Specification of Communication Services for

Multimedia Cooperative Applications
Based on the Reference Model of ODP

. INTRODUCTION

. ANALYSIS OF MULTIMEDIA
COOPERATIVE APPLICATIONS

[1l. EVALUATION OF DISTRIBUTED
ARCHITECTURES

IV. SPECIFICATION OF
COMMUNICATION SERVICES

V. CONCLUSION
REFERENCES

Jong-Hwa Yi and Encarna Pastor

Between a wide range of distributed applica-
tions, this work is particularly focused on those
applications which allow a group of persons,
who are geographically distributed, to interact
and cooperate exchanging different kind of in-
formation in order to realize group activities in
a common work environment. In this paper,
we realized a study of this kind of applications
to identify general and functional characteris-
tics which will then enable us to determine
their communication requirements. Also, we
analyzed the existent support architectures to
examine whether they support multimedia co-
operative applications. Based on the results
of analysis, we proposed a set of communica-
tion functions needed additionally to support
these applications, using the ODP(Open Dis-
tributed Processing) modelling concepts, rules
and viewpoints as our global design method-

ology.

150 Jong-Hwa Yi and Encarna Pastor

I. INTRODUCTION

Distributed application development
needs support environments or platforms
which offer a set of facilities to cover the
different requirements of various types of
applications. Evidently, if the development
is to make use of more advanced technol-
ogy, for example, the creation of a com-
mon cooperative work environment for a
group of persons, the use of distinct types
of information such as text, graphic image,
audio and video, etc., this support must
be even more complete and flexible. This
trend means that such environments must
not only understand the different applica-
tion needs but also be capable of adapting
to rapidly changing user needs and be able
to take advantage of the benefits of techno-

logical evolution.

Within the field of distributed process-
ing, the possible application areas are al-
most unlimited, since there are no limita-
tions on the creation of new application in
accordance with the specific organization or
user needs. Since the functional require-
ments of distributed applications are varied
and very different, truly useful support ar-
chitectures must be capable of providing a
set of suitable facilities to cover their re-
quirements. In this way, the applications
need only to express the level of support re-
quired and do not need to concerned with

how this support is to be obtained.

Between a wide of variety of distributed

applications, in this work, we consider par-

ETRI Journal, volume 20, number 2, June 1998

ticularly those applications which support
the cooperative activities between a group
of persons and additionally want to use
different kind of information such as text,
graphic image, audio and video. The ap-
plications which demand these characteris-
tics have been studied in CSCW (Computer
Supported Cooperative Work) area. The
objective of CSCW is to solve the needs
and problems presented when a group of
persons wants to work or cooperate be-
tween them. In CSCW area, we investigate
exclusively on what technological solutions
are needed for the development of coopera-
tive applications in the underlying support
architecture. We consider the standards
for Open Distributed Processing (ODP) as
an appropriate architecture which can sup-
port the development of cooperative appli-
cations. From the CSCW viewpoint, this
kind of applications can obtain open solu-
tions for their technological support based
on the generic architecture proposed by
ODP. From the ODP viewpoint, its archi-
tecture can understand requirements of new
field of applications, in this case multimedia
cooperative applications, and include addi-
tionally a number of useful facilities in its
architecture. In this mode, the scope of
ODP standardization will be extended with
aim to support a wide range of distributed

applications.

The standardization organizations ISO
and ITU-T have cooperated in the defini-
tion of the Reference Model of ODP (RM-
ODP). As mentioned above, the objective

ETRI Journal, volume 20, number 2, June 1998

of ODP is to define a common architec-
ture which supports the specification and
development of systems and applications
in distributed and heterogeneous environ-
ments. In parallel of the standardization
effort of these organizations, several univer-
sities and industrial organizations have car-
ried out numerous research projects, from
which have resulted de facto standards and
support the implemented platforms which

help the application development.
On the other hand, in CSCW area there

is an increasing demand for research and
development of collaborative applications.
One of the projects in which we partic-
ipated, concretely in education field, is
the CO-LEARN (Collaborative Learning)
project in the DELTA Programme of the
European Commission. It started in 1992
and had a duration of three years. The
main aim of this project was to develop
an operational telematic environment which
can support educational collaboration be-
tween users such as tutors, teachers, col-
leagues at work and learners [36], where our
task was focused on the provision of com-
munication services needed to support dif-

ferent kind of collaborative interaction.

When we were working on this project,
some of the main difficulties we faced were
the lack of a generic platform which offers
the interoperability and portability of the
developed applications, and the lack of sta-
ble technologies to support different types
of group interaction. These technical rea-

sons have represented an important moti-

Jong-Hwa Yi and Encarna Pastor 151

vation to initiate a theoretical investigation
on communication support for cooperative
applications in a framework proposed by
the reference model for ODP which guar-
antees the interoperability and portability,
and provides a set of necessary functions to
build distributed applications.

This paper is organized as follows.
Firstly, we analyzed a set of general charac-
teristics of multimedia cooperative applica-
tions in order to determine their communi-
cation requirements which must be covered
by a support architecture. Secondly, we
examined various existent architectures to
evaluate whether they support the commu-
nication requirements identified in the pre-
vious step. Finally, based on the results of
this evaluation, we specified a series of com-
munication functions needed to support the
development of multimedia cooperative ap-

plications in ODP environment.

Il. ANALYSIS OF MULTIMEDIA
COOPERATIVE APPLICATIONS

We have studied in detail and from a
general application view point on different
application areas with the aim of under-
standing its functional and technological re-
quirements which should be covered by the
support environment [3]. In order to ac-
complish this, we analyze general charac-
teristics arising in the field of multimedia
cooperative applications and then identify

communication requirements derived from

152 Jong-Hwa Yi and Encarna Pastor

ETRI Journal, Volume 20, Number 2, June 1998

Table 1. Classification of CSCW Applications.

local

Geographical
Distribution

remote

Collaboration Time

same time

different time

room meeting

group scheduler,
white board, efc.

teleconferencing
cooperative learning,
teleworking, etc.

mailing,
asynchronous multiuser
editing, efc.

