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DENSITY OF SEMIMARTINGALE IN CANONICAL
STOCHASTIC DIFFERENTIAL EQUATION

JAE-PILL OH

ABSTRACT. The existence and the smoothness of densities of ran-
dom variables, which are generated by the canonical stochastic dif-
ferential equation, can be proved by the Malliavin - Bismut method.

0. Introduction

It was pasted a little long time after J.M.Bismut(c.f. [1]) studied the
applications of Malliavin calculus in the stochastic differential equa-
tion(SDE) for the jump-type processes. But we can not meet many
papers for that problem yet, and in general, it is known as a difficult
problems to study the existence and the regularity of random variables
of jump-type semimartingales. Therefore, we want to study more this
problem for some SDE.

In the previous paper[5], we used a SDE which is defined by the
same vector fields for the continuous part and the jump part of semi-
martingales. But in this paper, we will deal the SDE which is defined
by another vector fields for the continuous part and the jump part, re-
spectively. Indeed, in [5], we studied the conditions of the existence and
the smoothness of densities of random variables, which are generated
by the canonical SDE of the form;

o) =+ [ @i + [ L@

t
+// ca(x,z)Na(ds,dz),
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where vy, vs, - - - , vy, are C'*°-vector fields, N, isa compensated Poisson
point process, W, = (W}, W2, ... W) is a Brownian motion and £
is a generator of semigroup of probability.

In this paper, we will think the same problems for another SDE of
the form;

r) =+ ijj /0 t v;(€s(2))dW] + /0 t L(&o—(x))ds
+//E[p§j 6o (2)|Na(ds, d2),

where vy, v, , U, V1,02, , Uy are C'°-vector fields, N, is a com-
pensated Poisson point process, Wy = (W}, W2 ... W!™) is a Brown-
ian motion and L is a generator of the form;

(1)

m

L(z) = A(z) + /E [exp(z 20;)(z) —x — Z 220 (2)]Ga(dz),

m
= (1/2) Zv x) + vo(x

Jj=1

Let B(x) and C, (7, z) be the matrices defined by the coefficients of
noise part and jum-part, respectively. We put as

Col(z,2) = e:r;p(z ;) (z) — =,
and
Co(r,2) = Culz,2) + 2.
For the function ¢, (x, 2), if there exist two constants ¢, > 0 such that
[Ca(, 2)| < C(1+ |2]%),

for all € R? and z € E,, and there exists a Borel set I'y, C R? x E,
such that for any y € R? and for the 2-section Iyz Cla,

(Uzer. . {y|Cay = 0}) N {y[By = 0} = {0},
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then the solution &;(x) of SDE (1) has a density y — p:(z,y) for all
rcRYand t € (0,T).

Furthermore, for x,y € R?, there exist two constants § > 0,e > 0
and two functions f,(z) and p,(z) which are defined by some conditions
with a constant ~ such that

- ly[?e
Y Calz, 2)ypal(z) > fa(Z)W

for all z € E,, then the solution & (x) of SDE (1) has a smooth density
y — pie(z,y).

Therefore, it is also good if we look this paper as a kind of gener-
alization and continuation of [5]. Further, we would like say that, for
simplicity, all of the terminologies and the notations of this paper are
same as [5] also.

1. Canonical stochastic differential equations

Let us think a canonical SDE;
(I-1) d&e(z) = X (& (), odt)

driven by the vector fields valued semimartingale of the form;
(I-2)

Xi(x) = Zv](w)Wtj +Uo($)t+/E (Z 29;)(2) Nu ((0, 1], d2),

a ]:1

where W; is a Brownian motion, and vy, vy, , U, U1, V2, -+ , Uy are
all smooth complete vector fields on R?. Then, by the solution of (I-1),
we will think the process {&;,t > 0} satisfying

N 5t<x>=a:+; / 03 (€s ()WY + / L(Eu(x))ds
-3

+/0 /Ea[exp(sz@j)(ﬁs_(I))—és—(x)] a(ds, dz),

Jj=1
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where
L(z) = Alx) + [E [exp(z 25;)(x) — = — Z 2955 (2)]Galdz),

A(z) = (1/2) va(x) +wo(2),

J=1

and G4(+) is a Lebesgue measure. From the equation (I-3), we put as
Col(z,2) = e:vp(z 21v;)(x) — =,
j=1

and
Co(m,2) = oz, 2) + .

