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This paper deals with the problem of one-
to-one mapping of 2" task modules of a par-
allel program to an n-dimensional hypercube
multicomputer so as to minimize the total
communication cost during the execution of
the task. The problem of finding an optimal
mapping has been proven to be NP-complete.
First we show that the mapping problem in a
hypercube multicomputer can be transformed
into the problem of finding a set of maximum
cutsets on a given task graph using a graph
modification technique. Then we propose a
repeated mapping scheme, using an existing
graph bipartitioning algorithm, for the effec-
tive mapping of task modules onto the proces-
sors of a hypercube multicomputer. The re-
peated mapping scheme is shown to be highly
effective on a number of test task graphs; it
increasingly outperforms the greedy and re-
cursive mapping algorithms as the number
of processors increases. Our repeated map-
ping scheme is shown to be very effective for
regular graphs, such as hypercube-isomorphic
or ‘almost’ isomorphic graphs and meshes; it
finds optimal mappings on almost all the reg-
ular task graphs considered.



The rapid progress of VLSI and com-
puter networking technologies has made it
possible to develop a variety of multicom-
puters. A hypercube is one of them and
has received considerable attention in re-
cent years due to its regularity for ease of
construction and its potential for high de-
gree of parallelism. An n-dimensional hy-
percube, also known as a binary n-cube, is
a highly concurrent loosely-coupled multi-
computer with 2" processors (nodes). Each
node is located on one of the 2" vertices of
the binary n-cube. A node with its own
processor and memory is connected to its n
neighboring nodes. Hypercube design, per-
formance evaluation, and other related is-
sues have been addressed by numerous re-
searchers [1]-[3]. A few machines based on
the hypercube topology have been built and
experimented, such as the Intel iPSC [4],
NCUBE [5], Caltech/JPL [6], and the Con-

nection machine [7].

In order to run a parallel program on a
hypercube multicomputer, each of its task
modules must be placed at one of the pro-
cessors. The problem of placing the task
modules on the node processors has been
termed as the mapping problem [8]. The
mapping problem is different from the pro-
cessor allocation problem, which attempts
to allocate processing power in an efficient
way without focusing on the communica-
tion structure of the task modules. The

processor allocation problem is similar to

the conventional memory allocation prob-
lem, but the objective is to maximize pro-
cessor utilization. Several processor allo-
cation strategies have been proposed, such
as the Gray-code strategy [9], which is de-
signed for hypercube multicomputers, and
wave scheduling [10], which is for multi-
computers that can be linked together in
the form of a tree. After processor allo-
cation, a mapping procedure should be ap-
plied to handle the structural mismatch be-
tween the task and the hypercube so as to
minimize the interprocessor communication
cost and the execution time.

Many parallel programs are communica-
tion rather than processing limited. Some
fine-grain parallel programs execute as few
as ten instructions in response to a message.
Also, in the task level—where a computa-
tion task is decomposed into a set of com-
municating modules—intermodule traffic,
and hence interprocessor communication
when the modules are assigned to differ-
ent processors, tends to be bursty. To exe-
cute such programs efficiently, the commu-
nication network must be able to handle
heavy concurrent traffic. In this paper, we
consider the problem of mapping a set of
communicating task modules composing a
parallel program onto a hypercube multi-
computer so as to minimize the total in-
terprocessor communication traffic. This
problem, however, has been proven to be
NP-complete [11]. Hence fast heuristic al-
gorithms are used to find good mappings
instead of the optimal ones. A greedy al-
gorithm for the mapping problem in hy-
percubes has been proposed in [12], which



utilizes a graph-oriented strategy to map
a communication graph to the hypercube.
This greedy algorithm performs reasonably
well on certain types of graphs, such as
linear arrays, hypercubes-isomorphic, and
nearly-isomorphic communication graphs,
but not on others. Other researchers [13]
suggested a recursive divide-and-conquer
strategy which performs repeated recursive
bipartitioning of a task graph, based on the
Kernighan-Lin’s mincut bisection heuristic
[14]. In this paper, based on the graph bi-
partitioning heuristic in [15], we propose an
efficient repeated mapping scheme for the ef-
fective mapping of task modules of a par-
allel program onto a hypercube multicom-
puter. The effectiveness of the proposed
algorithm is evaluated by comparing the
quality of mappings obtained with those de-
rived using the greedy and the recursive
mapping algorithms on the same sample
problems.

The approach proposed in this paper
uses the following topological property of
hypercube graphs: by partitioning along
any k dimensions, 1 < k <n, an n-cube is
partitioned into 2% (n —k)-subcubes. A set
of 2" modules are repeatedly bipartitioned,
thus the k-th bipartition determining the
k-th bit of each module’s processor map-
ping. Each bipartition is obtained by ap-
plying a graph partitioning algorithm based
on the heuristic in [15], which has been
shown to be more efficient than Kernighan-
Lin’s heuristic algorithm [14]. After the n-
th bipartitioning, the full binary address for
each module’s processor mapping is deter-
mined. Each k-th bipartition determines

