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DENSITY OF SEMIMARTINGALE IN CANONICAL
STOCHASTIC DIFFERENTIAL EQUATION

Jae-pill Oh

Abstract. The existence and the smoothness of densities of ran-

dom variables, which are generated by the canonical stochastic dif-

ferential equation, can be proved by the Malliavin - Bismut method.

0. Introduction

It was pasted a little long time after J.M.Bismut(c.f. [1]) studied the
applications of Malliavin calculus in the stochastic differential equa-
tion(SDE) for the jump-type processes. But we can not meet many
papers for that problem yet, and in general, it is known as a difficult
problems to study the existence and the regularity of random variables
of jump-type semimartingales. Therefore, we want to study more this
problem for some SDE.

In the previous paper[5], we used a SDE which is defined by the
same vector fields for the continuous part and the jump part of semi-
martingales. But in this paper, we will deal the SDE which is defined
by another vector fields for the continuous part and the jump part, re-
spectively. Indeed, in [5], we studied the conditions of the existence and
the smoothness of densities of random variables, which are generated
by the canonical SDE of the form;

ξt(x) = x +
m∑

j=1

∫ t

0

vj(ξs(x))dW j
s +

∫ t

0

L(ξs−(x))ds

+
∫ t

0

∫
Eα

cα(x, z)Ñα(ds, dz),

Received July 2, 1997.

1991 Mathematics Subject Classification: 60H07, 60J30, 60J75.
Key words and phrases: SDE, Malliavin calculus, density of r.v..



200 Jae-pill Oh

where v1, v2, · · · , vm are C∞-vector fields, Ñα is a compensated Poisson
point process, Ws = (W 1

s ,W 2
s , · · · ,Wm

s ) is a Brownian motion and L
is a generator of semigroup of probability.

In this paper, we will think the same problems for another SDE of
the form;

(1)

ξt(x) = x +
m∑

j=1

∫ t

0

vj(ξs(x))dW j
s +

∫ t

0

L(ξs−(x))ds

+
∫ t

0

∫
Eα

[exp(
m∑

j=1

zj v̄j)(ξs−(x))− ξs−(x)]Ñα(ds, dz),

where v1, v2, · · · , vm, v̄1, v̄2, · · · , v̄m are C∞-vector fields, Ñα is a com-
pensated Poisson point process, Ws = (W 1

s ,W 2
s , · · · ,Wm

s ) is a Brown-
ian motion and L is a generator of the form;

L(x) = A(x) +
∫

Eα

[exp(
m∑

j=1

zj v̄j)(x)− x−
m∑

j=1

zj v̄j(x)]Gα(dz),

and

A(x) = (1/2)
m∑

j=1

v2
j (x) + v0(x).

Let B̄(x) and C̄α(x, z) be the matrices defined by the coefficients of
noise part and jum-part, respectively. We put as

c̄α(x, z) = exp(
m∑

j=1

zj v̄j)(x)− x,

and
˜̄cα(x, z) = c̄α(x, z) + x.

For the function ˜̄cα(x, z), if there exist two constants ζ, θ > 0 such that

| ˜̄cα(x, z)| ≤ ζ(1 + |x|θ),

for all x ∈ Rd and z ∈ Eα, and there exists a Borel set Γα ⊂ Rd × Eα

such that for any y ∈ Rd and for the x-section Γα,x ⊂ Γα,

(∪z∈Γα,x
{y|C̄αy = 0}) ∩ {y|By = 0} = {0},
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then the solution ξt(x) of SDE (1) has a density y → pt(x, y) for all
x ∈ Rd and t ∈ (0, T ].

Furthermore, for x, y ∈ Rd, there exist two constants δ ≥ 0, ε > 0
and two functions fα(z) and ρα(z) which are defined by some conditions
with a constant γ such that

ytC̄α(x, z)yρα(z) ≥ fα(z)
|y|2ε

1 + |x|δ

for all z ∈ Eα, then the solution ξt(x) of SDE (1) has a smooth density
y → pt(x, y).

Therefore, it is also good if we look this paper as a kind of gener-
alization and continuation of [5]. Further, we would like say that, for
simplicity, all of the terminologies and the notations of this paper are
same as [5] also.