1. General Characteristics

Between a wide range of distributed ap-
plications, we consider in particular those ap-
plications which intent to solve the needs and
problems presented when a group of persons
wants to work or collaborate between them,
and which wants to use different types of
information. Considering this kind of ap-
plications which currently have significant
importance and which have attractive char-
acteristics both from the general user view
point as well as from the view point of this
work, the following characteristics and re-

quirements were identified:

e Distribution and Collaboration: In the
literature there are various concepts and
taxonomies used in the classification of
CSCW applications [7], [14]. One of
the most general definitions is based on
the geographical distribution of the par-
ticipants and the forms of interaction be-
tween them. According to this definition,

the group members can participate with
different mode, depending on the mem-
ber work site (local or remote) and on the
cooperation time (synchronous or asyn-
chronous mode).

Table 1 shows the classification of
CSCW applications in four categories in-
dicating some possible applications. This
classification has two important conse-
quences. Firstly, these applications need
to support different types of interac-
tions/relationships that a group of indi-
viduals establishes in order to carry out
certain cooperative activities [5]. Sec-
ondly, the most work environments of the
group members are typically distributed
and therefore the members must cooper-
ate through the communication networks
to which they are connected. In the lat-
ter case, the communication support must
have the capability to offer different forms
of interaction, as well as the capability to
offer useful services with the guarantee of
some required level of quality.

e Use of different types of information:

This is one of the requirements of those
users and organizations are currently
showing the most interest for their work
environments. Different types of infor-
mation used in a distributed applica-
tion impose strong requirements with
respect to the support systems, leading
to the need for different levels of sup-
port technology such as storage capac-
ity, synchronization mechanisms and
communication capacity [9], [31].
With respect to the communication ca-
pacity, continuous media such as audio
and video require principally the use
of high speed/performance networks.
These networks must be capable of sup-
porting sufficient bandwidths for the
transmission rates required by each me-
dia type and quality of services ex-
pressed by the application which use the
continuous media [32].

e Support for high interaction: Each ap-
plication could be needed a different
grade of interactions among its users,
however, we can also consider those ap-
plications which require operations or
interactions in a relatively short space
of time, such as applications which sup-
port highly-interactive cooperative ac-
tivities, which handle continuous me-
dia or systems/applications for one-line
transactions. Consequently, a method
which permits the specification of re-
quirements in function of the quality of
service is needed and for this purpose
the QoS parameters are normally used
(7], 29], [30].

e Distribution Transparencies: In a dis-
tributed environment, there is a need
for mechanisms which hide distribution
properties, in order to the application
designers only need to express the kind
of transparency required, without wor-
rying about how to obtain these trans-
parencies. The distribution transparen-
cies may be selective [1], [2], [10]. Tt
means that the designer can select the
grade and type of necessary transparen-
cies depending on the application, since
a given application will usually require
only some of the distribution aspects
rather than all of them.

2. Communication Requirements

The different application requirements
should be covered in a transparent manner
by a collection of facilities offered by the
support environment, that is, by ODP sys-
tems which guarantee the provision of the
support functions at different levels such as
at the level of architecture, storage, pro-
cessing, communication protocols and net-
works, development tools, etc. [1], [3], [7].
Among these, we concentrate exclusively on
analyzing the communication support.

In the following we summarize the differ-
ent types of communication requirements
which are derived from the general charac-

teristics identified in the previous section.

1) Support for Group Interaction: Dif-
ferent types of communication ser-

vices enabling distinct forms of inter-

action (synchronous or asynchronous)
and interaction styles (between mem-
bers within a group, one person to
group, group to group) are required. If
the interaction styles are one person to
group or group to group, a group in-
vocation mechanism could be used [12].
The group invocation involves only one
operation which is carried out simulta-
neously on a collection of group mem-
bers. In principle, there is no difference
between the group invocation scheme
and the individual invocation scheme.
A group invocation may have either the
interrogation or the announcement se-
mantics of the client and server model.
2) Group Members Management: A
group is formed by various members
and their behaviors are dynamic. It
means that a new member wishes to
join the group, a current member wants
to leave the group, a member can be
registered in various groups, a member
can participate in different group inter-
actions at the same time, etc. [6]. For
this reason, the dynamic management
of the group, which verifies that the
members behave correctly according to
the established rules and policies of the
group, is needed.

3) Group Communication: Since the in-
teractions involve a set of group mem-
bers, group communication support is
required. Such support permits the con-

nection establishment between different

members with different styles (1:1, 1:M,
N:1 and N:M) and facilitates the si-
multaneous exchange of information be-
tween them. In this case, the informa-
tion exchange should provide different
transmission mode such as unicast, mul-
ticast and broadcast. One important
function in group communication is the
dynamic connection management, since
the behavior of the group members can
be changed dynamically where a new
connection must be established or a cur-
rent one must be released continuously
[15].

