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UNIQUENESS OF SOLUTIONS FOR A DEGENERATE
PARABOLIC EQUATION WITH ABSORPTION

JIN HO LEE AND SEONG HEE JANG

ABSTRACT. We estimate the interior Lipschitz norm and maximum
of the solution for degenerate parabolic equations with absorption.
Also obtain the growth rate of the solution u in terms of time t.
From this we show the uniqueness of solution with respect to the
initial trace.

1. Introduction

We consider the Cauchy problem of a degenerate parabolic equation
with absorption :

(1.1) uy = div(|VulP72Vu) —bud  in R"™ x (0,00).

Here p > 2, b€ [0,1] and ¢q € (0,1) are given constants. A measurable
function u(x,t) defined in R™ x (0, 00) is a weak solution of (1.1) if for
every bounded open set 2 C R"”

u€ C0,T: LY Q) NLP0, T : WHP(Q))

and satisfies

to
(1.2) / u(z, to)n(x, ta) do —1—/ / —un; + |Vu|P~2VuVn dzdt
Q t1 Q

to
= / u(x,t1)n(x, t1) de — / / buln dzxdt
Q t1 Q
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152 Jin Ho Lee and Seong Hee Jang
for each bounded interval [t1,t2] C (0,00) and all test functions 7 as
n € WH(0,T; L(Q)) N L¥(0, T5 Wy ™ ().

A Radon measure p on R is called the initial trace of u if p satisfies

lim u(w,t)n(:r:)dx:/ ndup

for all continuous functions 7 in R™ with compact support. And we
say u(z,t) is a weak solution to (1.1) with the initial trace p.

When p = 2, Brezis and Friedmann|[1] showed that (1.1) has a fun-
damental solution if and only if ¢ € (0, (n+2)/n). And Brezis, Peletier
and Terman[2] proved the existence of a very singular solution such
that

lim u(z,t)dx = oo
when ¢ € (1, (n+2)/n). For the porous medium equation with absorp-
tion

(1.3) ug=Aum—uP;, m>1 in R" x(0,00),

Kamin, Peletier and Vazquez [9], [10] considered that the problem(1.3)
with p > 1. They proved that (1.3) has a fundamental solution if
p € (1,m+2/n) and that if p € (m, m + 2/n) then there exists a very
singular solution, also in case of p > m + 2/n there is no fundamental
solution. And Cho [3] prove the existence of fundamental solution and
existence of initial trace of weak solution when p € (0,1).

The evolutionary p-Laplace equation

(1.4) ug — div(|Vu/P"2Vu) =0 in R™ x (0,T) p>2
has been studied by many authors [4], [6], [8],---. When the space di-

mension is one, Kalakshnikov proved the existence of a unique solution
of (1.4) for some small T with the condition of initial datum

lup(z)| < e(1 + |x]2)2<Pp*2> for z€R and for some ¢ > 0.
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For higher dimension, DiBenedetto and Herrero [6] showed the exis-
tence of initial trace and a weak solution to (1.4) in R™ x (0,T'), where
T is

T(n) = col lim Jully]= @ i lpll, >0

and T'(u) = oo if ||u]|, = 0. For the p-Laplace equation with bounded
measurable coefficient, Choe and Lee [5] establish the Harnack type
inequality and existence of initial trace.

For the p-Laplace equation with absorption,

uy = div(|Vul|P~2Vu) —u? in R" x (0,T] p> 2.

Peletier and Wang[12] showed that when p—1 < g < p— 1+ p/n there
exists a very singular solution.

For 0 < g < 1, Lee [11] showed the existence of fundamental
solution. And also proved the existence of unique initial traces p of
weak solutions of (1.1) satisfying

p—q—1
RZTop(liq)

sup R w2 / dp < c(u(0,7)).
Br
In section 2 we estimate interior Lipschitz norm in terms of LP norm
of u by Moser type iterations. After this, the maximum of u can be
estimated by L' norm of u. From this we can obtain the growth rate
of weak solution v in terms of ¢. Once we know the growth rate of w,
we can show the following estimate

/ / ]Vu|p_1da:dt§c7'%,
0 n

where K = n(p — 2) + p. This estimate is useful in showing the unique-
ness of the solution.

In section 3, we prove that solutions are uniquely determined by
their initial trace. On the process of proof we need higher integrability
of u. Once this is shown, we can prove the uniqueness by use of the
Granwall type inequality.
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The following symbols are used;

Bgr(xo) ={z: |z — x¢| < R},
Qr(z0,t0) = Br(wo) X (to — RP,t0),
SR(ZUo,to) = BR(ZCO) X (to — Rp,to + Rp)

If there is no confusion, we drop out (zg,ty) in various expressions.

