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Kinematic Approximation of Partial Derivative
Seismogram with respect to Velocity and Density*

Shin, Changsoo” and Shin, Sungryul”
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Abstract : In exploration seismology, the Kirchhoff hyperbola has been successfully used to migrate reflection seismo-
grams. The mathematical basis of Kirchhoff hyperbola has not been clearly defined and understood for the application of
prestack or poststack migration. The travel time from the scatterer in the subsurface to the receivers (exploding reflector
model) on the surface can be a kinematic approximation of Green's function when the source is excited at position of the
scatterer. If we add the travel time from the source to the scatterer in the subsurface to the travel time of exploding re-
flector model, we can view this travel time as a kinematic approximation of the partial derivative wavefield with respect to
the velocity or the density in the subsurface. The summation of reflection seismogram along the Kirchhoff hyperbola can
be evaluated as an inner product between the partial derivative wavefield and the field reflection seismogram. In addition
to this kinematic interpretation of Kirchhoff hyperbola, when we extend this concept to shallow refraction seismic data, the
stacking of refraction.data along the straight line can be interpreted as a measurement of an inner product between the first
arrival waveform of the partial derivative wavefield and the field refraction data. We evaluated the Kirchhoff hyperbola
and the straight line for stacking the refraction data in terms of the first arrival. waveform of the partial derivative wavefield
with respect to the velocity or the density in the subsurface. This evaluation provides a firm and solid basis for the con-
ventional Kirchhoff migration and the straight line stacking of the refraction data.
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Introduction

Exploration . geophysicists use prestack depth migration
using ray tracing technique to image the subsurface. The
travel time curve calculated by ray tracing using source
and receiver reciprocity can be thought of as a kinematic
approximation of the partial derivative seismogram with
respect to velocity or density. The scattering wave field by
Gardner, et al. (1974) and the Born perturbation seismo-
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gram by Bleistein, et al. (1985) can be approximated
kinematically by the travel time curve from the source to
scatterer, and then, to the receiver. These scattering wave
field and the Born' perturbation seismogram are closely re-
lated to the partial derivative seismogram with respect to
velocity and density, which was applied to the waveform
inversion (Shin, 1988).

The computation of the partial derivative seismogram
by numerical modeling techniques such as the finite ele-
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ment method and the finite difference method is a for-
midable task unless one uses the source and receiver re-
ciprocity for the computation of Green function and the
partial derivative seismogram. The computation of the par-
tial derivative seismogram by numerical modeling tech-
nique involves three steps. The first step is the calculation
of the numerical Green function by exciting the source on
the surface of the internal point of the geologic model.
The next step is the computation of the virtual source re-
quired to calculate the partial derivative seismogram. The
third step is the convolution of the virtual source with the
Green function. In this way, one can compute the partial
derivative seismogram. However, this approach is ex-
tremely expensive, impractical and beyond the capability
of modern computers. Alternative to this is the ex-
ploitation of the source and receiver reciprocity for the
computation of the partial derivative seismogram. The ap-
plications of the source and receiver reciprocity can be di-
vided into three categories. One is the Kinematic ap-
proximation of the partial derivative seismogram using the
ray tracing.

The second approach is the use of Claerbout's one way
wave equation, which results in the weighted hyperbola
having the amplitude and phase change along the travel
time curve. In this case, we are not using the entire wave
events of the partial derivative seismogram as generated
by full waveform modeling technique. The third approach,
although most expensive, is the employing of the finite
difference method or the finite element modeling tech-
nique using the source and receiver reciprocity, which is
not discussed fully in this paper.

In this paper, we present the wave theoretical support
for the kinematic approximation of the partial derivative
seismogram using various numerical modeling techniques
including ray tracing by exploiting the source and re-
ciprocity. As with the kinematic approximation of the par-
tial derivative seismogram for the reflection seismogram,
we analyzed the kinematic evaluation of the partial deri-
vative secismogram for the shallow refraction seismogram
stacking initiated by Landa er al. (1993) and the mathemat-
ical aspect of the imaging subsurface using the partial deri-
vative seismogram.

Partial Derivative Seismograms with
Respect to the Material Parameter

In a two dimensional medium, the acoustic wave
equation is given by

a(,aU). a(aUu) U _
a(ka]ﬁ-g[kg]—pﬁ—f(x,z,t). (1)

Where, x is the horizontal distance, z is the depth, ¢ is

time, U(x, z f) is the displacement wave field, p(x, z) is
density, k(x, z) is bulk modulus, and f{x, z, ?) is the source
function.