4) QoS Guarantees: From the applica-

tion view point, it is not sufficient to
provide the services required, it is also
necessary to guarantee certain levels of
service quality required by the appli-
cation. For this reason, this is one of
the most important requirements to de-
mand of the communication-level sup-
port [9], [29], [30]. With respect to this
requirement, a set of functions is needed
to respond to quality demands of appli-
cations.

e Specification. A set of flexible QoS
parameters should be defined to
that each application can express its
level of quality service needed us-
ing these parameters, for examples,
throughput, end to end delay, trans-
mission delay, error rate, priority,
jitter, latency, etc.

e Negotiation. The level of QoS spec-

ETRI Journal, volume 20, number 2, June 1998

ified by the application must be ne-
gotiated between parties which will
be connected. This negotiation oc-
curs in the moment of the establish-
ment of connection and the values
agreed between them will be main-
tained from the connection estab-
lishment to the connection release.
e Renegotiation. In some cases the
application needs to change the pre-
viously defined QoS level. For this,
a function which enables the appli-
cation to modify the condition of
QoS is needed during the connection
is active.
Notification.
These functions are to check
whether the level of QoS estab-

lished is maintained or not, to

e Monitoring and

notify some errors occurred in
communication subsystem or to
notify the modification of the QoS
parameters and its values.

5) Multimedia data transmission: Audio
and video data are continuous media.
This is since these media can be con-
sidered as a series of frames of finite
size which are generated, transmitted
and received in fixed time intervals, so
that these time intervals must never be
exceeded [33]. With the aim of sup-
porting the transmission of multimedia
data, the provision of a flexible range of

qualities of service is important.

Jong-Hwa Yi and Encarna Pastor 155

I1l. EVALUATION OF
DISTRIBUTED
ARCHITECTURES

Architectures that provide a framework
for the specification of systems and appli-
cations and some implemented platforms
which facilitate the distributed application
development are available. However, these
architectures and platforms have been inde-
pendently defined in accordance with poli-
cies and interests, and using the in-house
technology of each of the industrial organi-
zations in which they originated. In conse-
quence, in addition to the ODP Reference
Model carried out by ISO and ITU-T, nu-
merous de facto standards such as ANSA,
TINA, CORBA exist in the distributed pro-
cessing area [1], [2], [3], [16], [22], [28].

In recognition of the different communi-
cation requirements of applications identi-
fied in the previous section, the objective
of this section consists of the evaluation
whether the currently available support ar-
chitectures satisfy them, indicating where
they meet these requirements and their lim-
itations with respect to them.

1. Reference Model of ODP

Thanks to the standardization effort car-
ried out by the standardization organiza-
tions, ISO and ITU-T, the de jure stan-
dard is available, the RM-ODP, which
defines a consistent and common sup-
port architecture. It introduces view-
points for the design of distributed sys-

tems and applications, each with an

associated viewpoint language which ex-
presses concepts and rules relevant to a par-
ticular set of concerns [1], [8].

To support different interaction types
between objects, the computational model
defines several interface types: operational,
stream and signal interfaces. It indicates
that application objects which want to use
audio or video data can specify stream
interfaces to handle or interchange this
kind of information. All interactions be-
tween computational objects are only pos-
sible when their interfaces are bound. Bind-
ings between objects may be established
with or without a binding object which pro-
vides links between computational objects
with a set of communication support func-
tionality. Each application can configure
a binding object depending on its require-
ments such as link type, number of objects
which participate in the interaction, infor-
mation types, QoS, etc. In this model, the
compound binding is also introduced for in-
teractions between more than two objects
where a group interaction of objects can be
specified using this concept [2].

The engineering model specifies services
and mechanisms necessary to support the
computational model. In this model, vari-
ous engineering objects which support dis-
tribution functions required in a distributed
One of them
is channel which supports distribution-

environment are defined.

transparent communication services and
Different
kinds of channel can be configured to sup-

mechanism between objects.

port a specific interaction type defined

in a binding object in the computational
model. The RM-ODP considers three chan-
nel types to be fundamental: a channel for
operation execution between a client and
server object (operational), a channel for
group interaction and a channel for stream
interaction [4].

In general, the RM-ODP considers the
issues of the group interactions and the han-
dling of different types of information as
previously mentioned. However, this ref-
erence model does not address the abstrac-
tion concepts needed to satisfactorily model
these issues. Some extensions for support-
ing group interactions and the handling of
streams are studied and proposed [1], [4],
but these extensions proposed do not com-
pleted to respond to the communication re-
quirements analyzed in the previous sec-

tion.

2. ANSA

ANSA (Advanced Networked System
Architecture) originated in a project within
the UK Alvey Information Technology Pro-
gramme, after that APM (Architecture
Projects Management Ltd.) took over the
ANSA work. It is a generic architecture
which supports the design and implemen-
tation of systems and applications in dis-
tributed and heterogeneous environments
[10], [13]. The ANSA work was served as a
significant input for the development of the
RM-ODP, so these two architectures share
the basic concepts and architectural princi-

ples.

ETRI Journal, volume 20, number 2, June 1998

The concept of group introduced in
ANSA is a well-known concept used in a
wide variety of distributed systems in or-
der to obtain improved service availability,
efficiency through parallelism, fault toler-
ance, etc. In this context, a group is formed
by a set of server objects, each one per-
forms exactly the same service in paral-
lel. A group is defined as an object with
two interfaces: group service interface and
group control interface. An invocation on
the group’s service interface will be carried
out on all the interfaces of the active group
members. The group control interface can
be used to define operations to manage and
configure the group behavior [11]. In this
context, this concept can be used to present
a group which is formed by a number of par-
ticipants. Each participant can send to or
receive from messages via a group service
interface and the behavior of each partici-
pant could be controlled via a control inter-
face. However, in this case, each participant
is presented as an object which has dynamic
behavior. It means that the dynamic man-
agement of participants is important issue
to consider for the group interaction, be-
cause a new participant wishes to join the
group, a current participant wants to leave
the group, a participant can be registered in
various groups at the same time, etc [15].