2. Interior estimate

In this section we prove various a priori estimates which are useful
in studying pointwise behavior of u. First we prove a local maximum
estimate by Moser iteration method.

LEMMA 2.1. Suppose u is a nonnegative weak solution of (1.1) in
@R, then there exist constants ¢; and co depending on p,n, and R such
that

2
supu < ¢1 {// upda:dt} + co.
Q% Qr

Proof. Let p < R. We take u®T!nP as a test function to (1.1), where
n is a standard cutoff function such that 0 <7 <1, n = 0 on 9,Qr,

and n(z,t) =1 for all (z,t) € Q,, |Vn| < ey and Ine| < oy for

some constant c. Then we have
// ug (uTIP) 4 [ VulP72VuV (v nP) + bud (u TP )dadt = 0
The last term of the integrand is nonnegative so we have

1 a p a+2, p—
m//(u T2P) da dt — ) //u I e | da: dit
+(a+1)//|Vu]puo‘npdxdt

gp/ (VP Lyt nP=t V| dzdt
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Hence from Young’s inequality we have

sup/ua+277pdac + (a+1) // u®|VulPnPdxdt
t

(2.1) < e(a) / / W2 | 4 g VP dadt

c(a) // +2 +
< — u®" +uTPdzdt.
(R—=p)? JJon

Similarly we also have
(2.2) sup/ua+2npd:c+c// |V(uaT+p)n|pdxdt
t

< % / / [ut? + u*P] dadt.

From Holder inequality and Sobolev inequality we have

/ / u T gy

P
n—p

< / [/ uo‘+2npd:1:} ' {/uﬁp B dx] Cat
< sup {/uo‘wn”dx] ’ // \V(u%p)n[”d:ﬂdt
¢

1+ 2
(2.3) <c {// u® 2P~ n,| + ua+p\V7ﬂpd:I;dt]

c n
< | P drdt 4+ 1
—{<R—p>p//,%“ v *1

for some c. We use Moser iteration method. Let a1 +p = (a; +2)2 +
(i +p) and ag = 0. Setting v = 1+ £, we can write a; = 2(y" —1).
Define R; = $R(1 +27%), and take @ = a;,p = Ri11 and R = R; in
(2.3). Hence if we define ¥; = foRv u®tPdzxdt, we get from (2.3)

(24) \Ili—‘,—l S C[\Ifz + 1]’7
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Iterating (2.4) we obtain

a’y—t-p 'Vi
// uo‘”’pdxdt < {cl // uPdx dt} + 5t
R, R

for some ¢; and cy. Letting ¢ — oo we get the result. 0 O

Now we estimate foR uPdzdt in terms of foQR udxdt.

LEMMA 2.2. Suppose u is a nonnegative weak solution of (1.1) in
Sr. Then there are constants ¢ and ¢ depending on n and p such that

(e

supu < c Sup/ u(z,t)dr + 1
|z|<2Ro

S R t
2

Proof. Let p < R. We take u$™'nP as a test function to (1.1), where
u; = u+ 1 and n is a standard cutoff function such that 0 < n < 1,
n—Oon@SR, n(xz,t) = 1 for all (x,t) € S,, |Vn| < " and
me| < =DH o PR for some positive constant c. Then we have

// us (TP + | VulP2VuV (ud T nP) + bul (uS T nP)dedt = 0

Sup/u‘f‘“npdm + (a+1) // ul|Vu|PnPdxdt
(2.5) // 2 +p// u P\ Vn|Pdodt
R p)P

< ﬁ / / o2 L Pddt.

Similarly we also have

a+p
(2.6) sup/ Q2 de+c//|v P n|Pdx dt

R PE // a+2 + u‘fﬂ)} dxdt.

