생 약 학 회 지 Kor. J. Pharmacogn. 29(4): 318~322(1998)

Studies on the Constituents from the Herbs of Ajuga multiflora (II)

Young Jun Yu, Jae Chul Do, Soon Youl Kwon¹ and Kun Ho Son^{1,*}

College of Pharmacy, Yeungnam University, Kyongsan 712-749 and

Department of Food and Nutrition, Andong National University, Andong 760-749, Korea

Abstract – Continuing to previous report, seven compounds were isolated from the aerial parts of *Ajuga multiflora*. The structures of them were established as Di-2-ethylhexyl phthalate (1), ursolic acid (2), sterol glucoside (3), 20-hydroxyecdysone (4), makisterone A (5), cyasterone (6) and apigenin 7-glucuronide (7), respectively.

Key words – *Ajuga multiflora*; Labiatae; cyasterone; 20-hydroxyecdysone; makisterone A; apigenin 7-glucuronide.

In previous paper¹⁾, we reported the isolation of apigenin and two iridoid glucosides, 8-*O*-acetylharpagide and harpagide from *A. multiflora*. In further phytochemical work on this plant, we isolated seven compounds.

This paper describes the structure elucidation of these compounds.

Experimental

General experimental procedures – The mps were taken on a Yanaco micro-melting point apparatus and are uncorrected. The IR spectra were determined in KBr tablets on a Mattson Polaris TM (FT-IR) spectro-photometer and the UV spectra were run with a Varian DMS 200 UV-Vis spectrophotometer. The EI-MS and FAB-MS spectra were recorded on a JMS SX-102A and JMS HX-110/110A (JEOL) spectrometer. The ¹H- and ¹³C-NMR spectra were recorded with a Bruker DRX-500 or Brucker AMX-300 spectrometer with TMS as an intenal standard

and chemical shifts are given a ppm. TLC chromatography was performed on precoated Kieselgel 60 F_{254} plates (Merck, 5715).

Plate material - See previous report¹⁾.

Extraction and isolation—The chopped herbs of *A. multiflora* (2.5 kg) were extracted with MeOH under reflux (three times, 12 h each). The combined MeOH extracts were evaporated under reduced pressure, to give a brown residue (302 g), which was partitioned with *n*-hexane, EtOAc, *n*-BuOH and water, successively. EtOAc fraction (11 g) was chromatographed on silica gel with increasing concentration of MeOH in CHCl₃ as eluents to give six compounds (1~6). *n*-BuOH fraction (50 g) was chromatographed on silica gel with CHCl₃-MeOH-H₂O (52:28:8, lower layer) as eluent to obtain compound 7.

Compound 1 – Yellowish oil. UV λ_{max} (MeOH) (logε) 224 (4.0), 274 (3.2). EI–MS m/z 390 [M]⁺, 149 [phthalic anhydride+H]⁺ (base peak), 104 [2×C₄H₉]⁺, 57 [C₄H₉]⁺. ¹H–NMR (300 MHz, CDCl₃) δ 0.87 (6H, t, J=7.3 Hz, 2×CH₃), 0.91 (6H, t, J=7.4 Hz, 2×CH₃), 1.24~1.46 (16H, m, 8×CH₂) 1.66 (2H, m, 3′and 3″-CH), 4.21

^{*}교신저자 : Fax 0571-850-5494

(4H, dd, J=6.0, 3,6 Hz, 2′ and 2″-CH₂), 7.50 (2H, dd, J=6.0, 3.3 Hz, 3 and 4-CH), 7.69 (2H, dd, J=6.0, 3.3 Hz, 2 and 5-CH). ¹³C-NMR (75.5 MHz, CDCl₃) δ 11.6 (2×CH₃), 14.6 (2×CH₃), 23.6 (CH₂), 24.4 (CH₂), 29.5 (CH₂), 31.0 (CH₂), 39.3 (C-3′ and 3″), 68.7 (C-2′ and 2″), 129.4 (C-3 and 4), 131.5 (C-2 and 5), 133.1 (C-1 and 6), 168.3 (C-1′ and 1″).

