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We introduce the Crawford number and codal metric to analyze perturbation bounds of the generalized

eigenvalue problem.
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I. Introduction

Let A and B be matrices of order »n with
complex elements. By the eigenvalue problem of
A with respect to B, we mean the problem of
determining the set of all A for which the
equation Ax= A Bx has a nontrivial solution. In
this case A is called an eigenvalue of A with
respect to B and x an eigenvector correspon-
ding to the eigenvalue A. The generalized
eigenvalue problem Ax=ABx arises in the
theory of systems of ordinary differential
equations with constant coefficients and has

important physical applications. We shall be
concerned with the anlalytic problem of
determining perturbation bounds for the eigen-
values and eigenvectors of Ax=ABx where A
and B are Hermitian matrices of order =.
Whenever A and B have a common null
space except zero, the characteristic polynomial
det (A—AB) is identically zero. That is,
every number is an eigenvalue of Ax= ABx. In
the case that B is singular, the characteristic
polynomial is of degree less than #. That is,
Ax=ABx has an infinite eigenvalue and the
characteristic ~ polynomial of the reciprocal

problem Bx=pAx has a zero at the origin
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equal in multiplicity to the defct £ in the
charateristic polynomial det (A —AB). A corres-
ponding eigenvector for both problems is
natuarally a null vector of B. If B is
perturbed slightly, the eigenvalues of Ax= ABx
will generally contatin % large eigenvalues that
become infinite as the perturbation is reduced to
ZET0. If B is nearly singular, the nearly
infinite eigenvalues of Ax= ABx are extremely
sensitive to perturbations in B and can not be
calculated accurately without high precision
arithmetic.

It has been known that even if the large
cigenvalues of the problem usually undergo
large  perturbations, their reciprocals  will
undergo only small perturbations. This suggests
that the usual Euclidean metric on the line is
not appropriate for reporting the sizes of the
perturbations in the eigenvalues. So we
introduce the concepts of Crawford number and
chodal metric in section 2. In the section 3 we
will give some facts for perturbation bounds of
eigenvalues. Finally we will conclude with some
remarks in section 4.

II. On the Crawford number

The idea of the field of values of a complex
n by n matrix C was introduced by Toeplitz
in 1918 It is the set of complex numbers
defined by

WO ={x"Cx| | xll =1,xe C"}.

Since it is closed and bounded, it is compact.
It is also a connected set. Toeplitz showed in
1918 that W has a convex outer boundary, and
Hausdorff proved in 1919 that W itself is
convex, Kipperhahn also showed in 1951 that
W is described as the convex hull of a certain
algebraic curve of degree # obtainable from C.

It was well known that every matrix C in

1

C™" is decomposed uniquely by
C=A+iB

where A and B in C™" are Hermitian.
Hence we assume A and B are Hermitian and
consider the set W (A, B) defined by

WA, B)={x"(A+iB)x |
fxl =1,xe C"}

For real symmetric matrices A and B, we
define

RA, B ={x"(A+iBx | | x| =1,xe R"}
Then we have that
R (A, B) € W(A,B).
Brickman[1] showed that for any » > 3,
R (A,B) = W(A, B).

Thus R (A, B) is convex for any »n = 3,
but it is not true for n= 2.

Althought we can have R #+= W for n = 2,
it is now clear that W is the convex hull of K
in any case[ll. We consider the generalized
eigenvalue problem Ax = ABx,

where A and B are Hermitian. We give a
definition of the Crawford number for A and
B.

DerFmniTiON. The eigenvalue problem
Ax = ABx is said to be definite if

(A, B=inf{ | w|:we KA, B)}>0,

which is called the Crawford number for A
and B.
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We consider the transformation (A,, B,)
of (A, B),

(57) = () ~sno) (4)

Let X be a matrix for which X AX and

X"BX are diagonal.
Since

X'AX = cos(p)X"AX— sin(p)X BX
and
X'B,X = sin(p)X"AX+ cos(9)X BX

the matrix also diagonalizes A, and B, It

follows that the problem
Ax = ABx
is equivalent to the problem

A,x = AB,x.

So we want to take ¢ so that we have an
equivalent promble to Ax = ABx, in which

B, is positive definite.

TueoreM 1. If the problem Ax = ABx is
definite, there is a real constant ¢ such that

B, is positive definite and
C(A, B) = /‘min(B@’)’

where  Agin(B,) denotes the smallest

eigenvalue of B,[4].

This implies that the Hermitian matrix

_1 _1
B, *A,B, 2 exists and can be diagonalized by

~1
a unitary matrix Y. It follows that B, ¥

diagonalizes both A, and B, and thus A
and B. In other words, if the problem
Ax = ABx is definite, then there is a
nonsingular matrix X such that X AX and
X"BX are both diagonal. If we set

X'AX = diag (), pta. ", 11,)

and
X'BX = diag(v,, vs,"", U,),
then the eigenvalues of Ax = ABx are
given by
Ai: ﬁ'!_
v;

This admits the possibility of an infinite
v; = 0.

indeterminant case y; =

eigenvalue  when However the
v; = 0 can not
occur in a definite problem because if they can,

there is a corresponding eigervector x, which

is the -th column of X such that
21 (A+iB)x; =

This is a contradiction to ¢(A, B)> 0.