So we have
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From Holder inequality and Sobolev inequality we have

// u§a+2) %Haﬂ))ndmdt
S

P
n—p

% atp _np np n
< / [/ u‘f‘+27]pd:c} [/ulp ””nwdm} dt
% atp
< sup [/ u‘f‘+2npdx} // |V (uy® )n|Pdz dt
t

142
C a+p "
<|—< wOP dadt + 1]
{(R — p)P //sR !

On the other hand from Hélder inequality we have
(2.7)

// u?;/”JF(aer)np(l-‘rp/n) de dt

p/n (n—p)/n
< {sup/ulnp dw] /{/ u§a+p)n/(n7p)n"p/(”_p) d:z:} dt.
t

From (2.6) and Sobolev embedding theorem we obtain

n—p,.

at+p np np np P atp
/ {/ul pon-ppn-p dm] dt < / |V(uy 7 n)[Pdxdt
< C// (12 + u *P)dadt < C// u® TP + 1dzdt.
SR SR

Then we can write (2.7) as

(2.8) // up i TP dodt < ¢ Sup/ wydx // u TP dxdt.
s, t Jiz|<R Sh

Define I = sup, f|w|<2R0

then o; = o + 24,

dr and let 2 +a;4+p = ;1 +p with ag+p =1
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Define R; = Ro(1 +27%) and p = R;;1, R = R;. Hence iterating
(2.8) we obtain

// u?i+l+PdaZ dt S CI% // ugai—’_p)dfﬁdt
SRi+1 SR,

and
(2.9)

o+1
// u‘fierdxdt <cl® // wpdzdt| <ec Sup/ dzx
SRi SRO t |z|<2Ro

for some o depending only on n,p. Therefore combining Lemma 2.1
and (2.9) we prove the Lemma. O O

Now we improve Lemma 2.2.

THEOREM 2.3. Let u be a nonnegative weak solution of (1.1) in
Sor. Then there are constants ¢,y and o depending on p,n such that

(2.10) supu < c[I?+17],

S Ry
2

where I = suptf| (z,t)dz.

m|<2R0 L

Proof. Let g9 be a some fixed constant. If I > ¢y, then Lemma
2.2 implies (2.10) with a constant ¢ depending on £9. Now we assume
I < g¢ then there is ¢o(Rp) such that 0 < u < ¢y in Qpg,. Since
sup |u| < ¢g from (2.1) we can deduce that

(2.11) sup/ua+2npdx+c//|V(uﬁp)n|pdmdt < c//ua
¢

for some constant ¢ depending on ¢, ||V7||oos ||7t]|cc and ¢y . Hence
iterating (2.11) with similar methods as Lemma 2.1 and 2.2 we obtain

)
sup u < ¢ / / udxdt <ecl %0
Q@ Sar
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for some ¢ and &g depending on g, n and p. O O

We denote by S the class of all nonnegative weak solutions of (1.1)
in R™ x (0,00) and we define a subclass P(N) by

P(N) :{uGS:sup/nu(x,t)deN}

t

LEMMA 2.4. Letu € P(N), then there is a constant ¢(N) depending
on p,n,q and N such that

—n

u(x,t) < c(N)tne=2+2 for 0<t<1.

Proof. We define v(&, 1) as

—g—1

1 p—g
(2.12) v(€,T) = §U(:c + REtr), with R >tri-o

where ~ is defined by v?~2) = RTP. Then v(&, 7) is a solution to

lvT(ﬁ,T) = g div(|Vo|P~2Vv) — bydvd
t Rp
which is
—q— (a=1)
v (&, 7) == div(|Vu[P 2 V) — bt 7 REv7 ol
p—gq—1 p—gq—1 _p(g—1)
We note that R > ¢»@T-o, then bt »-2 R »-2 € [0,1]. We can choose
p—2
RasyR" = % for some constant M such that R = c% " greater

—q—1
than or equal to P09 then

[owerrie=2 [ uter Reemac= o [ atptniy <

and v € P(M). Therefore from Theorem 2.3, we get

1 1
P\ p—2 P\ P2 .
u(z,t) = yv(0,1) = (%) v(0,1) < ¢ <RT) = ¢(N)t"e—=27»

and the proof is completed. O O
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LEMMA 2.5. Letu € P(N), then there exists some positive constant
¢ depending on o,p and n such that

(2.13) / / IVulP~' dedt < c(N)r+
0 Br

for all 7 € (0,1), where k =n(p—2) +p
Proof. By Holder’s inequality we get

// |VuP~! dedt

0 JBg

:// 20~ | VulP~ 1t~ %uf dadt
0 JBg

SU/ (t5u—5)zﬂ|vu|pdxdt] ’ U/ (t‘5u5)pdxdt]p.
0 JBgr 0 JBgr

Let A= [; [5, (755u_5)ﬁ [VulP dzdt and B = [ [ (t=%u®)” dzdt
From Lemma 2.4, B can be estimated as '