Compound 2-A white amorphous powder form MeOH, mp 290~292°C, LB test: positive. IR ν_{max} (KBr) 3445 (OH), 1692 (carboxylic C=O), 1628 (C=C) cm⁻¹. El-MS m/z 456 [M]⁺, 438 [M-H₂O)⁺, 248 (D/E ring, base peak), 203 [248-COOH)⁺. ¹H-NMR (300 MHz, CDCl₃+DMSO- d_6) δ 0.77, 0.82, 0.92, 0.98, 1.08 (each 3H, s, CH₃), 0.85 (3H, d, J=6.4 Hz, CH₃), 0.93 (3H, d, J=8.6 Hz, CH₃), 2.19 (1H, d, J=11.2 Hz, H-18), 3.18 (1H, dd, J=5.5, 7.7 Hz, H-3), 5.23 (1H, brs, H-12). ¹³C-NMR (75.5 MHz, CDCl₃+DMSO- d_6) see Table II.

Compound 3 – A white amorphous powder from MeOH, mp 298~299°C, LB test: positive, Molisch test: positive. 1 H-NMR (300 MHz, pyridine- d_{5}) δ 0.66 (3H, s, 18-CH₃), 0.84, 0.87, 0.89 (each 3H, s, 29, 27, 26-CH₃), 0.93 (3H, s, 19-CH₃), 0.98 (3H, d, J=6.4 Hz, 21-CH₃), 5.04 (1H, d, J=7.7 Hz, anomeric H), 5.35 (1H, brd,

J=4.5 Hz, H-6).

Compound 4-A white needles from aquous MeOH, mp 237~239°C, LB test: positive. IR v_{max} (KBr) 3429 (OH), 1651 (α,β-unsaturated C=O) cm⁻¹. FAB-MS m/z (rel. int.) 503 (M+Na)⁺ (23.59), 481 (M+H)⁺ (57.44), 463 (M+H-H₂O)⁺ (91.62), 445 (M+H-2H₂O)⁺ (75.97), 427 (M+H-3H₂O)⁺ (32.55), 409 (M+H-4H₂O)⁺ (5.75), 391 (M+H-5H₂O)⁺ (5.50), 363 (C-20/C-22 fission) (22.51). ¹H-NMR (500 MHz, CD₃OD) see Table II. ¹³C-NMR (125 MHz, CD₃OD) see Table II.

Compound 5 – A white amorphous powder from MeOH, mp 260~262°C, LB test: positive. IR ν_{max} (KBr) 3431 (OH), 1658 (α,β-unsaturated C=O) cm⁻¹. FAB-MS m/z (red. int.) 517 [M+Na⁺] (10.36), 495 [M+H)⁺ (59.11), 477 [M+H-H₂O)⁺ (15.58), 459 [M+H-2H₂O)⁺ (25.55), 441 [M+H-3H₂O]⁺ (10.04), 363 (C-20/C-22 fission) (20.21). ¹H-NMR (500 MHz, CD₃OD) see Table II. ¹³C-NMR (125 MHz, CD₃OD) see Table II.

Compound 6-A white needles from MeOH, mp 164~165°C, LB test: positive. IR ν_{max} (KBr) 3430 (OH), 1750 (γ-lactone), 1649 (α,β-unsaturated C=O) cm⁻¹. FAB-MS m/z (rel. int.) 521 (M+H)⁺ (25.24), 503 [M+H-H₂O]⁺