the communication cost imposed on the
k-th dimensional communication links un-
der the resulting mapping. Our repeated
mapping strategy differs from the recur-
sive mapping strategy [13] in that the for-
mer performs each bipartitioning on an ap-
propriately modified graph while the lat-
ter performs bipartitioning recursively on
subgraphs. The shortcoming of the recur-
sive mapping strategy is that even if each
subgraph is optimally bipartitioned, the
mapping problem is not optimally solved.
On the other hand, our repeated mapping
strategy finds an optimal mapping with the
minimum total communication cost by op-
timally bipartitioning at each iteration, i.e.,
minimizing each dimensional communica-
tion cost. The key idea is a graph modifi-
cation technique which makes the resulting
mapping between modules and nodes one-
to-one. Extensive simulation results show
that the repeated mapping strategy pro-
posed in this paper outperforms both the
greedy and recursive mapping strategies.
The paper is organized as follows. In
Section II, we present the system model
and the assumptions used. Our problem
is also formally stated there. Some simple
topological properties of the hypercube are
drived first in Section III. We then present
the cutset formulation which serves as a
framework for the design of efficient heuris-
tics. In Section IV, we describe an efficient
graph partitioning algorithm based on the
heuristic in [15]. We then propose a graph
modification technique which enables the
graph partitioning algorithm to be applied



330 Joo-Man Kim and Cheol-Hoon Lee

successfully to the mapping problem in hy-
percube multicomputers. Experimental re-
sults on a variety of task graphs are shown
and compared with those of the greedy al-
gorithm and the recursive mapping algo-
rithm in Section V. The paper concludes
with Section VI.

Il. PROBLEM STATEMENT

In this section, we formalize the map-
ping problem under consideration and de-
velop the cost function to be minimized. An
n-dimensional hypercube is constructed as
follows. First, the 2" nodes/processors are
labeled by the 2" numbers ranging from 0
to 2" — 1. Then there is a direct communi-
cation link between two nodes if and only
if their binary addresses differ by one and
only one bit. Therefore, n-dimensional hy-
percube multicomputer is composed of 2"
processors {p|0 < k < 2" —1} each with
its own memory, and n2""! bidirectional
communication links since each processor
is connected with their n neighbor proces-
sors. The system is assumed to be homo-
geneous, with all processors being equally
powerful and all communication links hav-
ing the same bandwidth. As in most
existing hypercube multicomputers, inter-
module communications are assumed to be
accomplished via message passing. Each
message is further decomposed into smaller
packets of fixed length. By using a packet
as the unit of communication, the commu-
nication volume between each pair of mod-
ules can be expressed as the number of
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packets to be exchanged between them dur-
ing execution of the task modules.

Let the address of a processor or node
P in the hypercube multicomputer be the
binary representation, k"k"~'-.-k!', of k.
Let dj,; be the Hamming distance between
any two processors p, and p;, i.e., the
minimum number of communication links
to be traversed between p;, and p;. The
hypercube multicomputer under considera-
tion is assumed to possess the e-cube rout-
ing scheme under which a packet is routed
from the source to the destination by mod-
ifying different bits between the address of
the source and that of the destination in a
fixed order, e.g., from the least-significant
bit to the most-significant bit. Thus, each
packet is routed through a fixed shortest
path from the source to the destination.

A task to be executed on an n-cube is
composed of M interacting modules my,
mg, --+, mys and is represented with an
undirected task graph G(V,E) whose ver-
tices V = {m,} represent the task modules,
and edges I/ = {e;;} correspond to the data
communication between the task modules.
The weight of edge e;; between m; and m;,
denoted by W;;, represents the communi-
cation volume (i.e., the number of packets)
required between the two task modules. If
the exact values of W; ;’s are not available,
one can use their estimates, e.g., average or
worst-case values.

When mapping a set of task modules
into an n-dimensional hypercube, one can,
without loss of generality, assume the task
to consist of 2” modules. For a task with



M modules such that 2"' < M < 2" for
some integer n, one can add dummy mod-
ules to make the task consist of 2" mod-
ules. In case of M > 2", a workload par-
titioning scheme can be applied to cluster
modules into groups so that the number of
groups may match the size of the hyper-
cube taking into account the communica-
tion structure between modules. So, we will
henceforce assume M = 2" where n is the
hypercube dimension, and thus, the map-
ping of task modules into hypercube nodes
is one-to-one. This assumption is not unre-
alistic since most parallel programs written
for hypercubes follow this rule, and most
existing hypercube multicomputers do not
support a per-node multi-programming en-
vironment [16].

The module-to-processor mapping is a
one-to-one function X : m; — pp. X (i)
represents the processor onto which task m;
is mapped. Suppose comp(m;) is the com-
putation cost to be incurred for a node to
execute m;. Since a hypercube is homo-
geneous, any mapping will have the same
total computation cost of Zﬁlcomp(mi).
However, a different mapping will lead to
a different communication cost. We define
the communication cost in executing a set
of task modules as the sum of time units
each communication link is used during the
task execution. In other words, the com-
munication cost is a measure of the link
resources used by an instance of task ex-
ecution expressed in time units.

Suppose c(h) is the number of time units

needed to send a packet over a path of h

hops, and the time a link is kept busy for
purposes other than packet transmission—
such as establishing the communication
path—is assumed to be negligible. For hy-
percubes with packet switching, we have
c¢(h) = h-c¢(1). This relation may be less
accurate in case of circuit switching. How-
ever, if the “call request” signal to hunt for
a free path occupies each link only for a
very short time, then this expression would
be a good approximation even for circuit-
switched hypercubes [16]. Since we are
considering the case with heavy concur-
rent traffic, as discussed in [17], cut-through
switching degenerates into packet switching
and hence, will not be discussed here.

