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FEYNMAN INTEGRALS IN
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Abstract We first obtain the white noise calculus to the computation of
Feynman integral for a generalized function, according to the definition of
Feynman integrals by T. Hida and L. Streit. We next give the translation
theorem for Feynman integral of a generalized function.

1. Introduction

In [7], Kallianpur, Kannan and Kannadikar defined sequential
Feynman integrals on an abstract Wiener and Hilbert spaces and
established the existence of both of analytic and sequential Feyn-
man integrals for integrands belonging to some larger classes than
Fresnel classes.

In [12], Yan and Luo studied the complex scaling transform in
Wiener space (which is an analytic continuation procedure) and
applied it to the Feynman integrals via sequential approximation
(which is a finite dimensional approximation procedure). Also
they have obtained the Feynman -Wiener integral and sequential
Feynman integral for the functional considered in [7].

Streit and Hida[14] introduced the white noise analysis ap-
proach to the definition of the Feynman integral and D. de Falco
and D. C. Khandekar[2] computed the Feynman integral for some
generalized functionals.
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In Section 2, we review the basic notions of white noise analysis
and some results from[4,8,10,11,13].

In Section 3, we apply the white noise analysis to the compu-
tation of Feynman integral for a generalized function, according
to the definition of Feynman integrals by T. Hida and L. Streit.
Moreover, we give the translation theorem for Feynman integral
of a generalized function.

2. White noise distributions

We shall shortly recall some facts from white noise analysis[4,
8, 10, 13]. Let H be a real Hilbert space. Let A be a positive self-
adjoint operator in H with Hilbert-Schmidt inverse. We assume
that there is an orthonormal basis {e;}32, for H contained in the
domain of A such that

Aejzx\jej, j==0,1,2,"',

¢
~2
1< <A <vr— 00, and ZAj < 00.
Jj=0

For each p > 0, define

o o}
617 = 14PEE =Y A < g e; >?
i=0

and let B, = {£ € H : ||, < co}. Then E, is a real separable
space with norm |- |,. It is easily seen that E, C E, for any
P > ¢ > 0 and the inclusion map F,; — E, is a Hilbert-Schmidt
operator for any p > 0.

Let E be the projective limit of {E, : p > 0} and E* be the
topological dual space of E. Then F is a nuclear space and we
get a Gel'fand triple E C H C E* with the continuous inclusions:

ECE,CHCE;CE* p2>0,

where the norm of E; can be checked to be given by
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€12, = [APER =D AP < t,e;>% E€H
=0

It is known that E* is the inductive limit of {E; : p > 0} and
that the inductive limit topology of E* coincides with the strong
dual topology. We denote by < -, > the canonical bilinear form
E*x E.

Let u be the standard Gaussian measure on E*, i.e. its char-
acteristic function is given by

[ <= du(e) = expl-3lelE], €€ B

Then we will call (E*, u) the white noise space.

Note that for each £ in F, the random variable < -, € > is
normally distributed with mean zero and variance |£2. Obviously,
this can be extened to £ in H.

We denote by (L?) = LZ(E*,u) the complexification of the
Hilbert space of u-square integrable functions on E* with norm
Il - ||. By the Wiener-Ito decomposition theorem,

o0
(2.1) o(z) = Z <z®":fn> z€E*, f,€HE"

n=0

where Hg“ is the n-fold symmetric tensor product of the com-
plexification H¢ of H and : z®" : denotes the Wick ordering of
x®"[10]. Moreover the (L?)-norm || ¢ ||o of ¢ is given by

00

I 3= nllfal2,

n=0

where |- |o denotes the H®"-norm for any n.
Let 0 < 3 < 1 be a given real number. For each p > 0, define

o0

Lo l2p= S (n)"*8|(AP)8 1,3, o € (L?)

n=0
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where ¢ is given as in (2.1). Let

(Ep)s = {v € (L*); ]l ¢ llp,a< o0}

and let (E)s be the projective limit of {(E,)s : p > 0}. Then
(E)p is a nuclear space and we have a Gel'fand triple

(2.2) (B)s C (L?) C (E)j

where (E)} is the topological dual space of (E)s and the norm on
(Ep)j can be checked to be given by

@125 -p= D_ () PUAP)E" £ ]

n=0

This triple is called the Kondratiev-Streit space[7]. If 8 = 0, then
(2.2) is called the Hida-Kubo-Takenaka space and denoted by

(E) C (L?) c (E)".