Bg/ t—5p||ufp—1||oo/ udxdtgc(N)/ tPOEP= D gt
0 Br

0
- c/ t—Pi—(ep=1) g¢.
0

Hence if we choose ¢ and ¢ satisfying pd + Z(ep —1) < 1 and € > ]%,
then B < er' P9~ %=1 for some ¢ depending only on p,n and p.
9 £
To estimate A, take t7-Tu!"5-1¢? as a test function to (1.1), where

¢ is a piecewise smooth cutoff function in Br11 with |V¢| < c. Here we

assume 1 — pipl > 0. From the definition of A and Young’s inequality
ep

we obtain A < cr R For details, see [5,Lemma 3.2]. So
with a suitable choice of § and € we conclude that

—1

T p—- 1
/ / |VulP~! dedt < CT%_%(l_%)] : [CTl_(‘SpJF%(Ep_l)) ’
0o JBr

—np+2n+k 1
=T~ rP =cT*,
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where ¢ depends on n and p. Thus we get

// IVulP~dedt < ¢(N)T*
0 Bgr

for some c. O O

LEMMA 2.6. Letu € P(N), then there exists some positive constant
¢ depending on p,n, N and R such that

eri—na/k f q <

// ul dedt < { ers if q=
0 Br

ng

crlTmmaF if q >

SIa31a31=

for all T € (0,1), where k = n(p — 2) + p.

Proof. First, we assume g < %, then by Lemma 2.4, we have

// uqd:ndth"/ || w2 dt
0 JBg 0

< ¢(N, R)/ t~*9dt = ¢(N, R)T " *4.
0

, then by Holder inequality and Lemma

N[+

We assume ¢ = % and set A =
2.4, we have

k
/ / ur dxdt:R"(l_MliA))/ (/ ult4 da:) T
0 BR 0 BR

k

T kA
< (N, R) / lull ™ gt
0

Wl

< ¢(N, R)/ T4 dt = (N, R)73.
0
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We now assume q > % and set A = %(% + s ——) by the direct calcula-
tion we can show that gA > 1. From Holder inequality, we have

// ul dedt = R”(l_)/(/ qudx)%dt
Bgr Br

c(N,R)/ lullZs * dt

0

¢(N, R)/ t= %@~ %) dt = ¢(N, R)r' " ma %
0

so the proof is completed. [l O

3. Uniqueness of solution

In this section we will show that solutions are uniquely determined
by their initial traces. The existence of initial traces for each solution
u of (1.1) was showed by Lee[11].

LEMMA 3.1.. Suppose that u and v are two weak solutions of (1.1)
in R" x (0,T) for some 0 < T < oco. If

sup [[lu(®)[1 + [[o(@)[1] < oo and  lim [u(-?) —v(#)] =0
te(0,T)

1
in Ly,

(R™) then

1
thn(l)[ u(t) —v(, )] =0 in L;}f° forall 0<e< —.
— n

Proof. Fix ¢ < % and let w = v — v. It suffices to show that for

each R >1

lim lw(z, )| edr = 0.

From Lemma 2.4, we know that

(3.1) sup |w(z,t)] < sup (Ju(z,t)|+ [v(z,t)]) < ct™ "
rEBR rEBR
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Let ¢ be a standard cutoff function in Bog with ( = 1 in By and
IV¢| < %. Since limy_o [u(-,t) —v(-,t)] =0 in L, (R™), we have

| wiec@s

R
t t
< [ ] vt v cldeds + [ bt o0 duas
0 JBgr 0 JBr

t t
< C/ / (IVulP™! + |VolP~!) dads + c/ / b(u? + v?) dxds.
0 JBg 0 JBn

From Lemma 2.5 and Lemma 2.6 we also know that
t
/ / IVulP~! + [VolP~  dads < (N, p, n)tx
0 JBr
and
t
/ / b(u? +v?)dxds < ¢(N,R,p,n)t* for some 0<a<l1.
0 JBg
Since ( is arbitrary, we get
(3.2) / wia,0)|de < e (1 +1).
Br
Combining (3.1) and (3.2) we have

/ lw(z,t)|' Tedx < sup |w(x,t)[° \w(z, t)|de < ct ™= <t% + to‘> .
Br

Br

This completes the proof. O O

Once we know the higher integrability lemma, we can prove unique-
ness of nonnegative solutions. Here the Gronwall type inequality is
established and hence uniqueness follows easily.