In addition of the REX (Remote Ex-
ecution) protocol, ANSA offers the GEX
(Group Execution) protocol to support
group communication. If a client invokes

a group interface, GEX creates a group

Jong-Hwa Yi and Encarna Pastor 157

session, establishing point-to-point connec-
tions between a number of servers using the
REX protocol.

In order to support applications which
handle continuous media types, some ex-
tensions have been made to ANSA and its
platform named ANSAware [34]. The ap-
proach taken in these extensions for multi-
media is to add functionality in the form of
low level multimedia base services, such as
streams connections between a set of me-
dia sources and a set of media sinks, mul-
timedia devices and chains, and a group of
sources endpoints and a group of sink end-
points. The current APM research activi-
ties consist on the design and development
of new concepts and mechanisms to sup-
port a generic distributed real-time com-
puting environment, investigating strongly
real-time requirements driven by continu-

ous media such as audio and video data [35].

3. TINA

Telecommunications Information Net-
working Architecture (TINA) is a reference
model based on the RM-ODP which covers
the telecommunication domain [22]. This
architecture defines a Distributed Process-
ing Environment (DPE); a homogeneous
infrastructure which marks the complexity
and heterogeneity existent in sub-networks
and distributed resources [24].

Like the RM-ODP, TINA defines five
viewpoints adopting the same concepts and
specification languages for distributed sys-

tems and applications. The interaction

model of this architecture introduces dis-
tinct interface types. The operational in-
terfaces in which objects interact by in-
voking operations and sending responses,
and the stream interface in which objects
interact by exchanging stream flows are
defined [23]. Also the concepts of binding
object in the computational model and of
channel in the engineering model are in-
cluded. As previously mentioned in Sec-
tion 1, some new concepts and functionality
must be extended to support group interac-
tion and stream handling. Some detailed is-
sues that TINA Consortium has identified
as further studies are the presentation of
characteristics of continuous media and the
invocation method in the stream interface,
specification of binding objects for group
communication, functionality of group and
stream channels, etc.

In addition to the global architecture
TINA, four sub-architectures: Service Ar-
chitecture, Network Resource Architecture,
Management Architecture and Computing
Architecture are specified. Among them,
the first and second architectures define a
set of useful objects which offer session or
communication services needed to develop
telecommunication applications. In partic-
ular, the purpose of SSM (Session Service
Manager) and CSM (Communication Ser-
vice Manager) objects is to maintain and
control established sessions, and to provide
a set of communication services for that
application objects can interact exchanging
stream flows between them [25]. CSM is

considered as one class of binding objects
specified by TINA architecture to support
group and stream interaction. However, the
specification of binding objects and chan-
nels which offer suitable services and mech-
anisms to cover a variety of application
communication requirements must be stud-

ied and proposed.

4. CORBA

The Object
(OMG), which is an industry consor-

Management Group
tium dedicated to creating standards in
object-oriented environments, has specified
Common Object Request Broker Architec-
ture (CORBA) which is composed of four
main constituents: Application Objects,
Common Facilities, Object Request Broker
and Object Services [16], [17], [18], [27].
CORBA is an architecture which provides
a minimum set of services and tools for the
distributed application development.

The standardization activities of the
OMG which have carried out so far deal
mainly with the overall architecture, the
Object Request Broker and the Object Ser-
vices. In consequence, there are already
standards published in this area and the
current standardization is focused on the
Common Fucilities, which is the level that
most application designers will use. From
the general application of view, the services
actually defined in the Common Fucilities
are lower-level services and are not sufficient
to cover the majority of distributed appli-

cation requirements, and in particular those

requirements are discussed in this paper are
not covered. It is because CORBA is fo-
cused on, in particular, application areas
such as finance, medicine, manufacturing,
etc. However, we expect that other sup-
port services which are additionally needed
for other distributed applications can be
added and implemented on this global ar-
Also, the OMG group gen-
erated various Requests For Information
(RFIs) and Requests For Proposals (RFPs)
for the CORBA components in order to
study and analyze new services, mainly in

chitecture.

areas where industry consensus already ex-
ists. In this mode, this group can extend
their standardization scope and in conse-
quence CORBA can offer more useful and
flexible services requested by different ap-
plication areas, including multimedia coop-
erative applications.

To add a new service in the Common Fa-
cilities, it is important to determine which
new system services are also needed in other
architecture components in order to sup-
port it at the level of the overall archi-
tecture. In this context, we consider that
to cover the communication requirements
identified in the previous section, the facil-
ities for group interaction including group
creation with group property and group
members management could be defined and
included into the Common Facilities. The
facilities for creating/destroying group in-
terfaces and those group invocation meth-
ods could be included in the Object Services
component. Capabilities such as those en-

abling group communications, continuous

media exchange, multiconnection establish-
ment and management with required QoS,
etc., could be incorporated into the Object

Request Broker component [15].

5. Conclusion of Evaluation

The detailed evaluation of the architec-
tures mentioned leads to detect the lack of
flexibility and required functionality to re-
sponse to the communication requirements
of multimedia cooperative applications. To
completely support the communication re-
quirements identified, we identified the fol-
lowing functions which must be included in

a support architecture.

e Dynamic Group Management which is
concerned with group configuration,
group behavior management and mem-
bership control such as authentication,
access control, role control, etc.

e Group Stream Interaction in order to
provide communication services needed
in supporting group interaction ex-
changing stream data. In particular,
Compatibility Checking for Stream In-
terfaces and the QoS level in the estab-
lishment of binding between stream in-
terfaces.

e QoS Management which enables appli-
cation to specify QoS parameters, nego-
tiate the initial level of QoS, renegoti-
ate the previously-defined QoS level and
notify some QoS modification or errors

occurred.

160 Jong-Hwa Yi and Encarna Pastor

o Stream Interface Type Verification
which stores the information relevant
to stream interfaces and checks the
compatibility between two stream
interfaces in accordance with the

comparison rules.