. An example task with two mappings to a Q.

Without loss of generality, we define ¢(1)
as the unit of communication cost which
is the link usage by one packet traversing
one link. Then the communication cost re-
sulting from executing a task under map-
ping X becomes COST(X) = >, W;;-
dx(i),x(j), since each packet between m; and
m; should traverse dx(; x(j) links under
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mapping X. For example, in Fig. 1, there
are two different mappings X; and X, of
a four-module task to a 2-cube. The to-
tal communication costs of X; and X, are
50 and 65, respectively. Since the total
computation cost is constant irrespective
of mappings, only the cost of interproces-
sor communication needs to be considered
for mapping tasks. This point differentiates
our work from others’ related to task as-
signment in multicomputers, such as those
in [18]-[20]. However, since the hypercube
is also symmetric, any two mappings X,
and X, will lead to the same communica-
tion cost if X,(1)®x = X3(i), 1 <i< M,
for any m-bit binary number z. We call
such two mappings to be equivalent. The
mapping problem considered in this paper
is the problem of finding a one-to-one map-
ping X, of the task modules into the pro-
cessors with the minimum total communi-
cation cost, i.e.,

COST(X,) = minCOST(X)

— min (Z Wi dx<7:>,X<j>)~

i<j

Il. CUTSET FORMULATION

One can construct an n-cube as follows.
First, its 2" nodes are labeled with the 2"
numbers from 0 to 2" — 1. Then a link be-
tween two nodes is drawn if and only if their
binary numbers differ by one and only one
bit.

Definition 1: An n-cube, @),, is an undi-

rected graph whose node set V), consists of
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2" n-dimensional Boolean vectors, i.e., vec-
tors with binary coordinates 0 or 1, where
two nodes are adjacent whenever they differ
in exactly one coordinate.

Using the definition of an n-cube, one can
partition the n-cube into two (n —1)-cubes
by removing each edge between two nodes
whose i-th coordinates are different. This
will be referred to as partitioning along the
i-th direction. Since there are n bits in each
node address of an n-cube, there are n dif-
ferent ways of partitioning an n-cube into
two (n— 1)-cubes. More generally, by re-
peatedly partitioning along any k different
directions, 1 < k < n, an n-cube is parti-

tioned into 2¥ (n — k)-subcubes.

Definition 2: A cutset C; of a task graph
G(V,E) with |V| = 2" is a set of edges that
separates V; from V; such that V;NV,; = 0,
ViUV =V IV = [Vi| = [V]/2 (=2""),
then C; is called a balanced cutset. The
weight of C;, W(C;), is the total weight of
the edges in the cutset.

Let C be a set of n balanced cutsets,
{Ci]1 <i<n}, of a task graph G(V, E) with
|V|=2". Then C is said to be admissible if,
by k cutsets Cy, Cy, --+, C, in C, 1 <k <n,
the set V is partitioned into 2¥ subsets each
of which contains exactly 2" task mod-
ules. Each admissible set C={C;|1 <i<n}
of a task graph G(V,E) with |V|=2" one-
to-one corresponds to a mapping of the task
modules into the processors of an n-cube.
The weight of C is the total weight of the
cutsets in C, i.e., W(C) = >, W(C)).
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Lemma 1: Let an admissible set C corre-
spond to a mapping X. Then the weight of
C is equal to the total communication cost
of X.

Proof: The total communication cost of the
mapping X is

COST(X) => Wap-dx(w.xp)

a<b

=S W, (zn:X(a)i o X))

a<b

=3 (E W (0 @ x(07))

=1 a<b

=S e
— W(C),

This proves the lemma. O

For example, given a task graph with
23 nodes as in Fig. 2(a), the set C =
{C},C5,C3} shown in Fig. 2(b) is admis-
sible. The corresponding mapping X is
shown in Fig. 2(c) with the total commu-
nication cost of 105 which is equal to the
weight of C, ie., COST(X) = W(Cy) +
W(Cy) + W(C5) = 25 + 40 + 40 = 105.
Note that the weight, W (C;), of each cut-
set C; is equal to the communication cost
on the ¢-th directional communication links,
i.e., the links connecting processors whose
i-th address bit is 0 and those whose i-th ad-
dress bit is 1, under the resulting mapping
X. The above lemma states that the map-
ping problem is equivalent to the problem
of finding a minimum-weight admissible set
C.
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Fig. 2. An admissible set C and its corresponding
mapping X.

IV. MAPPING BY REPEATED
BIPARTITIONING

Lee et al. [15] proposed an effective algo-
rithm for graph partitioning, with an empir-
ically determined time complexity of O(IN?)
where N is the number of nodes in a graph.
They showed that the graph partition-
ing problem with size constraints is trans-
formed into the maz-cut problem without
any size constraint using a graph modifica-
tion technique. A maximum weight cutset
in the modified graph corresponds to a min-

imum weight balanced cutset in the origi-



nal graph. They also presented an efficient
algorithm for the max-cut problem. Their
algorithm has been shown to be highly ef-
ficient even as compared to Kernighan and
Lin’s algorithm [14]. Moreover, it guaran-
tees exactly balanced-partitions when the
nodes of a graph are all of the same size
such as the task graph considered here.
Note that, in this paper, only one-to-one
mappings are considered irrespective of the
size (i.e., execution cost) of each task mod-
ule. The basic bipartitioning algorithm
used here is similar to the algorithm in [15].