Many numerical modeling techniques are available in
solving the equation. For simplicity in evaluating the prin-
ciple of the partial derivative seismogram, we use a discrete
notation of the time domain finite difference technique, fix
the bulk modulus and perturb the density parameter. Figure
1 shows the discretized domain, in which finite difference
expression of Eq. (1), without any boundary condition to
suppress the artificial reflection, can be given as
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where j is the index for discrete time, i for discrete x-axis
and z-axis, df is the grid step in time, and A is the grid
step for x-axis and z-axis. Due to the difficulty denoting
the matrix notation of Laplacian term, we did not put
zeroes at some elements of the super diagonal and the sub
diagonal of the matrix in Eq. (2) due to the finite size of
the model.

Taking the derivative of Eq. (2) with respect to the ith
density yields
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Fig. 1. A discrete representation of the finite difference forward
modeling for acoustic wave equation. The bulk modulus and den-
sity of each nodal point is parameterized to compute the partial
derivative seismogram.
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where the right most column vector of Eq. (3) can be
given as

N 0

J* | = 1 j+1 j -1 4
fz __E u/ _2utj+ui1 ( )
i 0

and du//9dp' is the partial derivative of the displacement
field with respect to the i th density parameter.

We will refer to f/* in Eq. (3) and (4) as a virtual source
or an actual source to compute the partial derivative wave
field. It is critical to examine the physical meaning of the
virtual source. In computing the partial derivative seismo-
gram using Eq. (3), one has to catch the wave field that
passes through the ith nodal point and save it for the com-
putation of the partial derivative seismogram. Note that
when perturbing the density parameter at the ith nodal
point, the virtual source has numerical support at the ith
nodal point. We would like to put special emphasis on the
virtual source. The virtual source when perturbing the
bulk modulus parameter, can be the extra acceleration gen-
erated by the primary wave field (the source generated
wave field) at the ith nodal point. In other words, the vir-
tual source is the force by Newton's second law (F=ma).
In this case, the virtual source is the force given by the
multiplication of acceleration with the unit mass (Note that
in the usual expression of the acoustic wave equation the
density can be replaced by the bulk modulus parameter in
Eq. (1), (2) and (3)). The best account for this scattering
or perturbation can be found in the text book by Officer
(1958).

Figure 3 shows the virtual source at the ith nodal point
when perturbing the density parameter of the ith nodal
points as shown in Figure 2. When we consider the first
arrival part of the virtual source in Figure 3, we can ap-
proximately express the virtual source without the am-
plitude and the later arrival events as

fi@)*=6(t - &)

where 0 is the delta function, i denotes the ith nodal point,
t is the time, and ¢! is the first arrival time from the kth
source point to the ith nodal point. There are two ways to
compute the partial derivative seismogram. One is by us-
ing the virtual source as a source function in Eq. (2). We
will refer to this approach as the brute approach, which is
extremely expensive and beyond the capability of modern
computers for multiple shots problems (for example, sup-
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Fig. 2. A geologic model taken to compute the partial derivative
seismogram with respect to the velocity and the density. Symbol+
denotes the point to be perturbed. Symbol 1, 2, and 3 are the
points to be perturbed for the computation of the partial deri-
vative seismogram for the head waves.
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Fig. 3. The virtual source function when perturbing the density
point indicated by symbol+in Figure 2.

pose the geologic model is subdivided into nx by nz grids
and one wants to calculate the partial derivative seismo-
gram with respect to each grid parameter for multiple
shots, one needs to do the forward modeling ns X nx X nz
times, where nx is the number of grid points, nz is the
number of grid points). We use the brute approach not for
the future application that can assist in imaging the sub-
surface, but for a clear visualization of the partial deri-
vative seismogram. Figure 4 shows the partial derivative
seismogram with respect to the ith density parameter when
we used the virtual source shown in Figure 3 as a source
function.