1. Canonical stochastic differential equations

Let us think a canonical SDE;

(I-1) dξt(x) = X(ξt(x), �dt)

driven by the vector fields valued semimartingale of the form;
(I-2)

Xt(x) =
m∑

j=1

vj(x)W j
t + v0(x)t +

∫
Eα

(
m∑

j=1

zj v̄j)(x)Ñα((0, t], dz),

where Wt is a Brownian motion, and v0, v1, · · · , vm, v̄1, v̄2, · · · , v̄m are
all smooth complete vector fields on Rd. Then, by the solution of (I-1),
we will think the process {ξt, t ≥ 0} satisfying

(I-3)

ξt(x) = x +
m∑

j=1

∫ t

0

vj(ξs(x))dW j
s +

∫ t

0

L(ξs−(x))ds

+
∫ t

0

∫
Eα

[exp(
m∑

j=1

zj v̄j)(ξs−(x))− ξs−(x)]Ñα(ds, dz),
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where

L(x) = A(x) +
∫

Eα

[exp(
m∑

j=1

zj v̄j)(x)− x−
m∑

j=1

zj v̄j(x)]Gα(dz),

A(x) = (1/2)
m∑

j=1

v2
j (x) + v0(x),

and Gα(·) is a Lebesgue measure. From the equation (I-3), we put as

c̄α(x, z) = exp(
m∑

j=1

zj v̄j)(x)− x,

and
˜̄cα(x, z) = c̄α(x, z) + x.

Then, form the Proposition III-1 of [5], Dx ˜̄cα(x, z) is also invertible.
If we put

(aik(x))d×d = σd×m(x)(σd×m(x))t,

and
(āik(x))d×d = σ̄d×m(x)(σ̄d×m(x))t,

where

σd×m(x) =


v1
1(x) v1

2(x) · · · v1
m(x)

v2
1(x) v2

2(x) · · · v2
m(x)

· · ·
vd
1(x) vd

2(x) · · · vd
m(x)


d×m

,

σ̄d×m(x) =


v̄1
1(x) v̄1

2(x) · · · v̄1
m(x)

v̄2
1(x) v̄2

2(x) · · · v̄2
m(x)

· · ·
v̄d
1(x) v̄d

2(x) · · · v̄d
m(x)


d×m

,

and v̄i
j(x) are the component functions of vector fields v̄j , and we put

B(x) = (aik(x))d×d,

and
B̄(x) = (āik(x))d×d,
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then by the similar calculation with (III-7) and B(c̃α(x, z)) of [5], we
see that

B̄( ˜̄cα(x, z)) = (Dz c̄α(x, z))(Dz c̄α(x, z))t.

We put as following;

(I-4) C̄α(x, z) = (Dx ˜̄cα)−1B̄( ˜̄cα)[(Dx ˜̄cα
−1]t,

and make two assumptions;
Assumption (Ā). There exists two constants ζ, θ > 0 such that

| ˜̄cα(x, z)| ≤ ζ(1 + |x|θ)

for all x ∈ Rd and z ∈ Eα.
Assumption (B̄). There is a Borel subset Γα = {(x, z)} ⊂ Rd×Eα

such that for all x ∈ Rd and for the x-section Γα,x ⊂ Γα, if Gα(Γα,x) =
∞,

(∪z∈Γα,x
{y|C̄α(x, z)y = 0}) ∩ {y|B(x)y = 0} = {0},

if Gα(Γα,x) < ∞,

Rd ∩ {y|B(x)y = 0} = {0}.

Then we get the following result.

Theorem I-1. Under (Ā) and (B̄), the solution ξt(x) of (I-3) has a
density y → pt(x, y) for all x ∈ Rd and t ∈ (0, T ].

Proof. Since v0, v1, · · · , vm, v̄1, v̄2, · · · , v̄m are all smooth complete
vector fields on Rd, the coefficients of the second part and the third part
of the right hand side of (I-3) are r-times differentiable with bounded
derivatives.