In the next section we will propose
a communication model which provides a
set of services to cover the communication

functions described above.

IV. SPECIFICATION OF
COMMUNICATION
SERVICES

In this section, we specify a set of com-
munication functions which provide useful
services to respond to the communication
requirements identified previously. These
communication functions must be included
in a distributed support environment or sys-
tem for that the application designers can
use them to develop distributed applica-
tions.

The concepts, rules and different view-
points defined in the Reference Model of
ODP, the Models of Information, Computa-
tion, Engineering and Technology, are used
to specify the communication services as

our overall design methodology.

1. The Information Model

Using the Object-Oriented Analysis
(OOA) methodology proposed by [21], Fig-
ure 1 illustrates the information model in

ETRI Journal, volume 20, number 2, June 1998

which a set of information objects and their
attributes, and the relationships between
the objects are defined.

The simple description of the informa-
tion objects is as follows.

e Participant: This object represents a
participant or a group of participants
which wants to enter into a session.

e Group manager: If a group of members
participates in a session, this object is
responsible for controlling the correct
behavior of group members in accor-
dance with the established group rules
and policies.

e Session: Corresponds to a session in
which the participant(s) can collabo-
rate between them in different interac-
tion mode. Also the participants can
exchange information of distinct types.

e Session manager: This object manages
all created sessions and also maintains
up-to-date information concerning the
currently active sessions.

e Association: The objective of this ob-
ject consists of offering suitable com-
munication services in order to support
the group interactions, including the es-
tablishment of connection between the
group members, facilities to send or re-
ceive multimedia data, dynamic control
of the established connections, etc.

e Information: This object represents
different types of information: Text,
Graphic image, Audio and Video. In
a session, the participants can use the
type of information they want and the
information will be exchanged via an as-

ETRI Journal, volume 20, number 2, June 1998

1. Participant (p)
* participant_id

161

Jong-Hwa Yi and Encarna Pastor

. group_id 5. Association (a) is sent/

.role use | * asociation_id received from

. description >| . asociation_type <

- A . semantics
3. Group manager (gm) participates . information_id(R6)
* group_id(R2) A R1 . QoS_parameters
. participant_id(R2) . (delay, throughput,
. session_id(R2) is managed by jitter, error rate,
. group_members_list [« >—> R4 latency, reliability)
. active_members_list R2 manages
. group_properties
. group_access_list Y
R6
C Yy Participates to
2. Session (s)
* session_id <
X . session_type is used by
i. Session manager (sm) I _duration
595(?'(}"_'?(%??3) is managed by | description sends/
o [(EUUIETENL] < >3 participant_id(RL i i -
session fist | X manages .gsociaﬁon_‘id((rut)) R U | |eceives
- active_sessions_lis| . information_id(R5) | “ 77| . session_id(R5) R
- session_status s used by . association_id(R6)
R7 —— isa
I I I |
7. Text (1) 8. Graphic image (gi) 9. Audio (a) 10. Video (v)

* information_id(R7)

. format(ascii, ps, gif,)

. compression_method
(2, zip, .)

* information_id(R7)

. format(gif, jpeg, tiff,
bitmap, bmp, ..)

. compression_method

* information_id(R7)
. direction

. coding

. compression

* information_id(R7)

. direction

. format(pal, ntsc, hdtv)
. coding(jpeg, H.261,

. qos (quality of audio, mpeg, ..)
frame_size, frame_rate) . qos (frame_rate, color,
resolution, ..)

Fig. 1. Information model.

sociation connected to them.

2. The Computational Model

To provide the necessary communica-
tion services for the group interaction,
in this model we defined the computa-
tional objects: Group Manager, Type Man-
ager and Group_Stream_Binding (Fig. 2).

The Participant is an application object

which represents a participant and sev-
The
participants in a group interact via its

eral participants form a group.

Stream_ Group_Binding object which offers
group communication services. We use the
Object Description Language (ODL) pro-
posed by TINA-C [26] to specify the com-
putational objects, their interfaces and op-
erations.

1) Group Manager

group
______ Group \ control
____TL___ Manager interface

(' Participant

Type
Manager

// . .« . \\\
{ Participant /‘, <

group
service
interface

Communication

N
\
)

L’

. Computational objects.

step 1:
Requests the creation of a group, control
T elimination of a group, to join interface
LT TS - a group, to leave a group, etc.
¢ Participant < >
. - . Manager
S - service

step 2:

step 4:
Invokes operations
of group service
interface to exchange
messages, etc.

Creates or destroys a group,
adds a new participant or
removes one, etc.

interface

step 3:

Controls status or the
behaviour of

group members

group
control
interface

group
service
interface

. Group manager.

The purpose of this object is to man-
age the group interactions (Fig. 3). Any
application object can request the creation
of a group, the elimination of an existing

group or simply invoke other operations of-

fered by the Group Manager object to get
some information such as group properties,
list of members, general group description,
etc. (step 1). When receiving the request

to create a new group, this object returns a

ETRI Journal, volume 20, number 2, June 1998

Jong-Hwa Yi and Encarna Pastor 163

Table 2. Specification of the Group_Manager_service_interface.

operations

behaviour

h

interface template Group_Manager service_interface {

void Create_Group (in Group-id group, in Property-Group property);

void Destroy-Group (in Group-id group);

void Join (in Group-id group, in Paricipant.id participant, out boolean result);
void Leave (in Group-id group, in Paricipant-id participant);

void List_-Groups (out Group-id group);

void List-Group-Members (in Group-id group, in Paricipant-id participant);
void List_Active_-Members (in Group-id group, in Paricipant_id participant);

void List_-Group_Property (in Group-id group, in Property_Group property);

group service interface and a group control
interface (step 2), where application objects
can use the first interface to exchange mes-
sages between them (step 3) and the Group
Manager can invoke the another interface
to verify that the group members behave
correctly according to the established rules
and policies (step 4). For example, it checks
whether each member that requests entry
intothe group can be accepted or not and it
checks the members access permissions as
well as their assigned roles in the group. It
maintains also up-to-date information con-
cerning the currently active members. The
Group Manager object has two interfaces to

offer the services described in Table 2.