For convenience we assume the perturbations
are Hermitian. Then we have a following
theorem(4].

THEOREM 2.

A+ E B+ F) 1
>d(AB—-(IEI*+ IFID?

This implies that if the perturbations of A

and B are small enough so that

1
(A, B — (I EI*~IFIH?



72 J. Natural Science, Pai Chai

is positive, then the problem
(A+E)x = M(B+ F)x

is also definite.

III. On perturbation bounds

In this section we will summarize some
results for the definite generalized eienvalue
problem. For the Hermitian eigenvalue problem
Ax=Ax, 1t that if the
eigenvalues are ordered so that

is well known

A< < <A,

and those of the perturbed problem Ax= Ax

are ordered so that

T<h<<i
then
(A=Al <1A-A]|
for i=1,2,,n Let the  problem

Ax = ABx be definite, and let
IEI?+ IF]*<c(A, B).

Then theorem 2 says the perturbed problem
Ax=ABx is also definite.
Let Ax,=A;Bx, where x;#+(. We define

the angle associated with A, to be

0; 6 (xiAx;, x;Bx;)

and assume that

0 <6,< - <0,
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If B is positive definite, this corresponds to
the natural ordering

/{13/{23"’5/‘

n

of the eigenvalues.

Tueorem 3. Let the problem Ax = ABx be
definite. Then

§; = min max8(xTAx, x'Bx)
dimX=i{xeX
x+0

= max min&(xTAx,x"Bx)
dimX=n—i+]1 xeX

x#0

As a consequence of theorem 3, a number of
of
symmetric matrices generalize to the definite

separation theorems for the eigenvalues

problem. For convenience, if A and B are
principal submatrices of A and B of order

n—1, then the eigenvalues

~N

2] < 22 < e <L A”_]

of the promblem Ax=ABx satisfy

01 < 91 < 92S e < ,9"_1 < Bn.

THEOREM 4. Let Ax = ABx be definite and
let the eigenvalues of Ax = ABx be ordered so
that 0] < 92 < - L 6,,.

1
Let e={IEI%+ | F|?%°?

and that e<c(A, B) that
Ax=ABx is definite, where A= A+ E and
B=B+F. Let the eigenvalues of Ax= ABx

o~

be ordered so that &; < @, < - < @,

assume Rle]

Then | 8;— 8;] <sin™!

€
c(A, B) "
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The bound in the theorem 4 implies a bound
in the chodal metric.

DEFINITION. Let A= ‘% and A= -4 Then
v

the chordal distance between A and A is
defined by

AN = l/J?J—Zwa '
x ) \/y2+vz\/ /,zz+ vt

It follows from
sin(a— B) = sin(a)cos(B) — cos(a)sin(B)

that
x(A, A)=sin | &y, v) — 0z, V) | .
Hence
> e
X(X; Az)s C(A, B) B

This theorem also implies the classical
bounds for the Hermitian eigenvalue problem.

A
Let B=1 and let A,-(r):—r— be the

eigenvalue of the problem
Ax = A; (v) (¢Dx,

where A, is an eigenvalue of Ax= Ax,

which is not depend on 7. Then
(A, ) =inf -V [(x° A0+ A=+ K1)

if 7 is large. Hence
1040 8D | = 1 A0 =D | + )

Consequently,

1A = Al =1 A(D—AUD | ¢

<1040 - 0D | rze+ o L)

which gives the classical result, as r — oo,

~

A=Al < |A-A).
Crawford[3] showed the following bounds.

TueOREM 5. Let A=A+ E and B=B+F,
where A, B, E and Fe R™" are symmetric
with B and B+ F positive definite. Then

|An—_;1\nl
1
<IB+R T IENI+IFI® 2.

Notices that this is expressed in terms of
chordal metric as

x[(A,, 1), (4, D]
1
< B+ TIEI*+IFIY 2.

IV. Concluding Remarks

Let Ax=ABx and B > (. Then it is
equivalent to the problem

1 _1
B ?AB %y= A,

which has the real eigenvalues. It is clear
that the positiveness of B implies the problem
Ax = ABx is definite. But. the converse is not
true. Since the set {x: [ x|l =1} is closed
and bounded, it follows that c(A, B) » 0 if
and only if x"(A+iB)x>0, for any x with
lxl =1. Hence we conclude that
A=20(or B20) and kerB ) kerA={0} if
and only if the problem Ax = ABx is definite.
So the paper[4] extends the perturbation bounds
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to the matrix B which is singular.
Consider the transformation

(57)=( %8 D)%)

If (A, w) is an eigenpair of Ax = ABx, then

(u¢, w) is an eigenpair of A,x = AB,x, where

Acos (@) — sin(gp)
Asin(g) + cos (@)

p=

Conversely if x4 is an eigenvalue of
A,x=pBy,x, then A is an eigenpair of

Ax = ABx, where A is

pcos (@) + sin(e)
cos (@) — usin(p)

Consequently the problem Ax= ABx with
B=0 is changed to the equivalent problem
A'x=AB'x with B >0 so that we can find
the perturbation bounds from the generalized
eigenvalue problem with positive definite Gram
matrix.
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