We can apply the bipartitioning proce-
dure repeatedly to obtain a balanced N-
way partition of a graph, where N = 2",
by first creating two balanced partitions,
then modifying the graph so as to enable
the next partition to decompose each of
these partitions into two balanced subpar-
titions each, and so on, until N balanced
partitions are created. The basic idea is
to make partial mapping of the task mod-
ules to the processors during these repeated
bipartitioning steps. At level k in this pro-
cess, for each module, the k-th bit of the ad-
dress of its mapped processor is determined.
Equivalently, the bisections at level £ may
be viewed as successively refining the sub-
cube to which a module is to be assigned.
Initially, prior to any partitioning, the en-
tire hypercube is the single subcube under
consideration and each module clearly is to
be assigned within this subcube. The first
bipartitioning of the task graph separates
the modules into two groups, each to be as-
signed to a distinct subcube of size N/2. In

other words, the first bit of the processor to
be assigned to is uniquely determined. The
n-th level bipartitioning determines the full
address of each module’s mapped proces-
sor. The bipartitioning algorithm presented
in this paper guarantees exactly-balanced
partitions by virtue of a graph modification
technique (to be described later). More-
over, the resulting n bipartitions are admis-
sible since, after each k-th level bipartition-
ing, exactly 2" task modules are assigned
to each of 2% (n — k)-cubes. Therefore, af-
ter the final n-th level bipartitioning, each
module is assigned a unique address for its
mapped processor. This means that the re-
sulting mapping is one-to-one.

Let each k-th level bipartition correspond
to a cutset C. Also let the set of modules
of a task graph be partitioned into 2* sub-
sets P,i, P,?, TR P,fk by the k cutsets Cf,
Cy, -+, C} such that P,Ll = Pgifl U Pk?i,
i.e., each of the 2¥~! subsets P/iqjs parti-
tioned by the k—1 cutsets Cy, Cy, ---, C._;
is further partitioned into two subsets P]f’jfl
and P,fi by the next cutset C}. Let all the
modules be initially in P} before any bipar-
titioning, i.e., Pi = V. Then, by definition,
a set C = {C1,Cy,---,C,} is admissible if
|Pl| = |P?| = = |P¥], forall 1 <k <n.
At each k-th level, before bipartitioning, the
task graph G(V,E) is transformed into G},
so as to make the resulting cutsets admis-
sible as follows. For any two nodes m, and
my, of G,

1. if they are not separated by the k—1

cutsets Cp, Cy, -+, Cp_q, (e, my €
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P,f,fl and my € P,Ll for some 7, 1 <
i < 2F1), then modify the weight of
the edge between them to be R—W,,,
where the augmenting factor R is set
to an appropriate positive value such
that R>> " _,
between them in the original graph G,

W, (if there is no edge

then make a new edge with the weight
of R),

2. otherwise, modify the weight of the
edge between them to be —W, .
Lemma 2: Given a graph G and its modified
graph G, let cutset C} (Cj) partition the
nodes of G (G) into two subsets Aj; and

By.. Then,

9k-1

W(Cy) =Y _|AnP || BiNPi_ |- R—W(Cy).

i=1

Proof: Let each of the 2k—1 subsets P,iil’s,
1 <i <21 be partitioned by the cutset
(), such that P,?iil = P,Ll NA; and Pin =
P, N By. Then,

2/\‘71
* p—
wen =33 Y R-Y W,
i=1 m,epFt meP¥ "I’“E‘I’;k
my€By,
2/\‘71

= IR PP - R-W(Cy). O
i=1

Thus, the weight of each cutset C} on a
modified graph G has the information on
both the size of the associated subsets and
the weight of the corresponding cutset on
the original graph G. If each cutset C} is
a maximum-weight cutset on its associated
graph G, then the corresponding cutset Cj,
on G is a minimum-weight admissible cut-
set since all the subsets P,f s, 1<5 < ok
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are of the same size, i.e., Y., |PZ |- |P¥| =
22n=k=1 — constant. This is shown in the
following theorem.

Theorem 1: For a given task graph G(V, F)
with |[V|=2" a set C* = {C}, C5, ---,
Cr} is admissible if each cutset C} is a
maximum-weight cutset on its associated
graphs G7, for 1 <k <n.

Proof: Let each cutset C} correspond to
C;, on G. We prove the admissibility of the
set C* by showing that |P!| = |P? = -
= \P,fk\ for all 1 <k <n. We prove it by
induction on k.

(1) For k =1, the set of task modules P}
is partitioned into P} and P? by cutset Cj.
Suppose that the partition (P!, P?) is not
balanced, i.e., |Pl| # |P?|. Then there ex-
ists another balanced cutset C; (C}) on
G (@) which partitions Py into P} and P}
such that |P}'| = |P?|. Then, |P!|-|P} +1
< |P|-|PY], since |P!|+|PP| = [P +|PF|

= constant. Thus,

W(C)-W(Cr)
= |B|-|PE|-R
~w(Ch) - (1P| P2 R=W(Ch))

> R (W(C)-W(C)) = 0.

The last inequality comes from the inequal-
ity R>>",.,Was. Therefore, W(Cy) >
W(Cy). This is contradictory to the fact
that C] is a maximum cutset. Therefore,
[P =[PEl.