The other approach is the direct convolution between
the virtual source and the Green function, which is less ex-
pensive than the brute approach but still requires a mas-
sive computation of the Green function. We would like to
discuss it a little more before moving on to the kinematic
approximation of the partial derivatives seismogram. Fig-
ure 5 shows the Green function shown in Figure 5, the
kinematic waveform expression of the Green function can
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Fig. 4. A partial derivative seismogram with respect to the den-
sity of the point shown in Figure 2.
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Fig. 5. Green function calculated at the surface using the finite
difference forward modeling.

be given as
Gx,z=0,)=0(~t}),k=1,-,m ©)

where x is the horizontal distance in the x direction, z is
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the distance in the z direction, ¢ is the time, k is the re-
ceiver nodal index at the surface, and #/ is the travel time
from the ith nodal point to the surface receivers. By con-
volving the virtual source in Figure (3) with the Green
function in Figure 5, we can obtain the partial derivative
seismogram as calculated by the brute approach. In prac-
ticing this type approach, since the impulse response
(Green function) and the virtual source are convolved with
the source wavelet, we have to deconvolve the impulse
response and the virtual source and convolve them again.
In this regard, the frequency domain modeling technique
of Marfurt (1984), Pratt and Worthington (1990), Jo et al.
(1996), and Shin and Sohn (1997) is more flexible than
the time domain modeling technique.

Figure 6 shows the partial derivative seismogram com-
puted by the convolution of the Green function with the
virtual source. Based on this discussion, it is straight for-
ward to approximate the kinematic waveform of the partial
derivative seismogram using the ray tracing technique. For
simplicity in giving an aid to the visualization of the
Green function, we use simple shooting ray tracing. As
shown in Figure 7, we shoot the rays into the general
directions at the i the nodal point and calculate the travel
time from the ith nodal point to the receivers. In this case,
the waveform expression of the travel time can be given
as shown in Eq. (6). Figure 8 shows the waveform of the
travel time calculated by shooting ray tracing. From Fig-
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Fig. 6. A partial derivative seismogram computed by convolving
the virtual source function in Figure 3 with Green function in Fig-
ure 5.

ure 5 and 8, we cannot tell the difference of the first ar-
rival time between the partial derivative seismogram ap-
proximated by ray tracing and the partial derivative seismo-
gram computed by the finite difference modeling tech-
nique. The next step is to calculate the travel time from
the kth source point to the ith nodal point, which is
equivalent to the first arrival time of the virtual source. If
we limit and confine our attention to the kinematics of the
partial derivative seismogram, we can exploit the source
and receiver reciprocity. The simple mathematical ex-
pression can be given as

5 = & ~th)* 8t ~1)) (72)
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Fig. 7. The ray diagram when one shoots the rays at the point to
be perturbed in Figure 2 into the upward direction.
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Fig. 8. The kinematic approximation of the partial derivative
seismogram in Figure 4 using ray tracing.




or

ou

e )

op’

(7b)

Kinematic Approximation of Partial Derivative

where * denotes the convolution. Figure 8 shows the
kinematic waveform expression calculated by Eq. (7b). As
we see in the Green function by the finite difference
modeling and ray tracing, the first arrival events of Figure
4 and 8 have the same travel time. Before going into the
details of this approach, we should mention the efficiency
of this ray tracing approach.

Suppose that the geologic model to be imaged can be di-
vided into the nx by nz discrete grid points, where nx is
the number of grid points into the x direction and nz is
the number of grid points into z direction. In this case, we
have to calculate the travel time nx by nz times. This ap-
proach is not economical except for the advantage that we
can make the weighted Kirchhoff hyperbola due to the
geometrical spreading and the change in the reflection
coefficient.

Another approach widely employed by the oil industry
is using ray tracing for the kinematic approximation of the
partial derivative seismogram with a slightly different
source and receiver reciprocity. Instead of shooting the ray
at the internal nodal point, one shoots the rays at the sur-
face receiver points and calculates the travel time at the int-
ernal nodal point, interpolates the travel time at the point
where the ray does not pass through, and computes the
travel time of the first arrival of the partial derivative
seismogram using the source and receiver reciprocity. This
approach is extremely fast and economical compared to
the approach discussed above, being the dominant tech-
nique employed by exploration seismologists.

Until now we have discussed the partial derivative
seismogram with respect to the density parameter, but now,
we will take a closer look at the partial derivative seismo-
gram with respect to the bulk modulus parameter. When
returning to Eq. (2), taking partial derivative of Eq. (2)
with respect to the i th bulk modulus parameter yields
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where the right most column vector of Eq. (8) can be

given as
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and Ou//0k is the partial derivative wave field with
respect to the ith bulk modulus parameter.