Then, form the Proposition ITI-1 of [5], D,€,(z, 2) is also invertible.

If we put

(@™ (%)) axd = Taxm (@) (Caxm(2))",

and _
(@ () dxd = Faxm (2)(Faxm ()",
where
vi(z)  vy(x) v, ()
oy [ @) @) )
vi(x) v§(x) - k() g
i (x)  Uy(x) ¥y, (2)
oy [ @) @) @)
of(x) v§(x) - V(@) gy

and 17;(:1:) are the component functions of vector fields v;, and we put

B(z) = (" (2))axa

and
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then by the similar calculation with (III-7) and B(C,(x, 2)) of [5], we
see that B
B(Cy(7,2)) = (D.en(x,2))(D.Cu(x, 2))".

We put as following;;

(I-4) Co(z,2) = (DuCa) *B(Cn)[(Dytn ',

and make two assumptions;
ASSuMPTION (A). There exists two constants ¢, 6 > 0 such that

G, 2)] < ¢(1+|2]%)

for all z € R? and z € E,.

AssuMPTION (B). There is a Borel subset T'y, = {(x,2)} C R¢ x E,,
such that for all z € R? and for the a-section 'y, C Ty, if Go(Ta) =
m?

(Uzer. . {y|Ca(z, 2)y = 0}) N {y[B(x)y = 0} = {0},
if Go(Ta,z) < 00,

R N {y[B(x)y = 0} = {0}.

Then we get the following result.

THEOREM I-1. Under (A) and (B), the solution & (x) of (I-3) has a
density y — py(x,y) for all v € R® and t € (0,T].

Proof. Since vg,v1,- -+ ,Upm, 01,02, , 0y are all smooth complete
vector fields on R, the coefficients of the second part and the third part
of the right hand side of (I-3) are r-times differentiable with bounded
derivatives.

By the same method with the proof of Theorem III-1 of [5], we can
choose (’,0" > 0 such that

Dk (z,2)] < (14 |x|”) for k> 1.
Further, we can choose a function 17 € Neo<pcoo LP(Eq, G) such that

|Dinalz, 2)] < CIn(2)I(1 +|2|”),n > 1,
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for (,6 > 0. Thus we can get,
|D™ R ez, 2)| < C(1+ |z|®),n+k>1,k> 1.

Therefore, from this, the condition (i) of Assumption (A-r) of [5] are

satisfied. Also, from the putting (I-4), we see that (B) imply
Na(Uzer, . {y|Ca(@, 2)y = 0}) N {y[B(z)y = 0} = {0},

which is the main part of Assumption (B) of [5]. O O

This Theorem also has some subcases. We will explain these by
using the following Corollaries.

COROLLARY I-1. (c.f.[4]) If RankB(z) = d, or RankB(z) = d, then
the solution & (x) of (I-3) has a density y — p(x,y).

Proof. 1f RankB(x) = d, then from the putting C,(z,z) as (I-4),
we see that B
Uzera,m {y|(Ca(:L‘, Z)y = 0} = {0}7

because D,C,(,2) is also invertible. Therefore, the condition of (B)
is satisfied. If RankB(z) = d, then

{yB(z)y = 0} = {0}
Thus, (B) is satisfied also. O O

COROLLARY 1-2. If RankB(z) = O0(or, RankB(x) = 0), then to
get the existence of density of §(x) of (I-3), it must be held that
RankB(x) = d(or RankB(x) = d), respectively.

Proof. If RankB(z) = 0, then we get that for any y € R,

{y/B(z)y = 0} = R

Therefore, to satisfy the condition of (B), it is needed that
{yCa(z, 2)y = 0} = {0},

for some z € T, ., which is equivalent to RankC,, (z,2) = d. But, since
D¢y (z, z) is invertible, it is equivalent to RankB(x) = d.
If RankB(z) = 0, we can prove by the similar method. O O



Deunsity in SDE 205

COROLLARY I-3. If0 < RankB(z)( or RankB(z)) = k < d, then to
get the existence of density of {;(x) of (I-3), it is needed at least that
0 < RankB(z)( or RankB(z)) =1 < d and k + [ = d, respectively.

Proof. Let 0 < RankB(z) =k < d. Then we get

{y/B(z)y =0} = {y = (41,92, - - ,ya) € RYd—k numbers of y; are 0}.