2) Group_Stream_Binding
This is a kind of binding objects which

provides communication services to support

interaction between group members and to
exchange stream data. To accomplish this,
this object provides several functions such
as establishment and destruction of multi-
ple bindings, binding management, guaran-
tee of service quality, group interaction fa-
cilities, exchanging of stream data. For this,
three different interfaces of this object are
defined using ODL.

In the establishment of bindings capable
of responding to the communication func-
tionality required, several previous steps are
needed. These steps consist basically of
checking the compatibility of both interface
types and of QoS levels. In the first case, it
must be checked that both of the interfaces
between which the bindings are to be cre-
ated are stream interfaces, that the type of

streams (audio, video or both) handled by

each of these interfaces are compatible and
that the direction (in, out or both) assigned
to each stream of each interface is compati-
ble. In the second case, the common condi-
tions for the required level of service quality
must be negotiated or, in the case where it
is impossible to offer this required level, an
agreement must be reached as to the most
adequate level.

Table 3 shows the ODL specifica-
tion of the interface Group_Stream_Binding-

Service_Interface of this object.
3) Type Manager

The main function of this object is to
maintain a set of information about stream
interfaces such as interface type (name) of
an object, interface classes (operational or
stream), kind of streams of that interface
(audio, video or both), direction of each
stream type, etc. Based on the informa-
tion stored, this object provides a set of
operations which permits an object to add
its interface type, to delete one existent or
to request the compatibility check between

two stream interfaces.

3. The Engineering Model

Two types of channel: Operational
Channel and Stream Channel which sup-
port distribution-transparent interaction
between the computational objects are de-
fined in the engineering model.

Based on the channel concept of ODP,
in this paper we present only the configura-

tion of a Group_ Stream_ Channel in order

to offer a set of communication services
for the Stream_ Group_ Binding object
defined in the computational model. The
Group_ Stream_ Channel is composed by
a set of objects: Group_Stream_Stub,
Group_ Stream_ Binder,
Group_ Stream_ Protocol ~— and Intercep-
tor. The specification of this channel and
the control interface of the binder object is
as shown in Table 4 and 5.

Figure 4 illustrates the configuration of
this channel which offers communication
services to support group interactions in-
volving stream transmissions. For it, each
object of the channel provides a set of func-
tions through its service and control in-
In addition to the channel ob-

ject, Nucleus object is specified. In prin-

terface.

ciple, this object provides basic manage-
ment functions for a node including some
communication facilities such as the cre-
ation/destruction of a channel, the creation
of a reference of channel, etc. A Participant
object can solicit a channel (in this case
Group_ Stream_ Channel) to Nucleus. Then
Nucleus creates a requested channel and re-
turns a channel reference to the Participant
object.

4. The Technology Model

In this model, we just describe a possible
development environment in a node which
is devided into three component layers:

e Application layer: In this layer, there
are application objects which will use
the support functions provided by the
Support Platform.

ETRI Journal, volume 20, number 2, June 1998 Jong-Hwa Yi and Encarna Pastor 165

Table 3. Specification of the Group_Stream_Binding_service interface.

typedef struct {
string productor-id;
string consumer-id;
string group-id;
} Identification;
typedef struct {
string stream_name;
enum direction {productor, consumer};
} Stream_Description;
typedef sequence <Stream_Description> Stream_Information;
typedef struct {
string interface_name;
enum interface_type {operational7 stream};
Stream_Information stream;
} Interface_Description;
typedef sequence <Interface_Description> Interface_Information;
typedef struct {
enum mode {unicast, multicast, broadcast};
string destination_users;
} Send_-Mode;

interface template Group_Stream_Binding_Service_Interface {

operations

void Establish-Group_Stream_Binding (in Identification user-id, in Interface Information interface,
out int bind-id) with QoS_Data qos;

void Destroy_Group-Stream _Binding (in Identification user-id);

void Send (in int bind-id, in Identification user-id, in Send_-Mode mode, in MM_Data_Description
description, in charx data);

void Receive (out chars buffer);

void Start (in int bind-id, in Identification user-id, in Send-Mode mode, in MM_Data_Description
description, in charx data);

void Prepare();

void Stop (in int bind_id);

b

e Support Platform layer: This layer layer contains the communication func-

contains an infrastructure required to
support open distributed processing en-
vironment, including a set of functions
needed to offer distribution transparen-
cies which make the designers possible
to implement applications. Also, this

tions specified in this paper which pro-
vide additional communication support
required for multimedia cooperative ap-
plication development.

e Transport layer: Provides basic trans-

port communication services. The sup-

166 Jong-Hwa Yi and Encarna Pastor ETRI Journal, volume 20, number 2, June 1998

1. request_channel(

dlens participant participant participant
service i channel channel channel
- 3. returns a stub_ service service service
interface interface interface

channel service_i
reference

5 5

— stub_control_i

2. create channel
group_
stream_
binder_
service_i

group_
stream_

binder

group_
stream_

binder

group_
stream_
binder

— binder_control_i

group_
stream_

protocol_
service_i

— protocol_control_i

interceptor interceptor

interceptor_service_i

Group_Stream_channel

Fig. 4. Configuration of the Group_Stream_Channel object.