As discussed above, the virtual source when perturbing
the bulk modulus parameter is the extra dilatation force ex-
cited by the source generated primary waves. Figure 9
shows a partial derivative seismogram with respect to the
bulk modulus parameter of the ith nodal point. It is clear
to note that we cannot tell the difference between the par-
tial derivative seismogram with respect to the density
parameter and that of bulk modulus when we consider the
first arrival events. This is the main reason why one ob-
tains the superimposed image of the subsurface when us-
ing the kinematics of the partial derivatives seismogram.
In principle, we must use the weighted Kirchhoff hy-
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Fig. 9. A partial derivative seismogram with tespect to the bulk
modulus parameter of the point denoted by symbol+in Figure 2.
The difference between the partial derivative seismogram with
respect to the density and the partial derivative seismogram with

respect to the bulk modulus parameter is the phase shift of the
seismograms.

perbola shown in Figure 4 for the image of the density
profile and use the weighted Kirchhoff hyperbola shown
in Figure 9 for the image of the bulk modulus profile. The
use of the different weighted Kirchhoff hyperbola results
in a separate image of the subsurface, which is equivalent
to the seismic inverse problem. A more important reason
why this Kirchhoff hyperbola calculated by ray tracing is
successful in imaging the subsurface for the elastic seismo-
gram can be explained by extending the kinematic concept
of the partial derivative seismogram to the elastic wave
equation. Without using the discrete finite difference
representation as we did in the acoustic wave equation, we
can visualize the virtual source generated by the primary
wave field. The source generated wave field of elastic
waves can be different, depending upon the source
mechanism. The ideal dynamite explosion in the sub-
surface is considered to generate pure P-waves. The vir-
tual source defined by the finite difference elastic wave
equation will catch the fastest arrival event.

The kinematic approximation of the resulting partial deri-
vative seismograms with respect to the density, the P-
wave velocity and the S-wave velocity is identical to each
other. Figure 10 shows the partial derivative seismograms
with respect to the density, the P-wave velocity, and the S-

wave velocity of the ith nodal point. Except for the case
of the source mechanism generating the pure S-waves, the
kinematic approximation of the partial derivative seismo-
gram of the elastic waves will be the same as of the acous-
tic wave equation. From the discussions above, we stress
that the imaging of the surface is the use of the kinematic
approximation of the partial derivative seismogram with
respect to the density, the P-wave velocity and the S-
wave velocity, This hyperbola can be applied to image the
field seismogram for any possible source and receiver con-
figuration including the common shot gather and the com-
mon midpoint gather configuration.

Kinematic Approximation of Partial
Derivative Seismogram for Head Waves

Until now, we have discussed the use of partial deri-
vative seismograms to image reflection seismograms, Let
us move our principle on to the use of the kinematic ap-
proximation of the partial derivative seismogram for the
shallow refraction survey. Considering refracted wave trav-
eltime of two layered media case shown in Figure 2, it
can be given as

—
H(x,z =0, 1)=H (Xross —X) E(_;lx_)

)

+H(x —XCross) 6(1 —izzarﬂc—j
v
where x is the distance in the x direction, z is the distance
in the z direction x..s is the crossover distance, 0 is the
Dirac delta function, i is the critical angle, v' is the velo-
city of the first layer, v* is the velocity of the second layer,
and H is the Heaviside step function. Another expression
of Eq. (9) using the discrete coordinates shown in Figure

11 can be given as

H(xr,z =0, t)=AH (Xcross —X) O(t —15)
+BH (X —Xcross ) 8(1‘ —t1—$2-¢3) (10)

The travel time from the source point to the surface re-
ceiver point can be given as

to =\/ Gy —xo) + G —2)° (11)

1

where x; and z; are the coordinates of the source, respec-
tively, x, and z are the coordinates of the receiver, respec-
tively. The travel time from the source point to the critical
point can be given as

‘ =V (e = X5 2+ (2c —25)? 12)

vy

where x. and z: are the coordinates of the critical point,
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Fig. 11. A discretized coordinate of the two layered media
shown in Figure 2.

respectively. The travel time from the critical point to the
interface point can be given as