(2) Suppose it holds for k =i —1. Then,
[PLil = [PZy] = - = [P|. Let the

set of task modules be partitioned into
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A; and B; by C’. Suppose it does not
hold for k =+4¢. Then there exists an-
other cutset C(C!) on G*(G) which par-
titions the task modules into A} and B
such that [A/NP/ | = |B/NP/ | = 2"
for all 1 < j <2~!. Then, E?: |A; ﬂPij;l\ .
BiAPL| +1 < ST 1A NPL |- BN
) ‘ i1 . .
P/,|, since (Zj:l [Ain P |+ |B7ZDP¢]71‘)
oi1 . ,
= (14N PL|+ BN PLy|) = con-
stant. Then,
W(C) =W (Cy)
27' 1
=Y AP |- BINPL |- R=W(C))
j=1
27' 1

~(S1AnF |- BAPL | R-W(C))

J=1

>R— (W(Cg) —W(a;)) >0.

Therefore, W(C) > W/(C;). This is con-
tradictory to the fact that C is a maximum
cutset. Therefore, it holds for k = 1. O

Theorem 1 states that the problem of
finding an admissible set of minimum-
weight cutsets can be transformed into the
problem of finding a set of maximum-weight
cutsets, which is called the maz-cut prob-
lem, by using the graph modification tech-
nique proposed in this paper. In other
words, if we transform the mapping prob-
lem into the max-cut problem, we need
not try to keep the resulting partition ad-
missible. Consequently, it is easier to de-
vise a heuristic algorithm for the max-cut
problem than for the original admissible

min-cut problem since the former has only
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Fig. 3. An admissible set C* on the modified graphs
(R = 100).

one objective whereas the latter has two
objectives to optimize. For example, for
the task graph in Fig. 2(a), each modified
graph G7’s with its maximum-weight cut-
set C} is shown in Fig. 3. Note that the
set C* = {C7,C5,C3} is admissible, and
each corresponding cutset Cy, in Fig. 2(b) is
a minimum-weight cutset on its associated
graph.

We are now ready to present a heuris-

tic max-cut algorithm. Let V be the set of



Input: a modified graph G,”
Output: bipartition(4,, B,)
Variables
Part[1..N]: integer;
Gain[1..NV]: real;
State[1..N]: boolean;
History[1..N]: integer;
Temp[1..N]: integer;

1)  construct an initial partition P;
2) fori:=1toNdo

Gainli] :=g(m,);

State[i] :=0;
3) fori:=1toNdo

//initially empty//

//Part[i] = partition block number of m,//
//Gain[i] = g(m,)//

//0 =unused, 1 =used//

//information on previous move operation//
//temporary gain for previous move//

//Part[i] = 1 for all i//

//“unused” //

3.1)  select m, such that g(m,)=max,(Gain[/]) and State[d]=0;

3.2) State[d] :=1
3.3) Part[d] := (Part[d] + 1) mod 2;
3.4)  History[i] :=d;
3.5) Temp[i] :=Gain[d];
3.6) forj:=1to Ndo
if State[j] =1 then continue;
if Part[;] = Part[d]
then Gain[/] :=Gain[j] + 2C;
else Gain[/] :=gain[j] - 2C;
4)  choose ¢ to maximize 7= 3;_, Temp[/];
5) if T>0 then
forj:=t+1to Ndo
h =History][;];
Part[4] := (Part[A] + 1) mod 2;
goto 2);
6) elsedo
for j :=1 to N do
h :=History[/];
Part[4] := (Part[#] + 1) mod 2;

if Part[4] :=0 then A;: = A, U {m,};

else B, := B,U {m,};
end.

/Imy is a candidate element, set ‘used’//
//lone-move//

//save information on one-move//

//save gain of m,//

//recalculate gains of all unused elements//

/fif m; and m, are in the same block,//

//select the best partition P/

//if an improvement is obtained, then//
//lremove elements to make P’/

/Imy, is to be removed//

/lremove//

//start next pass with the partition P //

//if no improvement, then P is locally optimal//
//remove elements to make P//

/Im, is to be removed//

//remove//

//exit with the resulting partition(4,, B,)//

. The algorithm MAXCUT.

nodes of the graph G, obtained from a given
graph GG, with an associated cost matrix
C = (¢jj) where ¢;; is the cost of the edge
between m; and m;. In G}, the problem is
to partition V into two balanced subsets A,
and Bj, such that the weight of the associ-
ated cutset Cp, W(C}) =3, ca,men, Cijs
is maximized, whereas the original problem
in GG is to find a minimum-weight admissible
cutset.

The basic approach is to start with an ar-
bitrary partition and to improve it by iter-
atively choosing one element (task module)
from one set and moving it to the other set.
This is called one-move operation. The ele-
ment to be moved is called a candidate ele-
ment and is chosen so as to obtain a maxi-
mum increase in cutset weight (or minimum
decrease if no increase is possible). The al-
gorithm consists of a series of passes: in
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each pass, one element is moved in turn un-
til all |V| elements have been moved. At
each iteration, the elements to be moved
are chosen from among the ones that have
not yet been moved during the pass. The
|V| partitions produced during the pass are
examined and the one with the maximum
cutset is chosen as the starting partition for
the next pass. These passes will continue
until no increase in cutset weight can be
obtained. This optimization technique is a
simple modification of Kernighan and Lin’s
[14].