Table 5. Specification of the Group_Stream_Binder_control_interface

interface template Group_Stream_Binder_control_interface {

operations

void Modify_Channel_Configuration (inout Bind_Information id, in Bind_Description new_id,
in QoS_Information qos, out string result);

void Destroy_Channel (in Bind_References id);

void Monitoring (in Bind_References id);

void Notify_Error (in Bind-References id, out string reason);

void Recovery_Channel (in Bind-References id, out string reason);

behaviour

I8

port functions described in the Support V. CONCLUSION

Platform layer will use these commu-
In the field of distributed processing,

thanks to the standardization effort carried

nication services to perform their func-

tionality.

ETRI Journal, volume 20, number 2, June 1998

Application
layer

object

Jong-Hwa Yi and Encarna Pastor 167

object

Support
platform
layer

Group stream

services

Type
manager
manager
Group_stream™
Binding

communication

=

function

Infrastructure

Transport

Basic Transport Services and Protocols

layer

)

Networks

Fig. 5. Development environment of a node.

Table 4. Specification of the Group_Stream_Channel
object.

channel template Group_Stream_Channel {

supported objects template
Group-_Stream_Stub;
Group-Stream_Binder;
Group-Stream_Protocol;
Interceptor;

initial object template
Group_Stream_Stub;

behaviour

|8

out by the organizations, ISO and ITU-T,
and numerous research projects carried out
by several universities and industrial orga-
nizations, the Reference Model of ODP and
various de facto standards such as ANSA,
TINA, CORBA are available [19]. Each
one of these standards defines a common
support architecture with functions that
accommodate difficulties inherent in the
building of systems and applications in dis-
tributed and heterogeneous environments.
In this context, one of the important objec-
tive of these architectures is to understand
exactly what are the different application
requirements and provide suitable facilities
needed for the application development. In

this way, the support architecture helps to

168 Jong-Hwa Yi and Encarna Pastor

reduce the designer’s duplicated effort and
the inherent complexity in the development
of distributed applications.

After that we analyzed the characteris-
tics of multimedia cooperative applications,
we identified, as a result of this analy-
sis, the communication requirements: Sup-
port for Group Interaction, Group Members
Management, Group Communication, QoS
Guarantees and Multimedia data transmis-
sion. From the evaluation of the ar-
chitectures such as the RM-ODP, ANSA,
CORBA, TINA to examine whether they
meet these requirements, we identified
a lack of functionality: Dynamic Group
Management, Compatibility Checking for
Stream Interfaces and QoS level in Group
Stream Interaction, QoS Management and
Stream Interface Type Verification. We
then specified a set of communication func-
tions which must be included in an archi-
tecture to support this functionality, using
the different viewpoints defined in the RM-
ODP. However, the communication func-
tions specified in this paper could be ex-
tended. Some investigation issues could be
considered such as consideration of flexible
composition rules in the establishment of
binding links between different types of in-
terface, extension of the type verification
function for stream interfaces, analysis of
requirements of new classes of applications
including requirements of real time applica-
tions, etc.

We have considered those applications
which demand the characteristics of mul-

timedia cooperative interaction between

ETRI Journal, volume 20, number 2, June 1998

group members as mentioned above. Appli-
cation designers may use the specified com-
munication services for building this kind of
applications. Also in our investigation we
included, but not presented in this paper,
a study for a particular application: Real-
Time Tele-Teaching which is one of the CO-
LEARN applications, presenting how the
communication services could be used in

the design of a specific application.

REFERENCES

[1] ITU-T Rec. X.901 | ISO/IEC 10746-1, ODP
Reference Model Partl: Overview, DIS, May
1995.

[2] ITU-T Rec. X.903 | ISO/IEC 10746-3, ODP
Reference Model Part3: Architecture, IS, Febru-
ary 1995.

[3] Tom Rodden and Gordon Blair, “Distributed
Systems Support for Computer Supported Co-
operative Work,” Computer Communications,
Vol. 15, No. 8, Oct. 1992.

[4] V. Gay, P. Leydekkers, R. Huis in’t Veld, “Spec-
ification of Multiparty Audio and Video Interac-
tion Based on the Reference Model of Open Dis-
tributed Processing,” Computer Networks and
ISDN Systems, Vol. 27, No.8, July 1995.

[5] L. Navarro, W. Prinz, and T. Rodden, “CSCW
Requires Open Systems,” Computer Communi-
cations, Vol. 16, No. 5, May 1993.

[6] E. Pastor, D. Fernandez, L. Bellido, “Coopera-
tive Learning over Broadband Networks,” Pro-
ceedings of the 6th Joint European Networking
Conference (JENCG), J. Barbera and J. Kiers,
eds., Tel Aviv, Israel, May 1995.

[7] G. Blair and T. Rodden, The Challenges of
CSCW for Open Distributed Processing, Internal
Report MPG-93-24, Lancaster University, 1993.

ETRI Journal, volume 20, number 2, June 1998

8]

(15]

(16]

(17]

(18]

K. Farooqui, L. Logrippo, and J. de Meer, “The
ISO Reference Model for Open Distributed Pro-
cessing: An Introduction,” Computer Networks
and ISDN Systems, Vol. 27, No. 8, July 1995.

Neil Williams and Gordon S. Blair, “Distributed
A Review,”
puter Communications, Vol. 17, No. 2, February
1994.

APM Ltd., ANSA: An Engineer’s Introduction
to the Architecture, Release TR.03.02., Novem-
ber 1989.

APM Ltd., A Model for Interface Groups, Doc-
ument APM.1001.01, May 1994.

G. Coulson, J. Smalley, and G. Blair, The De-
sign and Implementation of a Group Invocation
Facility in ANSA, Internal Report MPG-92-34,
Lancaster University, 1992.