-x.)? —z.)?
t2=\/"‘f x,>V+2<zc z) 13

where x; and z are the coordinates of the interface point,
respectively. The travel time from the interface point to
the surface receiver can be given as

—y.)2 _ s )2
t3=‘\/(x7 xt):_l(Z' Zl) (14)

Taking the derivative of Eq. (10) with respect to the z
coordinate of the critical point yields

dH(x,z =0,1)

5 =B'H (X —Xcross ) O(t —t1—£2—13)

1
—BH (x —Xeross) —a-(—’é;tﬁ §(t—t1-12—13) (15)

where B' is the derivative of B with respect to 2°, and &' is
the derivative of the delta function. The kinematic ex-
pression of Eq. (15) is a straight line, which is shown in
Figure 12. Returning to equation (2) and taking the deri-
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Fig. 13(a). a partial derivative seismogram with respect to the velocity of point denoted by 1 near the interface shown in Figure 2(b) a par-
tial derivative seismogram with respect to the velocity of point denoted by 2 near the interface shown in Figure 2(c) a partial derivative
seismogram with respect to the velocity of point denoted by 3 near the interface shown in Figure 2.
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Fig. 12. A kinematic expression of the partial derivative seismo-
gram with respect to the critical point shown in Figure 11.

vative of equation (2) with respect to the z coordinate of
the critical point (strictly speaking, the partial derivative
seismogram with respect to the interface coordinate can
only be computed by the finite element modeling tech-
nique, see Shin (1988)) or by taking the derivative with
respect to the velocity or density near the interface, we
can have a different kinematic view of the partial deri-
vative seismogram for seismograms.

Figure 13 shows the partial derivative seismogram with
respect to the velocity of the nodal points in Figure 2. If
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we consider the first arrival event regardless of the am-
plitude, the straight line wave event indicated by the arrow
is equivalent to the straight line in Figure 12. This means
that when we extract the first arrival events of the partial
derivative seismograms and sum the head waves along a
straight line, we can image the subsurfage by using the
kinematic of the partial derivative seismogram. This ap-
proach has been applied by Landa ef al. (1993) in stack-
ing the head waves of the field seismograms. They summ-
ed the seismic signals along a straight line and displayed
the summed signal at the intercept time. Unlike the CMP
reflection stacking, they stacked the seismic signal of com-
mon shot gather seismogram. The straight line of the head
wave stacking by Landa er al. (1993) is a substitution of
the stacking trial hyperbola of CMP stacking for the re-
flection seismograms. Since one never knows the am-
plitude term B and the derivative term B', one has the
only choice to use the trial straight line corresponding to
the kinematic approximation of the partial derivative
seismogram to stack the head waves. As in CMP stacking
of the reflection seismograms, one needs the static cor-
rection for the stacking of head waves using the trial
straight line. With this static correction, the stacking curve
for head waves is the crooked curve due to the irregular
subsurface geology. In general, the stacking straight line is
a good and excellent kinematic approximation of the par-
tial derivative seismogram for the stacking of the shallow
refraction data, as shown in Landa et al (1993)s ex-
periments.

Mathematical Aspect of the Migration
of the Reflection Data and the
Stacking of the Refraction Data

Let us consider the summation of seismic signal along
the hyperbola for the reflection seismogram (a kinematic
waveform approximation of the partial derivative seismo-
gram) or the straight line for the head waves from the
mathematical point of view. The summation of seismic sig-
nal along the hyperbola can be viewed as an inner product
between the field seismogram and the partial derivative
seismogram, or a zero lag value of the cross correlation
between the field seismogram and the partial derivative
seismogram, and thus may be given as

du(x,z=0,p,1t)
op!
where ¢ is the zero lag value of the cross correlation
between the field seismogram and the partial derivative
seismogram, x is the offset horizontal distance in the hor-
izontal direction, z is the depth, 7 is the time, p is the
parameter vector, such as velocity or density, and i de-

(16)

xmax  tmax
0

¢i=I_ I u(x,z=0,t)

notes the ith nodal point.