Furthermore we have the relationship as follows;

(E)s C (B)C (L*)C (E)*C (E)s 0<B<1

Note that (E)g = (F) and (E)g, C (E)s, for any 1 > 5; >
By > 0. Moreover, for any p > 0,

(Ep)s C (Bp) C (L?) C (Bp)* C (Ep)p-

The elements in (E)s and in (E)} are called a test function and
a generalized function, respectively. We denote by « -,- > the
canonical C-bilinear form on (E)j x (E)g. For each & € (E),

there exists a unique sequence {F,}5, F;, € (}E?«'f)@m such that

<&, >=) nl < Fy, fo>,¢ € (Eg,

n=0

where ¢ is given as in (2.1). In this case we use a formal expression
for ® € (E)s:
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o0
&(z) = Z <:z®" . F, >,z € E*, F, € (E¢)®".
n=0

For each £ € E¢, the function ¢¢ € (E)g given by

(2.3)

[o o) an E@n 1
Pe(z) = ngo <@t 2o >=exp(< z,§ > ~3 <&€E>),z € E
is called an ezponential vector. Note that {¢; : { € Ec} spans
a dense subspace of (E)z. The S-transform of ® € (E)j is a

function on E¢ defined by

(2.4) S5®(6) =< ®,¢4¢ >, £€Ec

For the main theorems, we need some propositions.

PROPOSITION 2.1[11]. Let &, € (E)j; and F, = S®,. Then
®,, converges strongly in (E)j if and only if the following condi-
tions are satisfied:

(a) lim,, 00 Fn(€) exists for £ € Ec.

(b) There exist nonnegative constants K, a, and p , independent
of n, such that

|[Fn(O)] < Kexp[al{];}‘g}, neN ¢ e Eg.

PROPOSITION 2.2[11]. Let (M, B, m) be a measure space. Sup-
pose a function ® : M — (S)} satisfies the conditions;

(1)S(®(-))(€) is measurable for any £ € E¢.

(2) There exist nonnegative numbers K, a, and p such that

[ I58@)©ldm() < KesploleF ™), €< Be
Then ® is pettis integrable and for any E € B,

5( /B B (w)dm(u))(€) = /B S®(w)(€)dm(u), € € Ee
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PROPOSITION 2.3[10]. let ® € (E)* andy € E. The trans-
lation ®,(:) = ®(- — y) of ® by y is also in (E)* and S%,(¢) =
S ~-y), € E.

3. Feynman integrals in white noise analysis

Consider a nonrelativistic particle of mass m = 1 moving in R
under the influence of a conservative force given by a potential
V. In quantum mechanics, the state of the particle at time t is
described by a wave function (¢, ) satisfying the Schrodinger
equation:

i

oy 1
Z-ﬁ—t' (—--2°A + V)‘l,b,
’l,b(O, m) = f(z))
where [, |f(z)|*dz = 1. If we let H the Hamiltonian of this par-
ticle, i.e.
H=—1A+7V,
= -3 ,

then we can rewrite it as

%% = —iHy, ¥(0,2) = f(z)

The solution to the Schrodinger equation is given informally by

P(t, z) = exp[—itH]f (z).