Using the one-move operation instead of
pairwise-exchange used in [14] as the basic
mechanism of improving an existing parti-
tion is more suitable for the max-cut prob-
lem because we can consider the balance

constraint in the weight of a cutset.

Definition 3: In some partition A; and By,
a gain is defined for each element as fol-

lows:
g(mn) - } Cai — } Caj, v mg € Aka
m; €Ay m;EDBy,
gmp) = > cj— D cu, ¥V my €By.
m;EDBy, m;EA

An element with the largest gain is se-
lected as a candidate element. After moving
the element, the gains of all the elements
that have not yet been moved during the
pass are recalculated. For example, if m; is
moved from A; to By,

g (mg) = g(my) —2¢,;, for all m, € Ay,

g (my) = g(my) + 2¢y;, for all my, € By.
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The algorithm called MAXCUT for the
max-cut problem is described in Fig. 4. Es-
pecially, the N-tuple implemented in the
form of an array Part[1..N] describes the
current partition. History[l..N] is used to
save the history information on one-move
operations.

For time complexity analysis, we define a
pass to be the operation involved in mak-
ing one cycle from step 2 to step 5 of the
algorithm MAXCUT. The computing time
needed for step 2 is O(N?) since we need
O(N) time to compute the gain of each ele-
ment. Each iteration of step 3 needs O(NV)
computing time because of step 3.6. Thus,
the total time needed for step 3 is O(N?).
The computing time of O(N) is sufficient
for step 4 and 5. Therefore, the total com-
puting time for a pass is O(N?).

CPU time [ms]

| | | | | | | |
0 50 100 150 200 250 300 350 400

N?/100

Fig. 5. Running time of the algorithm MAXCUT.

The number of passes required for the al-
gorithm MAXCUT to terminate is small.
From the experiments on all graphs with up
to 200 vertices, only 2 to 6 passes were re-
quired. From these experiments, we can see

that the number of passes does not strongly



Input: a task graph G = (V, E) with | V| =2" //N=2"//

Output: one-to-one mapping X
Variables
X[1..N][1..n]: boolean;
P[1..N][0..n]: integer;

1) fori:= 1toNdo
Pl[0] := 1;
forj:= 1tondo
X[uT = 05
2) fork:= 1tondo
2.1) fori:= 1 toNdo
forj:= 1toNdo
if P[i][k— 1] = P[j][k— 1]
then C;;:= R - W,
2.2) (44 By := MAXCUT(G,));
23)  fori:= 1to2"" do

)

/IX[i][k] = the k-th bit assignment of m,//
/Im is in PP/

//construct Py//

//initialization//
//make a graph G," from G//

//if in the same subset//
//modify the edge weight//
//find a maxcut on G,”//
//construct 2! subsets//

if m;E4, then P[i][k] =2 XPlillk—1]-1;

else P[i][k] := 2 X P[i][k—1];
2.4) fori:=1to Ndo
if m; &4, then X[i][k] := 0;
else X[i][k] :==1;
end.

//k-th bit assignment//

//exit with the mapping X//

. The algorithm MRM.

depend on the value of N. Running times
are plotted in Fig. 5, which are reasonably
close to N2.

The mapping algorithm, termed Map-
ping by Repeated Maxcut (MRM), is shown
in Fig. 6. Repeated bipartitioning is per-
formed, using procedure MAXCUT. After
each bipartitioning step, one bit is set for
each modules’s mapped processor, accord-
ing to the outcome of the partition. Algo-
rithm MRM comprises three phases. The
first phase (step 2.1) modifies the graph
G to G} so as to make the next parti-
tion (A, By) admissible. The second phase
(step 2.2) performs the bipartitioning using
the algorithm MAXCUT, which is the most
time-consuming procedure. The last phase

(step 2.3 and 2.4) constructs 2* subsets, and

assigns each task module the k-th address
bit for its processor mapping according to
the partition obtained during phase 2. The
time complexity of MRM is O(nN?), be-
cause of n iterations of the procedure MAX-
CUT.

Theorem 2: For a given task graph G(V, F)
with |[V[=2", the set C* = {C}[1 <k <n}
found by Algorithm MRM on the modified
graphs G} ’s is admissible, i.e., the resulting
mapping X is one-to-one.

Proof: We prove the admissibility of the
set C* by showing that |P!| = |P?| = ---
= \P,?k\ for all 1 <k <n. We prove it by
induction on k.

(1) For k=1, the set of task modules is

partitioned into P} and P? by the cutset
C} found by Algorithm MAXCUT. Then,
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the gain of each element under the parti-
tion (P, P}) must be nonpositive, because
if there is any element with a positive gain,
the partition (P}, P?) must be transformed
into another partition. Without loss of gen-
erality, we can assume that the partition
(P}, P?) is not balanced, i.e., |Pl| # |P2|.
Then || Pl|—|P?|| > 2 because | P}|+|P?| =
2". Assume |P!| > |P}|+2. Let W, ; be the
original edge cost between any two modules
m; and m; in G. Then, for each element m,
in P!, the gain g(m,) is

g(ma) = Y cui— Y Cuj
m;€P] m;€P?
-3 W)

= ((PlI-1)-R
mveP

S GIREDINA

) 2
m;jE Py

EL

m; €P11 m; EP1

In other words, when the partition (P}, P?)
is not balanced and | P}| > | PZ|, then all the
elements in P} have a positive gain. This
is a contradiction. Therefore, (P, P?) is a
balanced partition, i.e., |P!| = |P2|.