Table I. ¹H-NMR spectral data of compounds 4~6 (500 MHz)^a

Position	$4^{ ext{b}}$	5^{b}	6°
H-2	3.85 (1H, m)	3.85 (1H, m)	4.16 (1H, m)
H-3	3.97 (1H, brd, 2.2)	3.97 (1H, brd, 2.1)	4.21 (1H, brd, 2.2)
H-5	2.40 (1H, m)	2.39 (1H, m)	3.00 (1H, dd, 13.1, 3.5)
H-7	5.83 (1H, d, 2.4)	5.83 (1H, d, 2.2)	6.28 (1H, d, 2.2)
H-9	3.17 (1H, m)	3.17 (1H, t, 8.1)	3.60 (1H, dd, 9.8, 8.4)
H-17	2.40 (1H, m)	2.37 (1H, m)	2.87 (1H. t. 9.2)
H-18	0.91 (3H, s)	0.92 (3H, s)	1.24 (3H, s)
H-19	0.99 (3H, s)	0.99 (3H, s)	1.08 (3H, s)
H-21	1.22 (3H, s)	1.21 (3H, s)	1.57 (3H, s)
H-22	3.34 (1H, d, 10.7)		3.94 (1H, brd, 9.3)
H-25		3.48 (1H, d, 10.6)	2.38 (1H, m)
H-26	1.21 (3H, s) ^d	$1.18 (3H, s)^{d}$	
H-27	1.22 (3H, s) ^d	$1.17 (3H, s)^{d}$	1.36 (3H, d, 7.0)
H-28		0.96 (3H, d, 6.8)	4.03 (1H, qd, 6.1, 3.2)
H-29			1.32 (3H, d, 6.1)

^aChemical shifts (δ) are expressed in ppm from internal standard (TMS) and coupling constant (J) are in Hz. ^b measured in CD₃OD. ^c measured in pyridine- d_5 . ^dAssignment may be interchangeable.

Kor. J. Phamacogn.

Table II. ¹³C-NMR spectral data of compounds 2, 4, 5 and 6 (125 MHz)

position	2ª	4 ^b	5 ^b	6°
C-1	38.9	37.9	37.9	38.0
C-2	27.5	69.2	69.2	68.1
C-3	78.8	69.0	69.0	68.1
C-4	39.5	33.0	33.0	32.5
C-5	55.8	52.3	52.3	51.4
C-6	18.6	206.9	206.9	203.4
C-7	33.3	122.6	122.7	121.9
C-8	39.4	168.4	168.4	165.8
C-9	47.7	35.6	35.6	34.5
C-10	37.2	39.8	39.8	38.7
C-11	23.5	22.0	22.0^{e}	21.1
C-12	125.6	33.3	33.4	32.1
C-13	138.6	49.1^{d}	$49.0^{\rm d}$	48.2
C-14	42.3	85.7	85.7	84.2
C-15	28.3	32.3	32.3	31.9
C-16	34.4	22.0	21.9^{e}	21.4
C-17	47.8	51.0	51.0	50.0
C-18	52.9	18.5	18.6	17.9
C-19	39.1	24.9	24.9	24.5
C-20	39.0	78.4	78.5	76.8
C-21	30.9	21.6	21.5	21.0
C-22	37.0	78.9	75.9	74.0
C-23	28.5	27.8	35.0	34.5
C-24	16.1	42.9	42.2	48.7
C-25	15.8	71.8	74.3	42.5
C-26	17.4	$29.5^{\rm e}$	26.6	179.2
C-27	23.8	30.2^{e}	28.0	15.9
C-28	180.2		15.4	79.8
C-29	17.4			19.4
C-30	21.5			

^ameasured in $CDCl_3+DMSO-d_6$. ^bmeasured in CD_3OD . ^cmeasured in pyridine- d_5 . ^doverlapped with intensive solvent multiplet. ^eassignment may be interchangeable.

(21.53), 485 $[M+H-2H_2O]^+$ (6.0), 363 (C-20/C-22 fission) (22.05). ^1H-NMR (500 MHz, pyridine- d_5) see Table I. $^{13}C-NMR$ (125 MHz, pyridine- d_5) see Table II.