According to Feynman[3], the above solution can be written
informally as

(31) ¥(ta) =M / e Jo 9 dui [§ V() £y (1)) D2 (y),
Ce

where the integration is over the path space C, = {y : [0,{] —
Rly(0) = z} and D (y) is a uniform measure on C;, M is a
normalizing constant. Now we can rewrite (3.1) as
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(3.2)

W2y =M [T T s Ve gy ay)e=d o WP auppe(y),

In [2,11,14] they used the white noise theory to give a sense of
(3.2). That is, he regarded the product of the quantities M, D°[y]
and e~ % o ¥(¥)’du 55 3 Gaussian measure on white noise space and
renormalized e*5 /o ¥(¥)*dx  Hence letting y(t) = = — B(t) for
Brownian motion B(t), he rewrote (3.2) by

(3.3)
vit,z) = fs,m)w % Jo Bl duye=t [y Vie= BN f(g — B(u))du(B),

where (S'(R), 1) is a white noise space. The integral in (3.3) can
be interpreted as the evaluation of its integrand, called Feynman
integrand, at the test functional ¢ = 1.

Now we give the definition of Feynman integral in white niose
language as follows[11,14].

Let K be a trace class operator on H such that I + K is invert-
ible and (7 + K)"'K is a continuous linear oprator from E, to
E;. If we take an abstract Wiener space (H, E3) for some p > —,f;,
then for any h € H we have the equality [8]

/' exp[—-—zl- < z,Kz >|du(z) = det(I + K)‘%.

But if K is not in trace class and is symmetric, then we need the
renormalization of exp[— < z, Kz >]. We can define Nexp[—3 <
z,Kz >] by a generalized function in (E)* with SNexp[-3 <
z,Kz >|(€) = exp[—% < &, (I + K)"1KE >].

DEFINITION 3.1. Suppose the Feynman integrand ¢ in (3.3)
is a generalized function in the space (E)} for some 3. Then the
Feynman integral Fy is defined by

Fop =< p,1>= Sp(0)
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where Sy is a S-transform of the distribution ¢ on a white noise
space.

THEOREM 3.2. Let K be a symmetric operator and L be a self-
adjoint trass class operator on Hc. Let (I+K) and (I+K+L) have
the bounded inverses.Let (I + K + L)~ Y(K + L) be a continuous
linear operator from E, to E; for some p,q > 0. Then for h € Hc
the product
(3.5)

1 1
= (Nexp[—§ <z, Kz >])exp[--2— < z,Lz >]expli < z,h >],
is a generalized function in (E)* with its S-transform

SW(E) =det(I + L(I + K)~1)-%exp[——% < &I+ K+ L)~ 1K + L)¢ >]

exp[~% <h,(I+K+ L)y *h>lexpli < §,(I+ K 4+ L)"*h >)

Proof. We define a functional

i oo

==(I;I 1+ak)%)exp 5 gak < x,ex >

exp ——-—Zﬁk<x ex >ZJexpli < z, h >]
k=1

where ay’s and [i’s are eigenvalues of K and L, respectively, and
{ex : k > 0} is an orthonomal basis for H. Note that

n
h_—:z<h,ek>ek+h’
k=1

where b’/ 1 ex for all 1 < k < n. Now We can write ¥,, as follows

mn
1
Vo =[] (1 + ) Fexpl- 5 (ax + Bi) < z,ex >
k=1

+1 < h,ex >< z,ex >]}expli < z,h' >].
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Then we obtain the S-transform
S‘I’n(g) = ‘I"n, ¢£ >
=< Wy exp < 1€ >3 exp[- 3 < £, 5]

_ e 14 o 3 1<ih+& e >2
"{H(1+ak+ﬁk) exp[? 1+ ak + Bk I}

k=1
expl—3 < £, >] expl- || ¥ — i€’ ]

where ¢’ = £ — Z;c':o < §,ex > ex and ¢¢ is an exponential vector
in (2.3). Hence for each ¢ € Eg,

Jlim S, (€) =det( + L(I + K)~*)~%
exp[—w;— <&T+K+L)y YK+ L)E>]
exp[——% <h,(I+K+L)"'h>]

expli <&, (I+ K+ L) 'h >]

But note that for some nonnegative constants M, a, and p inde-
pendent of n,

|S¥A(€)] < Mexplalé|z], ¢ € Ec.

since (I + K)~! and (I + K + L)™! are bounded and so det( +
L(I + K)~1)~#% exists. Hence by Proposition 2.1, ¥, converges
strongly to a generalized function ¥ in (E)*, by which we define
the product in (3.5). The S- transform of ¥ is given by