(2) Suppose that it holds for k =i — 1.
Then, |PL,| = |P%,| = = ‘PZQ—T‘ Let
the set of task modules is partitioned into
A; and B; by O such that A,NP/ | =
P’ Vand B;NP/ | = PY, for 1 <j <21,
For the same reason in (1), the gain of
each element must be nonnegative. Sup-
pose that it does not hold for & =i. This
means that there exists at least one j, 1 <
j <271 such that |Pi2j71\ #+ |PZ2]| Then
[P~ = |PY|| = 2 because [PY |+ [P

(3

= |PZJ71‘ = 21"l Assume |Pl.2j’1‘ > ‘Pi?j‘ +9.

ETRI Journal, volume 20, number 4, December 1998

Then, for each element m, in Pf] !

gain g(m,) is

g(ma) = Z Cap — Z Cac

myEA; m.€B;

- ((\P2J Y

the

R-Y" Wnb)

myEA;
_ <|P7:2j|'R_ Z WM)
me.EB;
- ( Z Wa,b - Z Wa,c)
myE€A; m.EB;

> 0.

This is a contradiction. Therefore, the con-
dition for admissibility is satisfied for k =1.
Thus, it holds for all £ by the principle of

induction. O

V. EXPERIMENTAL RESULTS

To evaluate the performance of Algo-
rithm MRM, two simulation experiments
were performed on a variety of task graphs,
random and regular graphs, and the re-
sults of MRM were compared with those
of the greedy and the recursive mapping
algorithms. The first experiment was per-
formed for three types of random graphs:
sparse, normal, and dense graphs. Sparse,
normal, and dense random graphs are de-
fined as graphs with the number of edges
2N(N—1)/14,3N(N—1)/14, and 4N (N —
1)/14, respectively. For each type, the
weights of edges were determined randomly
within its range, i.e., the weights of edges
for range-k graphs were picked randomly
from the interval 1 to k. For each case, 100
runs were performed. The average cost of
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Table 1. Results for random task graphs on 3-cubes (N =38).

graph ange random greedy recursive MRM optimal
type avg. std. avg. std. avg. std. avg. std. avg. std.
1 13.36 4.69 10.30 4.02 9.12 3.48 8.82 3.34 8.66 3.26
sparse 5 43.44 | 15.94 33.06 | 14.06 29.40 | 12.09 29.06 | 11.71 28.30 | 11.49
10 82.39 | 30.55 56.82 | 25.78 51.86 | 22.93 51.28 | 23.06 49.76 | 22.29
1 25.08 5.23 22.22 5.71 20.12 5.20 19.56 4.95 19.26 4.86
normal 5 70.95 | 18.24 58.33 | 16.52 53.92 | 13.62 53.12 | 13.34 51.90 | 13.14
10 | 124.65 | 35.48 | 106.06 | 34.08 94.74 | 29.00 93.90 | 28.44 91.64 | 28.45
1 33.28 4.88 31.12 5.31 28.76 4.54 28.40 4.43 28.22 4.55
dense 5 | 101.14 | 18.58 88.12 | 14.78 82.24 | 13.70 81.30 | 13.39 79.82 | 12.91
10 | 178.33 | 32.90 | 163.08 | 32.03 | 153.86 | 29.84 | 151.72 | 29.02 | 149.70 | 29.61
the mappings and the standard deviation cases. The MRM algorithm generated

of the costs are both recorded for each test
case. For each case, the cost of randomly-
generated mappings is also recorded, to
provide a basis for comparing the mappings
obtained by the greedy, the recursive map-
ping, and the MRM algorithms.

Table 1 summarizes the results obtained
for 3-dimensional random task graphs,
where optimal solutions were obtained us-
ing a simple exhaustive search algorithm.
All of the three methods generated map-
pings that were significantly superior to
randomly-generated mappings. The map-
pings generated by the recursive map-
ping algorithm were generally slightly bet-
ter than those by the greedy algorithm.
Among them, the mappings generated by
the MRM algorithm were the best for all

nearly-optimal mappings for 3-dimensional
task graphs. For n-dimensional task
graphs, the results are shown in Tables
2—3, for n =06, and 10, respectively. We do
not know the optimal mapping for n > 3,
since it is impratical to search for an op-
(Even a 4-

dimensional task graph already has 16!,

timal mapping exhaustively.

about 2 x 10", ways to map.) From these
results, one can see that the MRM algo-
rithm increasingly outperforms the greedy
and the recursive mapping algorithms as
the value n increases.