Compound 7-A yellow amorphous powder from MeOH, mp \rangle 300°C, FeCl₃, Mg/HCl tests: positive, Molish test: positive. IR ν_{max} (KBr) 3423 (OH), 1655 (α , β -unsaturated C=O), 1607, 1499 (C=C), 1071 (glycosidic CO) cm⁻¹, UV λ_{Max} (50% MeOH) (logε) 268 (4.28), 338 (4.34). FAB-MS m/z 447 [M+H]⁺, 271 (genin+H)⁺. ¹H-NMR (500 MHz, DMSO- d_6) δ 5.10 (1H, d, J=7.5 Hz, anomeric proton), 6.41 (1H, brs, H-6), 679 (1H, brs, H-8), 6.90 (2H,

d, J=10.0 Hz, H-3′ and 5′), 7.88 (2H, d, J=10.0 Hz, H-2′ and 6′). ¹³C-NMR (125 MHz, DMSO- d_6) δ 164.2 (C-2), 102.9 (C-3), 181.9 (C-4), 160.4 (C-5), 99.4 (C-6), 162.9 (C-7). 94.6 (C-8), 156.9 (C-9), 106.0 (C-10), 120.6 (C-1′), 128.4 (C-2′ and C-6′), 116.0 (C-3′ and C-5′), 161.7 (C-4′), 99.5 (C-1″), 72.9 (C-2″), 76.3 (C-3″), 71.9 (C-4″), 74.3 (C-5″), 173.0 (C-6″).

Results and Discussion

Column chromatography of EtOAc and *n*-BuOH fractions of MeOH extract afforded seven compounds, three of which were identified as Di-2-ethylhexyl phthalate 1, ursolic

acid 2 and sterol glucoside 3 by comparison of spectral data with those of the reported in literature²⁻⁴⁾ as well as direct comparison with authentic samples. Since 1 and related phthalates are widely used in the plastics industry and are indicators of environmental pollution, 1 may not be a consituent of this plant.

Compound 4 was positive in the Liebermann-Burchard reaction and showed a strong hydroxyl group absorption band and α,β-unsatruated ketone absorption band in its ir spectrum. In the FAB-MS spectrum, 4 exhibited the pseudomolecular ion peak at m/z 503 $[M+Na]^{+}$ and 481 $[M+H]^{+}$ corresponding to the molecular formular C₂₇H₄₄O₇. The ¹H-nmr spectrum displayed signals due to five tertiary methyl groups, three signals due to protons attached to a carbon bearing hydroxyl groups and one olefinic proton at δ 5.83 (d. J=2.4 Hz). The ¹³C-nmr spectrum showed signals for 27 carbon atoms. The multiplicity assignments were made by DEPT experiments. The fragment ion peak at m/ z 363 arising from the C-20/C-22 cleavage in the ms spectrum and the charcateristic $^{13}\text{C-nmr}$ signals at δ 206.9 (s), 168.4 (s), 122.6 (d), 69.2 (d) and 69.0 (d) in accord with the occurrence of a 2β,3β-dihydroxy-7-en-6-one system strongly suggested that this compound is a phytoecdysteroid. Detailed analysis of ¹H-¹H COSY and HMQC data as well as the comparison with literature data⁵⁾ enabled to confirm 4 is 20-hydroxyecdysone (ecdysterone).

Compound 5 showed an ir spectrum similar to that of 4, suggesting it to be an ecdysteroid. Its molecular weight was deduced to be 494 by FAB-MS spectrum and the C-20/C-22 fission ion peak was also shown at m/z 363. On the comparison of nmr spectrum with that of 4, one additional methyl

group was observed in 5. The 13 C-nmr signals of 5 for C-1 \rightarrow C-21 are superimposable to those of 4. And two terminal methyl singlets (26-CH₃ and 27-CH₃) were observed in the 1 H-nmr spectrum. Thus, one additional methyl group must be located on C-23 or C-24. The signal for C-24 at δ 42.9 (t) in 4 is displaced by δ 42.2 (d) in 5 but the multiplicity for C-23 (t) is not changed. thus, C-28 methyl group is located on C-24. The comparison of the 13 C-nmr data of makisterone A and 24-epimakisterone A reported by Miller *et. al*⁶⁾ with those of 5 resulted that the data of 5 resembles those of makisterone A in all respects.