Therefore, to satisfy the condition of (B), it must be held;
(i) 0 < RankC,(z,2) =1 < d and | + k = d, because of

RankC,(x,z) = Rank(B(z)),
(ii) the set {y’ = (v, 95, -+ ,y;) € R?} such that

{y|Ca(z, z)y = 0}
={y' = (1. b, ,¥4) € RYd — | numbers of y; are 0}

is disjoint with {y = (y1,%2, -+ ,ya) € RINJ0}, i.e.,
{y =2 ya)ly e RGN {y'ly € R} = {0}

But, from the condition of this Corollary, we see that (i) and (ii) are
satisfied. Therefore, we get the result.
If 0 < RankB(z) = k < d, then we can prove similarly. O O

EXAMPLE. In R? = {x = (2!,2?)}, let us think the vector fields
valued Lévy process of the type;

Xi(x) = v (x) Wy +/E (202) (%) N4 ((0,1], dz),

where W; is an 1-dimensional Brownian motion. Then by the solution
of a canonical SDE;

déi(x) = X (&(x), odt),
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we get the process &;(x) satisfying;

a0 =x+ [ niee) )th+/ L6 (x))ds

(I-5)
/ / ep(z02) (€ (%)) — & (X Na(ds, dz),

where
// exp(202) (%) — X — 205 (x)|Gar(d2),

and

Ax) = (1/2)v} (x).

If we represent SDE (I-5) in the component form, we get;

€hx) = ot + / 01 (6()) AW, + / £0(¢,_ (x))ds,

and
5?(X)=x2+/0 £O (e, (x))ds
t exrpl v x)) — 2 7 s dx
+/o [Ea[ p(2v2)(€s—(x)) — £ (%) Na(ds, d2),
where
£0(x) = A(x),
and

L3 (x) = /E [exp(2v2)(x) — 22 — (202)(x)]Ga(d2).

(i) If RankB(z) = 2, then for any y € R?,

{y|Ca(z,2z)y = 0} = {0},



(iii)
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for some z € I'y ;. Therefore, from Theorem I-1, the solution
£:(x) of (I-5) has a density. If RankR(x) = 2, then

{y[B(z)y = 0} = {0}.

Thus it is held also.
If RankB(z) = 0, then we get

{yICal(z, 2)y = 0} = R?

for any z € I'y ;. Therefore, to satisfy the conditions of (B),
we need that

{y|B(z)y = 0} = {0},

which is equivalent to RankB(x) = d. If RankB(z) = 0, then
we get also;

{y|B(z)y = 0} = R".
Therefore, we need that

{y|Co(x, 2)y = 0} = {0}

for all 2z € T, ,, which is equivalent to RankB(z) = d.
Let 0 < RankB(z) = k < d. Then, because of d =2 and k = 1,
if RankB(z) = 1, then

{y|B(z)y = 0} ={(0,92)} or {(y1,0)}.
Therefore, if

{y|Ca(z,2)y = 0} = {(11,0)} or {(0,42)}

for all z € Iy -, respectively, then we get

{yB(x)y = 0} N {y|Cu(z,z)y = 0} = {0}.

Therefore, the conditions of (B) are satisfied.
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THEOREM 1-2. Assume (A). Further, for x,y € RY, if there exist
€1 > 0 and 61 > 0 such that

(I-6) y'B(@)y > [yl >
and for x,y € R? and f,(z) € L*(E,, G,) which is satisfying;

/ sc_lemp[—ﬁ/ (1—e ) dz]ds < o0,
0 E

[e?

where ( and 0 are two positive numbers, and if there exist e; > 0,09 > 0
and a function p,(z) : E4 — [0,00) having the following properties;
(i) p € Gy,
(ii) pa(z) — 0 as z — O(E,) (boundary of E,,),
(iii) |DZrpa| € LY (E4, G,) for all v € N such that

|Z/|2€2

(I-7) y'Calz, 2)ypalz) 2 CO

for all z € E,,
then we get that & (x) of (I-3) has a smooth (C°) density y — pi(z,y).

Proof. From (A), we see that B(x) and C, (w, z) are dx d - symmetric
and nonnegative matrices, and that D, ¢, (z, z) is also invertible. Thus
there exist a constant ¢ > 0 such that

|det(I + Dy€a(z,2))] = ¢,

identically, and from (I-6) and (I-7) we can choose ¢ > 0,d > 0 and
pa(z) satisfying

t . Pa(2) ;= > |y|26

for all z € F,, which is the main inequality implying the regularity.[]]
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