An Improvement of the Deadlock Avoidance Algorithm

Deadlock 회피책에 대한 개선방안 연구

  • Kim, Tae-Yeong (Dept. of Computer Education Korea National University of Education) ;
  • Park, Dong-Won (Dept. of Computer Engineering Paichai University)
  • 김태영 (한국교원대학교 컴퓨터교육학과) ;
  • 박동원 (배재대학교 컴퓨터공학과)
  • Published : 1997.01.30


In this paper, the follow-up works of Habermann's deadlock avoidance algorithm is investigated from the view of correction, efficiency and concurrency. Habermann's deadlock avoidance algorithm is briefly surveyed and in-depth discussion of follow-up algorithms modified and improved is presented. Then, further improvement of Kameda's algorithm will be discussed. His algorithm for testing deadlock-freedom in computer system converts the Habermann's model into a labeled bipartite graph so that the deadlock detection problem can be equivalent to finding complete matching for Mormon marriage problem. His algorithm has a running time of O($mn^1.5$) because Dinic's algorithm is used. The speed of above algorithm can be enhanced by employing a faster algorithm for finding a maximal matching. The wave method by Kazanov is used for.

본 논문에서는 Habermann의 deadlock 회피책에 대한 기존의 방안을 향상시킬 수 있는 방법을 고안하였다. 먼저 correction, efficiency, concurrency 측면에서 기존의 개선 방법들을 비교 분석한 다음, 대표적인 Kameda의 개선방안을 심도있게 논의한다. Dinic의 알고리듬을 채택한 Kamedia의 방법에서는 실행시간 O($mn^1.5$)이 요구되지만 Karzanov의 wave method를 응용하여 본고에서 제안한 faster algorithm에서는 실행시간 O($mn^1.5$)이 됨을 보인다.