Compound 6 gave positive Liebermann-Burchard test and showed \(\gamma\)-lactone absorption band at 1750 cm⁻¹ in the ir spectrum. In the FAB-MS spectrum, 6 exhibited the pseudomolecular ion peak at m/z 521 (M+ H)⁺ and the ion peak at m/z 363 arising from the C-20/C-22 cleavage. In the ¹H-nmr spectrum, two tertiary methyl groups at δ 1.21 (s) and δ 1.22 (s) shown in 4 were disappeared. Instead, Two secondary methyl groups at δ 1.32 (d, J=6.1 Hz) and 1.36 (d, J=7.0 Hz) were observed. In the 13 C-nmr spectrum, The signals at δ 179.2 (C-26) and 79.8 (C-28) strongly indicated the presence of lactone moiety. In the light of above findings, 6 is identified as cyasterone and the literature data supported the result. 70

Compound 7 was positive in the FeCl₃, Mg/HCl and Molisch tests, suggesting that it is flavonoid glycoside. On acid hydrolysis 7 liberated D-glucoronic acid and an aglycone, apigenin. In the FAB-MS spectrum, the pseudomolecular ion at m/z 447 $[M+H]^+$ was oberved. Thus, 7 is an apigenin monoglucuronide. On the comparison of the ¹³C-nmr chemical shifts of 7 with those of apigenin, the signals corresponding to C-6, C-7 and C-8 of 7 revealed glycosidation shifts at C-6

(+0.8 ppm), C-7 (-1.2 ppm) and C-8 (+0.7 ppm), suggesting that glucuronic acid unit was attached at C-7 of apigenin. The configuration of sugar moiety was determined by J value of the anomeric proton signal. Accordingly, the structure of 7 was elucidated as apigenin 7-O-β-D-glucuronoside.

Acknowledgements

This research was partly supported by the research grant from Institute for Drug Research, Yeungnam University.

References

- 1. Yu, Y. J., Do, J. C., Jung, K. Y., Kwon, S. Y. and Son, K. H. (1998) Studies on the constituents of the herbs of *Ajuga multiflora* (1). *Kor. J. Pharmacogn.* 29(2): 75–78.
- Wang, Z. T., Xu, G. J., Hatori, M. and Namba, T. (1988) Constituents of the roots of Codonopsis pilosmia. Shoyakugaku Zasshi 42(4):

339-342.

- Woo, M. H., Lee, E. H., Chung, S. O. and Kim,
 C. W. (1996) Constituents of Spiraea prunifolia var. simpliciflora. Kor. J. Pharmacogn. 27(4): 389-396.
- Kim, D. K., Kwak, J. H., Song, K. W., Kwon, H. C., Zee, O. P. and Lee, K. R. (1996) Phytochemical constituents from *Aconitum Pseudolaeve* var. *erectum. Kor. J. Pharmacogn.* 27 (1): 75-79.
- 5. Jaroslav, P., Milos, B., Karel, V., Vera, L. and Juraj, H. (1994) Ecdysteroids from the roots of *Leuzea carthamoides*. *Phytochemistry* 37(3): 707–711.
- Miller, R. W., Clardy, J., Kozlowski, J., Mikolajczak, K. L., Plattner, R. D., Powell, R. G., Smith, C. R., Weisleder, D. and Zheng, Q. T. (1985) Phytoecdysteroids of *Diploclisia glau*cescens seed. *Planta Med.* 51: 40-42.
- Calcagno, M. P., Camps, F., Coll, J. Mele, E. and Sanchez, F. B. (1996) New phytoecdysteroids from roots of *Ajuga reptans* varietics. *Tetrahedron* 52(30): 10137–10146.

(Received 5 September 1998)