THEOREM 3.2. Suppose u and v are two nonnegative weak solutions
of (1.1) in R™ x (0,T) for some 0 < T < oco. If

sup [||lull1 + |[v]1] < oo and lim [u(-,t) —v(-, )] =0
te(0,T) t—0
(R™), then u = v in R™ x (0, t).

. 1
in Lj,,
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Proof. Let w = u — v and we may assume w > 0. Let n(x) be a

standard cutoff function which is compactly supported in Bry; and

n=1in Bg and |Vn| < c for some constant c. We take w®n? as a test
function to (1.1), then we obtain

1 1
w(z, t)Ten? de — / w(z, ) en(x)? d
s [ vt [ e

t
+6// (IVulP~*Vu — |Vo[P~?Vv) Vw - w'n? dzds
T BR

t
+ 2/ / (|Vu|p_2vu _ |VU|;IJ—2VU) wsnvn dl‘ds
Br

// 4 — %) dxds = 0.
Br

From Lemma 3.1, we know that lim,_,o fBR w(x,7)1T¢ dr = 0. Letting
7 — 0 and by Young’s inequality we have

1 1
t)tte 2d
1+€/BRw(w, ) e (x)” dx

t
+5// (|Vu|P~2Vu — |VoP 2 Vo) Vuww® ™ n? deds
0 JBg
t
< c/ / (|Vu| + |Vv|)P 2| Vu — Vo|w® dzds
Br+1
= // % |VU|+|V’U|) 2 |VU—VU|U) 21] dxds
2 Bri1

1 e—1 e+1 2
+ —/ / 5_5(|Vu\ + \Vv\)Tw%] dxds.
2 0 JYBr+1

And
/ w(z, ) de
Br
t
(3.3) < 05/ / (|Vu| 4 |[Vo)P~2|Vu — Vo 2wt dads
0 JBry1

t
+E// (|Vu| + |Vo|)P 2w dads.
0 0 JBRr+1



Uniqueness of solutions for a degenerate parabolic equation 165

We absorbs the integral involving w®~! on the right hand side of (3.4).
Then

t
/ w(z, )+ do < c// (V| + |Vo))P 2w dads <
Br 0 BR+1

p—2 1

t p—1 t p—1
c / / (|Vu| + |Vv|)P~! deds / / wEFDE=Y dyds
0 BR+1 0 BR+1

p—1
From Lemma 2.5, we know that

¢
/ /(|Vu| + |Vo|)P~ dxds < et .
0

On the other hand, from Lemma 2.4, supw < ¢t~ *. Hence we obtain

that
1p—2 ¢
/ witede < etrr-1 / / wETD®=2),(4€) grds
Br 0 JBrt1

1

[ rt p—1
—2
< ctFrD /||w\|gg—2><1+€>/ w' dads
|/ 0 Bri1

1

-1

1

p—1

t p
< ct»@f?p_fl) / 3—2(1+E)(p—2)/ witede ds
0 Br+1

and
(3.4)

__p=—2
t *ﬁ(p—U/ w'te dx
Br
1

T p—1
n _ _p=2  _ _p=2
S IS / S_K,(l“‘a)(p 2)+N(p71) S H(pl)/ w1+€ da: dS .
0 Bri1

Now we establish Grownwall type inequality. This implies uniqueness.
Define

H(R,t) :t_*i&—i)/ w'te da.
Br
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Then (3.4) becomes
1)

t —
(3.5) H(R,t)<c {/ S—%(1+s)(p—2)+—ﬁg’p_2ﬁH(R+ 1,s)ds
0

Let 6 = -2 (1+4+¢)(p—2) + ﬁ, then § > —1 for small e. Moreover
we note that the smooth function G : R™ — R™ which is defined by

G(R):/B w(z, 1) Ay (2) do

with  Aq(z) = (1+2[P)™, ap = ;%5 + R satisfies the following prop-
erties

M < ¢ for some c; H(R,?)
G(R) ~ " G(R)

— 0as R — 0;

H(R, 1)
G(R)

— 0 as R — .

From this we can find R; such that }é;((RRl ? = SUPR> %((1}3%35) And

(3.6)

H(RY) _ G R+1 [/ HR+15)} T
d

S

Let fo 5% suppsy G(R) ) ds = A(t). Then we get from (3.5)

CSH(Ri+15) 170
At < /5—1 2 d
() —[ o)

t H(R,s) 177
<ec s? su " 2 ds < cA(t).
B [/0 Rzli G(R) } < cA(?)

Since 6 > —1, t° is summable. By Gronwall inequality, A(t) = 0
Therefore we conclude that u = v. U 0
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