. 1
T =T(z,A) = m [In(z0 ~ 21) ~ In(z0 — 22)] -
Since —— > 0 and #=2 > |, T is positive. Hence we have
2—21 2p~—22
proved.

LEMMA 3.5. If 2o > 22, then the solution of (21) exists only in
a finite time interval 0 < t < T(zo,A) with

i t) = oo.
() = 0
REMARK. In order to obtain an explicit condition for the blow-

up of the solution for the system (P) satisfying (17), we need to
express zo and 27 in terms of A, r, ¢, and (ug, vo). First,

20 = y1(0) = [a d(z)ug(z)dz.

From A\222 + (A — r)z — A%2¢? = 0, we have the larger root
r— A+ /(A =71)%+ 4242
22

where r = —1—33’-2-5, ¢ = %—\5-#5, 6 > 0. So,
(23)

Z9 =

zn = 2 44N (= + 5)?
2= Tgahnr a2 Teaz ) T (gx 9

X
72 — 16)\a? 1 m? — 16)Aa? V3 :
( 22
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THEOREM 3.6. If the blow-up condition

i
e 72 — 16)a? 1 72 — 16Xa? , 4, V3 2| ?
_ad)(:l:)uo(:c)da' > m32a2)‘2 + 5-;5" {(m16a2 ¥+ 4X (-5;‘— + 4)
holds where
T 4 ., T
)= CO8S—X Sin—x
¢(z) 4\/:%( 4a + 4a )

and 6 > 0 is an arbitrary constant, then the solution of (P) satis-
fying (17) blows up in finite time.

REMARK. If a = %, then 2o > 2; implies that

1=+ /(1= X)2+4)\4c2
2)2 '

x
71-—5/4 (cosz + sinz)dz >
k1
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