By the same method with the proof of Theorem III-1 of [5], we can
choose ζ ′, θ′ > 0 such that

|Dk
zk c̄α(x, z)| ≤ ζ ′(1 + |x|θ

′
) for k ≥ 1.

Further, we can choose a function η ∈ ∩2≤p<∞Lp(Eα, Gα) such that

|Dn
xn c̄α(x, z)| ≤ ζ|η(z)|(1 + |x|θ), n ≥ 1,
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for ζ, θ > 0. Thus we can get,

|Dn+k
xnzk c̄α(x, z)| ≤ ζ(1 + |x|θ), n + k ≥ 1, k ≥ 1.

Therefore, from this, the condition (ii) of Assumption (A-r) of [5] are
satisfied. Also, from the putting (I-4), we see that (B̄) imply

∩α(∪z∈Γα,x
{y|C̄α(x, z)y = 0}) ∩ {y|B(x)y = 0} = {0},

which is the main part of Assumption (B) of [5]. � �

This Theorem also has some subcases. We will explain these by
using the following Corollaries.

Corollary I-1. (c.f.[4]) If RankB(x) = d, or RankB̄(x) = d, then
the solution ξt(x) of (I-3) has a density y → pt(x, y).

Proof. If RankB̄(x) = d, then from the putting C̄α(x, z) as (I-4),
we see that

∪z∈Γα,x
{y|C̄α(x, z)y = 0} = {0},

because Dx ˜̄cα(x, z) is also invertible. Therefore, the condition of (B̄)
is satisfied. If RankB(x) = d, then

{y|B(x)y = 0} = {0}.

Thus, (B̄) is satisfied also. � �

Corollary I-2. If RankB(x) = 0(or, RankB̄(x) = 0), then to
get the existence of density of ξt(x) of (I-3), it must be held that
RankB̄(x) = d(orRankB(x) = d), respectively.

Proof. If RankB(x) = 0, then we get that for any y ∈ Rd,

{y|B(x)y = 0} = Rd.

Therefore, to satisfy the condition of (B̄), it is needed that

{y|C̄α(x, z)y = 0} = {0},

for some z ∈ Γα,x, which is equivalent to RankC̄α(x, z) = d. But, since
Dx ˜̄cα(x, z) is invertible, it is equivalent to RankB̄(x) = d.

If RankB̄(x) = 0, we can prove by the similar method. � �
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Corollary I-3. If 0 < RankB(x)( or RankB̄(x)) = k < d, then to
get the existence of density of ξt(x) of (I-3), it is needed at least that
0 < RankB̄(x)( or RankB(x)) = l < d and k + l = d, respectively.

Proof. Let 0 < RankB(x) = k < d. Then we get

{y|B(x)y = 0} = {y = (y1, y2, · · · , yd) ∈ Rd|d−k numbers of yi are 0}.

Therefore, to satisfy the condition of (B̄), it must be held;
(i) 0 < RankC̄α(x, z) = l < d and l + k = d, because of

RankC̄α(x, z) = Rank(B̄(x)),

(ii) the set {y′ = (y′1, y
′
2, · · · , y′d) ∈ Rd} such that

{y|C̄α(x, z)y = 0}
= {y′ = (y′1, y

′
2, · · · , y′d) ∈ Rd|d− l numbers of y′i are 0}

is disjoint with {y = (y1, y2, · · · , yd) ∈ Rd}�{0}, i.e.,

{y = (y1, y2, · · · , yd)|y ∈ Rd} ∩ {y′|y′ ∈ Rd} = {0}.

But, from the condition of this Corollary, we see that (i) and (ii) are
satisfied. Therefore, we get the result.

If 0 < RankB̄(x) = k < d, then we can prove similarly. � �

Example. In R2 = {x = (x1, x2)}, let us think the vector fields
valued Lèvy process of the type;

Xt(x) = v1(x)Wt +
∫

Eα

(zv2)(x)Ñα((0, t], dz),

where Wt is an 1-dimensional Brownian motion. Then by the solution
of a canonical SDE;

dξt(x) = X(ξt(x), �dt),
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we get the process ξt(x) satisfying;

(I-5)
ξt(x) = x +

∫ t

0

v1(ξs(x))dWt +
∫ t

0

L(ξs−(x))ds

+
∫ t

0

∫
Eα

[exp(zv2)(ξs−(x))− ξs−(x)]Ñα(ds, dz),

where

L(x) = A(x) +
∫ t

0

∫
Eα

[exp(zv2)(x)− x− zv2(x)]Gα(dz),

and
A(x) = (1/2)v2

1(x).