The second experiment was performed
for some regular 10-dimensional graphs by
setting the weight of each edge to one in
order to evaluate the performance of each
algorithm with clarity. First, we establish
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Table 2. Results for random graphs on 6-cubes (N = 64).

graph random greedy recursive MRM
type ranse avg. std. avg. std. avg. std. avg. std.
1 1952 63.64 1794 66.80 1516 58.98 1449 56.86
sparse 5 5866 240.72 5128 240.18 4397 205.10 4260 199.23
10 11154 446.02 9335 449.17 7997 382.48 7733 371.81
1 3176 69.96 3040 72.22 2710 64.96 2552 66.81
normal 5 9381 252.27 8850 284.58 7875 240.50 7593 243.69
10 17594 507.10 16179 503.35 14458 474.63 13982 463.13
1 4353 66.75 4277 66.92 3968 68.38 3889 67.21
dense 5 13211 289.84 12615 301.65 11581 276.18 10982 272.01
10 24101 554.89 23051 562.27 21141 539.34 20167 535.88

Table 3. Results for random graphs on 10-cubes (INV = 1024). All data are downscaled to 1/1000.

graph random greedy recursive MRM
type ranse avg. std. avg. std. avg. std. avg. std.
1 786 1.60 765 1.67 745 1.41 737 1.52
sparse 5 2357 5.22 2328 5.20 2218 5.18 2192 4.83
10 4719 14.21 4701 15.34 4439 13.17 4387 13.14
1 1310 2.15 1299 2.22 1267 2.38 1258 2.33
normal 5 3933 6.69 3924 6.37 3773 5.85 3742 5.79
10 7177 16.15 6785 17.18 5943 16.34 5830 16.32
1 1867 1.67 1802 1.71 1675 1.63 1637 1.62
dense 5 5583 6.29 5282 6.42 4860 6.98 4735 6.60
10 10179 17.65 9692 19.20 8719 18.58 8594 18.25

a task graph Gy which is exactly isomor-
phic to a hypercube. Obviously, the op-
timal mapping cost C, for Gy is equal to
the number of edges of the hypercube, i.e.,
C, = (NlogN)/2. Then we add a random
edge to Gy and calculate the distance d
when this edge is mapped to a hypercube.
Since an edge is added, the new cost C,

is equal to the old C,+d. We may keep

adding edges to G and update C,. When
a very few edges are added, C, is the op-
timal cost. But, when a large number of
edges are added, the C,-based solution may
not always be optimal. However, C, is not
going to be too bad as compared to the
real optimal cost. To evaluate the mapping
performance of the algorithm with graphs
which are subgraph-isomorphic to a hyper-
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Table 4. Results for regular graphs on 10-cubes (N = 1024).

graph random greedy recursive MRM optimal
type avg. std. avg. std. avg. std. avg. std. avg. std.
hypercube 25652 110.92 17116 0.00 5120 0.00 5120 0.00 5120 0.00
SUB1 25645 135.50 17112 0.97 5119 0.00 5119 0.00 5119 0.00
SUB2 25653 116.61 17109 191.36 5118 0.00 5118 0.00 5118 0.00
ADD1 25647 138.79 17121 1.55 5125 1.64 5125 1.64 5125 1.64
ADD2 25589 105.92 17150 105.12 5133 3.63 5133 3.63 5133 3.63
mesh 9911 51.35 4562 0.00 2712 0.00 1984 0.00 1984 0.00

cube, we subtract edges from Gy and cal-
culate the total distance d of the subtracted
edges. In this case, C, —d is guaranteed to

be optimal.

We simulated adding or subtracting ex-
actly one or two edges to hypercube-
isomorphic graphs and recorded the map-
ping results. We also performed simula-
tions on regular meshes. A 213) x 231 mesh
was used as an n-dimensional mesh, which
is subgraph-isomorphic to an n-cube. Ob-
viously, the optimal cost for a 23} x 2[%]
mesh is (215) —1)2[51 4 21512151 —1). The
results are summarized in Tables 6—10. As
can be seen in the table, the mappings gen-
erated by the recursive mapping or MRM
algorithms were much better than those by
the greedy algorithm for ADD1, ADD2, or
meshes. The recursive mapping algorithm
found optimal solutions for all the regular
graphs except meshes. On the other hand,
the mappings generated by the MRM al-

gorithm were optimal for all the regular

graphs tested.

VI. CONCLUDING REMARKS

In this paper, we have presented an ef-
ficient approach for the problem of one-to-
one mapping of task modules of a parallel
program into the processors of a hypercube
with the objective of minimizing the total
communication cost. The proposed MRM
algorithm was based on a repeated bipar-
titioning strategy. We proposed a cutset
formulation which transforms the hyper-
cube mapping problem into the problem of
finding a minimum-weight admissible set of
cutsets on a given task graph. An efficient
graph bipartitioning algorithm has been de-
veloped, which guarantees exactly-balanced
partitions. This bipartitioning algorithm

was applied successfully to the mapping
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problem in hypercube multicomputers by
using a graph modification technique.

To evaluate the performance of the MRM
algorithm, we have performed a number of
experiments for random and regular task
graphs. Experimental results indicate that
the MRM algorithm performs well on both
The MRM
algorithm is shown to increasingly outper-

random and regular graphs.

form the greedy and recursive mapping al-
gorithms as the number of processors in-
creases. In real problems, task graphs are
often regular or contain some known struc-
The MRM algorithm is shown to

be quite effective even for regular graphs,

tures.

such as hypercube-isomorphic or ‘almost’
isomorphic graphs and meshes.

There are several related issues that war-
rant further investigation. The cost func-
tion presented here addresses only inter-
processor communication. It needs to be
changed so as to achieve other goals such
as good load balancing, a small response
time for the task, and efficient utilization
of system resources in general. The simpli-
fied parallel execution model here does not
take into account the precedence relation-
ships between task modules, nor the time-
dependent task behavior. It is interesting
to extend our results by increasing the com-
plexity of the model to include such factors.
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