Applied Biological Chemistry
- 제41권1호
- /
- Pages.89-94
- /
- 1998
- /
- 2468-0834(pISSN)
- /
- 2468-0842(eISSN)
망간 산화물에 의한 3가 크롬의 산화반응에 미치는 크롬 화학종들의 영향
Chromium Speciation in Cr(III) Oxidation by Mn-Oxides: Relation to the Oxidation Mechanism
- 정종배 (대구대학교 자연자원대학 농화학과)
- Chung, Jong-Bae (Department of Agricultural Chemistry, College of Natural Resources, Taegu University)
- 발행 : 1998.02.28
초록
크롬의 산화는 자연계에 존재하는 여러 가지의 Mn-oxide에 의해 일어나며 산화과정에 존재하는 크롬 화학종들은 반응계 내에서 흡착, 침전 현상을 유발할 수 있고 결과적으로 산화반응을 조절할 수 있을 것이다. 본 연구에서는 birnessite와 pyrolusite에 의한 크롬의 산화에서 크롬 화학종이 반응에 미치는 영향을 조사하였다 Mn-oxide는 그 종류에 따라 크롬 산화력에서 큰 차이를 보였으며 용액의 pH와 초기 3가 크롬 첨가량도 산화반응에 큰 영향을 미쳤다. 동일 표면적당의 산화력을 비교하면 pyrolusite의 산화력은 birnessite의 5% 정도에 불과하였다. 이는 pyrolusite 의 결정도에 크게 기인하며 또한 양으로 하전된 표면 특성 때문에 반응물인 3가 크롬의 접근이 어렵고 반응산물인 6가 크롬의 흡착 등에 기인하는 것으로 보인다. Birnessite에 의한 산화반응에서 pH 3에서는 oxide의 표면에서의 크롬 화학종들의 흡착이나 침전 현상은 발견되지 않았으며 pyrolusite의 경우 일부 6가 크롬의 흡착이 나타났으나 침전현상은 발견되지 않았다. 따라서 pH 3의 경우 산화반응은 Mn-oxide의 특성에 따라 결정된다. Mn-oxide에 의한 크롬의 산화는 열역학적으로 용액의 pH가 높아질수록 더 진행되어야 한다. Birnessite의 경우 pH 5에서 오히려 산화반응이 현저히 저해되었는데 이는 birnessite의 표면에 형성되는 3가 크롬의 침전이 반응표면을 감소시킴으로써 나타나는 현상으로 판단된다. Pyrolusite의 경우 pH 3보다 pH 5에서 크롬의 산화는 더 일어나나 초기 3가 크롬의 첨가량이 많아지면서 반응이 억제된다. 일부 3가와 6가 크롬의 흡착이 일어나나 이 경우도 역시 pyrolusite의 표면에 형성되는 3가 크롬의 침전이 반응을 조절하는 주 요인으로 생각된다. Mn-oxide의 표면에 형성되는 3가 크롬의 침전은 산화가 일어날 수 있는 반응표면을 감소시키고 또한 반응물의 농도를 낮춤으로써 용액의 pH가 높고 3가 크롬의 첨가량이 많아질 때 크롬의 산화반응을 억제하는 주 요인이 되는 것으로 판단된다.
Various Mn-oxides can oxidize Cr(III) to Cr(VI). Behaviors of chromium species in the oxidation system, especially on the oxide surface, are expected to control the reaction. During Cr(III) oxidation by birnessite and pyrolusite, Cr species in the reaction system were determined to elucidate their effects on the oxidation. Capacities of Cr oxidation of the two Mn-oxides were quite different. Solution pH and initial Cr(III) concentration also had significant effects on the Cr(III) oxidation by Mn-oxides. Chromium oxidation by pyrolusite was less than 5% of the oxidation by birnessite. The high crystallinity of pyrolusite could be one of the reasons and the difficulty of Cr (III) diffusion to the positive pyrolusite surface and Cr(VI) and Cr(III) adsorption seems to be other controlling factors. At pH 3, adsorption or precipitation of Cr species on the surface of birnessite were not found. Small amount of Cr(VI) adsorption was found on the surface of pyrolusite, but arty Cr precipitation on the oxide surface was not found. Therefore Cr(III) oxidation at pH 3 seems to be controlled mainly by the characteristics of Mn-oxides. Chromiun oxidation by Mn-oxides is thermodynamically more favorable at higher solution pH. However as solution pH increased Cr oxidation by birnessite was significantly inhibited. For Cr oxidation by pyrolusite, as pH increased the oxidation increased, but as Cr(III) addition increased the reaction was inhibited. Under these conditions some unidentified fraction of Cr species was found and this fraction is considered to be Cr(III) precipitation an the oxide surface. Chromium(III) precipitation on the oxide surface seems to play an important role in limiting Cr(III) oxidation by armoring the reaction surface on Mn-oxides as well as lowering Cr(III) concentration available for the oxidation reaction.