SU(¢) =det(I + L(I + K)™ 1)~ %
exp[——é— <&EUT+K+ L)Y K + L) >)

exp[--;- <h,(I+K+L)"'h>|
expli <& I+ K+ L) 'h >].
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THEOREM 3.3. Let K and L be operators as in Theorem3.2.
The product
(3.6)

1
= (Nexp[—~-2~ <z,Kz >])exp[-—% <z, Lz >]/ expft < x,h >ldv{h},
H

where v is some countably additive complex measure with finite
absolute variation on H, is a generalized function in (E)* with
the S-transformn

S®(¢) = det(I + L(I'-t— K) )%
expl- < & (I + K+ I)™ (K + )¢ >]
/H expl-3 < h, (I + K + L) >]
expli < &, (I + K + L)~ 'h >)dv(h).

Moreover, the corresponding Feynman integral is given by

F& =det(] + L(I + K)"1)~}% / exp[~% < h,(I + K + L) *h >)dv(h)
H

Proof. Consider ¥ in (3.5) as the function from H to (E)*, i.e
W(h) € (E)* for any h € H. It is checked easily that S(¥(-))(¢) is
measurable for any £ € E¢ and there exist nonnegative numbers
M, a, and p such that

/H |SU(R)(€)|dv(h) < Mexplal€|P), € Ee.

Hence by Proposition 2.2, we know that the integral in (3.6) is a
white noise integral in (E)* in Pettis sense and

S(/ (h)dv(h))(€) = /S\If (&)dv(h), €€ Ec
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In other word,
s8(6)= [ se(h)E©an(e)
H
= /H det(f + L(I + K)*l)—%exp[m;- <&+ K+ L) YK+ L)t >)
exp[-—-;- < hy(I+ K+ L)~ *h >expli < & (I + K + L)~'h >)du(h)
=det(] + L(I + K)*l)'%exp[—-;- <&+ K+ LYY K+ L)E>]
/ exp[»—-% <h,(I+K+L)"'h >expli < §,(I + K + L)"'h >)dv(h)
H
Finally we get the Feynman integral

Fo =det(] + L(I + K)"l)*i / exp[—-% < h,(I+ K+ L) 'h >)dv(h).
H

THEOREM 3.4. Let ® be asin (3.6) and ®,(-) = ®(-+y),y € E.
Then the Feynman integral of ®, is given by

F&, =det(I + LI+ K)~1)~%
exp[—-—%- <y, I+K+L)y"Y K+ L)y >]

/ exp[——-l- <h,(I+K+L)'h>]
H 2
expli <y,(I + K + L) 'h >]dv(h)

and furthermore,

8 = explWAIF (@, - expl< v, >)
or
8, = explslyB1F(@ - exp[~ <y, >)

Proof. By Proposition 2.3 we know that the translation ®, of @
by y € Eisin (E) and S®,(-) = S®(- — y). Hence the Feynman
integral of ®, is given by

Foy = S8,(0) = SB(—y)
=det(I + L(I + K)“l)'%exp[--;- <y,(I+K+L)"YK + L)y >)

/ exp%% <h(I+K+L)"'h>—i<y,(I+ K+ L)"'h >])dv(h).
H
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Note that the product ®¢ = ¢® of a generalized function
® € (E)* and a test function ¢ € (E) is defined uniquely by
the formula

<L P, >=< B, ¢y >, ¢ € (E).

Now we can get

S(@yexp[< y,- >])(€) =K By, exp[< £ +y,- >] > exp{—-;- <§.§ >]
=& Py, exp[< £ +y, - >] > exp[~-21- <é+y.é+y>)
expl— < v,€ >lexpl=3 < 3,y >]
= 58,(6 + y)expl= < v,€ >lexpl- 22

= §®(€)exp[— < y, & >}exp[—-21-iy|3]

Hence it follows that
1
F& = expl5lyBIF(@yexp[< 3, >)
Similary we can obtain

Fo, = em[%lvl%]f(@ -exp[~ < y,- >])
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