A.J. Herbert. “An ANSA Overview,” IEEE Net-
work, January/February 1994.

H.B. Antillanca and D.A. Fuller,
Space-Time Taxonomies of Collaborative Sys-
Proceedings of the Second CYTED-
RITOS International Workshop on Groupware
(CRIWGY6), Puerto Varas, Chile, September
1996.

Multimedia Applications: Com-

“Refining

tems,”

Jong-Hwa Yi and Encarna Pastor, “Commu-
nication Support for Cooperative Applications
in Open Distributed Processing Systems,” Pro-
ceedings of the Second CYTED-RITOS Interna-
tional Workshop on Groupware, Puerto Varas,
Chile, September 1996.

Object Management Group, The Common Ob-
ject Request Broker: Architecture and Specifica-
tion. OMG Document No. 91.12.1, Revision 1.1,
Draft 10, December 1991.

Object Management Group, The Common Ob-
ject Request Broker: Architecture and Specifica-
tion, Revision 2.0, July 1995.

Object Management Group, Common Facilities
Architecture. Revision 4.0, OMG Document No.
95-1-2, January 1991.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

169

Jong-Hwa Yi and Encarna Pastor

B. Kitson, “CORBA and TINA: The Ar-
chitecture Relationships,” Proceedings of the
TINA95: Intergrating Telecommunications and
Distributed Computing — from Concept to Re-
ality, Vol. 1, Melbourne, Australia, February

1995.

A. Beitz, P. King, and K. Raymond, “Compar-
ing Two Distributed Environments: DCE and
ANSAware,” DCE — The OSF Distributed En-
vironment: Client/Server Model and Beyond, A.
Schill, ed., Lecture Notes in Computer Science.
No. 731. Springer-Verlag, 1993.

Sally Shlaer, Stephen J. Mellor, Object Life-
Modeling the World in States, Your-
don Press Computing Series, Printice-Hall, Inc.,
1992.

TINA-C, Owerall Concepts and Principles of
TINA, Version 1.0, February 1995.

TINA-C, Computational Modeling Concepts,
Version 2.0, February 1995.

TINA-C, Engineering Modeling Concepts: DPE
Kernel Specification, Version 1.0, December
1995.

TINA-C, Service Architecture,
Mayo 1995.

TINA-C, TINA Object Definition Language
(TINA-ODL) Manual, Version 1.3, June 1995.
Steve Vinoski, “CORBA: Integrating Diverse
Applications within Distributed Heterogeneous

cycles:

Version 2.0,

Environments,” IEEE Communications Maga-
zine, February 1997.

“OSF’s Distributed Computing Environment
and the requirements,” The Open Systems
Newsletter. Vol. 5, issue 9. September 1992.

A. Vogel, G. Bochmann, R. Dssouli, J. Gec-
sei, A. Hafid, and B. Kerherve, On QoS
Negotiation in Distributed Multimedia Appli-
cations, Montreal University, Canada, 1993,

ftp://ftp.iro.umontreal.ca/publications/1993 /IRO-

891.ps.
N. Simoni and S. Znaty, “QoS: From Definition
to Management.” Proceedings of the IFIP High

Performance Networking 92, A. Danthine and
O. Spaniol, eds., 1992.

170

Jong-Hwa Yi and Encarna Pastor

ETRI Journal, volume 20, number 2, June 1998

[31] N.A. Davies, and J.R. Nicol, “Technological Engineering, Universidad
Perspectives on Multimedia Computing,” Com- Politécnica de Madrid
puter Communications. Vol. 14, No. 5, June (Technical — University — of
1991. Madrid), Spain. She re-

[32] A. Karmouth. “Multimedia Distributed Cooper- ceived the M.S. and Ph.D. degrees on computer
ative System, Computer Communications. Vol. science from the same University in 1977 and 1988,
16, No. 9, September 1993. respectively. For the current several years she has

(33] D. Shepherd, D. Hutchison, F. Garcia, and been involved in R&D tasks related to architectures
G. Coulson, “Protocol Support for Distributed and protocols for open system interconnection,
Multimedia Applications,” Proceedings of the distributed applications and computer-supported
Second International Workshop on Network and cooperative work. She is also collaborating with
Operating System Support for Digital Audio the National Council for Research and Technical
and Video, IBM ENC, Heidelberg, Germany, Development as scientific coordinator of European
November 1991. Community Programmes (Telematic Applications).

[34] G. Coulson, G. Blair, N. Davies, and N. Her current interest research fields include commu-
Williams, “Extensions to ANSA for Multime- nication architectures, open distributed processing
dia Computing,” Computer Networks and ISDN and advanced collaborative applications on high
Systems, Vol. 25, No. 3, September 1992. performance networks.

[35] Distributed Interactive Multimedia Architecture,
http://www.ansa.co.uk/ANSA /DIMMA /index.html,

(October 1995).
[36] TRIBUNE Consortium, DELTA in PERSPEC-

TIVE-Exploitation of DELTA Projects Results,
TRIBUNE Collection 05, September 1994.

Jong-Hwa Yi received the
M.S. degree in Electronics
Engineering from Hanyang
University, Seoul, Korea in
1990 and the Ph.D degree in
Telematics Engineering from
Universidad Politécnica de

Madrid (Technical University of Madrid), Spain in
1996. She joined ETRI in 1990 and is a senior mem-
ber of research staff in Protocol Engineering Cen-
ter (PEC). Her current interest research fields in-
clude distributed application architectures, open dis-
tributed processing, CSCW applications and object-
oriented modeling.

Encarna Pastor is Associate
at the

ment of Telematic Systems

Professor Depart-