It is interesting to note that the cross correlation
between the field seismogram and the partial derivative
seismogram tells us how much the source generated wave
field (primary field) passes through the ith nodal point in
the geologic media. In other words, one can measure how
sensitive the field seismogram is to the ith nodal point
velocity or density. One more important aspect of this inn-
er product operation using the partial derivative seismo-
gram lies in the similarity between the partial derivative
seismogram and the Born perturbation seismogram. As
discussed in the above text, the partial derivative seismo-
gram is the seismogram generated by the virtual source.
For instance, the virtual source for the computation of the
partial derivative seismogram with respect to the density
parameter is the product between the unit mass and the
acceleration. The Born perturbation seismogram cor-
responds to the resulting seismogram generated by the ac-
tual source multiplied by the arbitrary small mass. Due to
this affinity, the prestack depth migration tends to image
the anomalous zone and the subsurface even though the
initial velocity is different from the real geologic model
(one wishes that the initial velocity model to be close to
the real geologic model). The realities of practicing inner
product operation (summation of seismic signal along
the hyperbola or the straight line) in seismic data pro-
cessing is that one never knows the exact partial deri-
vative seismogram unless one uses the numerical model-
ing technique for the computation of the partial derivative
seismogram. Even though one computes the partial deri-
vative seismogram accurately, the application to the real
data has problems in estimating the source wavelet.
Without the exact source wavelet information, the inner
product results in obtaining the wrong value of the zero
lag value of the cross correlation. This means that if one
is successful in obtaining the correct image by using the
partial derivative seismogram, one has gone a step for-
ward in solving the seismic inverse problem. A practical
way of applying the partial derivative seismogram to the
imaging of the subsurface is to use the kinematic
waveform of the partial derivative seismogram. In con-
sidering the kinematic waveform expression of Eq. (16),
we can substitute the partial derivative seismogram into
the hyperbola calculated by the ray tracing or other tech-
niques. A mathematical expression to this can be given as

xmax — tmax x2
b= [ uwz=onsli-\w+| an

where 8 is the delta function and the hyperbolic ex-
pression of the kinematic waveform of the partial deri-
vative seismogram with respect to the material parameter.
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Eq. (17) is the expression for imaging a reflection
seismogram. The advantage of this kinematic approach is
that when one uses the kinematic waveform of partial deri-
vative seismogram, one excludes the multiples in cal-
culating the inner product. Due to this, the kinematic
waveform approach automatically demultiples the image
of the subsurface unless the hyperbola matches the mul-
tiples, coincidently. In case of refraction waves, the hy-
perbola in Eq. (17) can be replaced with a straight line.
The most important thing we should note is that because
one never knows the amplitude term of the partial deri-
vative seismogram when approximating it by ray tracing,
one must use the amplitude term existing in the field
seismogram. This is the reality faced by geophysicists in
applying the Kirchhoff migration to the real seismogram.

Conclusion

A kinematic evaluation of the partial derivative seismo-
gram, being the theoretical support for the prestack depth
migration, was presented in this paper. The travel time
curve calculated by ray tracing using the source and re-
ceiver reciprocity is the first arrival of the partial deri-
vative seismograms with respect to the velocity and den-
sity. Through the analysis of the partial derivative seismo-
grams for the acoustic wave and the elastic wave equation,
the travel time curve on the basis of the acoustic media
represents the first arrival of the partial derivative seismo-
grams with respect to the P-wave velocity or the S-wave
velocity or density.

For the prestack depth migration of the reflection
seismogram, the summation of seismic signal along the hy-
perbola calculated by ray tracing results in obtaining the
superimposed subsurface image of the velocity and the
density. The stacking of head waves along a straight line
initiated by Landa et al. (1993) is to use the fastest arrival
travel time of the partial derivative seismogram. In this
case, one discards the later wave events following the first
arrival (head wave arrival) of the partial derivative seismo-
gram. The kinematic approximation of the partial deri-
vative seismogram by ray tracing is the fastest and the

most economical tool in imaging the subsurface. However,
the frequency domain modeling technique suggested by
Shin and Sohn (1995) is a possible choice for future im-
aging technique (using the source and receiver reciprocity),
giving a complete partial derivative seismogram and pro-
viding a way to compute a complete partial derivative
seismogram. The full waveform imaging technique using
the complete partial derivative seismogram will be a big
challenge for the next generation seismic data processing,
and has a possibility to reopen the floodgate to the seismic
inversion frontier ed by Tarantola (1984), Chavent (1986),
Mora (1987), Shin (1988), Pratt and Worthington (1990).
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