If we represent SDE (I-5) in the component form, we get;

ξ1
t (x) = x1 +

∫ t

0

v1(ξs(x))dWs +
∫ t

0

L(1)(ξs−(x))ds,

and

ξ2
t (x) = x2 +

∫ t

0

L(2)(ξs−(x))ds

+
∫ t

0

∫
Eα

[exp(zv2)(ξs−(x))− ξ2
s−(x)]Ñα(ds, dz),

where
L(1)(x) = A(x),

and

L(2)(x) =
∫

Eα

[exp(zv2)(x)− x2 − (zv2)(x)]Gα(dz).

(i) If RankB̄(x) = 2, then for any y ∈ R2,

{y|C̄α(x, z)y = 0} = {0},
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for some z ∈ Γα,x. Therefore, from Theorem I-1, the solution
ξt(x) of (I-5) has a density. If RankR(x) = 2, then

{y|B(x)y = 0} = {0}.

Thus it is held also.
(ii) If RankB̄(x) = 0, then we get

{y|C̄α(x, z)y = 0} = R2

for any z ∈ Γα,x. Therefore, to satisfy the conditions of (B̄),
we need that

{y|B(x)y = 0} = {0},

which is equivalent to RankB(x) = d. If RankB(x) = 0, then
we get also;

{y|B(x)y = 0} = Rd.

Therefore, we need that

{y|C̄α(x, z)y = 0} = {0}

for all z ∈ Γα,x which is equivalent to RankB̄(x) = d.
(iii) Let 0 < RankB(x) = k < d. Then, because of d = 2 and k = 1,

if RankB(x) = 1, then

{y|B(x)y = 0} = {(0, y2)} or {(y1, 0)}.

Therefore, if

{y|C̄α(x, z)y = 0} = {(y1, 0)} or {(0, y2)}

for all z ∈ Γα,z, respectively, then we get

{y|B(x)y = 0} ∩ {y|C̄α(x, z)y = 0} = {0}.

Therefore, the conditions of (B̄) are satisfied.
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Theorem I-2. Assume (Ā). Further, for x, y ∈ Rd, if there exist
ε1 > 0 and δ1 ≥ 0 such that

(I-6) ytB(x)y ≥ |y|2ε1 ≥
ε1|y|2

1 + |x|δ1
,

and for x, y ∈ Rd and fα(z) ∈ L1(Eα, Gα) which is satisfying;∫ ∞

0

sζ−1exp[−θ

∫
Eα

(1− e−sf(z))dz]ds < ∞,

where ζ and θ are two positive numbers, and if there exist ε2 > 0, δ2 ≥ 0
and a function ρα(z) : Eα → [0,∞) having the following properties;

(i) ρ ∈ C∞b ,
(ii) ρα(z) → 0 as z → ∂(Eα) (boundary of Eα),
(iii) |Dr

zrρα| ∈ L1(Eα, Gα) for all r ∈ N such that

(I-7) ytC̄α(x, z)yρα(z) ≥ fα(z)
|y|2ε2

1 + |x|δ2

for all z ∈ Eα,

then we get that ξt(x) of (I-3) has a smooth (C∞) density y → pt(x, y).

Proof. From (Ā), we see that B̄(x) and C̄α(x, z) are d×d - symmetric
and nonnegative matrices, and that Dxc̄α(x, z) is also invertible. Thus
there exist a constant ζ > 0 such that

|det(I + Dxc̄α(x, z))| ≥ ζ,

identically, and from (I-6) and (I-7) we can choose ε > 0, δ ≥ 0 and
ρα(z) satisfying

ytB(x)y + infz
ρα(z)
fα(z)

ytC̄α(x, z)y ≥ |y|2ε
1 + |x|δ

,

for all z ∈ Eα, which is the main inequality implying the regularity.��
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