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APPROXIMATION OF RELIABILITY IMPORTANCE
FOR CONTINUUM STRUCTURE FUNCTIONS

SeungMin Lee and RakJoong Kim

Abstract. A continuum structure function(CSF) is a non-decreasing
mapping from the unit hypercube to the unit interval. The reliabil-

ity importance of component i in a CSF at system level α, Ri(α) say,

is zero if and only if component i is almost irrelevant to the system
at level α. A condition to check whether a component is almost irrel-

evant to the system is presented. It is shown that R
(m)
i (α)→ Ri(α)

uniformly as m→∞ where each R
(m)
i (α) is readily calculated.

0. Introduction

Let φ : {0, 1}n → {0, 1} be a binary coherent structure function
and let h : [0, 1]n → [0, 1] be the corresponding reliability function.
Birnbaum[6] defines the reliability importance of component i as

I(i) =
∂h(p̂)
∂pi

= h(1i, p̂)− h(0i, p̂), i = 1, 2, · · · , n,

writing (βi, p̂) = (p1, p2, · · · , pi−1, β, pi+1, · · · , pn) where pi = P (Xi =
1) and where X1, X2, · · · , Xn are independent binary random variables
denoting the states of the components of φ. This concept is extended
by Kim and Baxter[9] to the continuum case.

Let ∆ denote the unit hypercube [0, 1]n. A mapping γ : ∆ → [0, 1]
which is non-decreasing in each argument and which satisfies γ(0̂) = 0
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and γ(1̂) = 1, writing α̂ = (α, α, · · · , α), is said to be a contin-
uum structure function(CSF). Such functions are of interest in reliabil-
ity theory e.g. Baxter[1],[2], where x1, x2, · · · , xn denote the states of
the component C = {1, 2, · · · , n} of system and γ(x̂) denotes the state
of the system. Let Uα = {x̂ ∈ ∆|γ(x̂) ≥ α}, 0 ≤ α ≤ 1 and δ̂α denote
the intersection of ∂uα, the boundary of Uα in ∆, and {α̂|0 ≤ α ≤ 1},
the diagonal of ∆. We say that δ̂α is the key vector of Uα and we
call δα the corresponding key element. Kim and Baxter[9] use the key
element to define reliability importance when X̂ is a random vector:
they define the reliability importance of component i at level α ∈ (0, 1]
as

Ri(α) = P{γ(X̂) ≥ α|Xi ≥ δα} − P{γ(X̂) ≥ α|Xi < δα},

i = 1, 2, · · · , n. We note that the reliability importance Ri(α) of com-
ponent i depends on the state α of the system. For any component i and
any subset A ⊂ ∆, we set Ai = {x̂ ∈ ∆|(·i, x̂) = (·i, ẑ) for some ẑ ∈ A}.
Notice that A ⊂ Ai and that A = Ai if and only if whether or not x̂ ∈ A
does not depend on the state of component i. Baxter and Lee[4] de-
fines that component i is almost irrelevant to γ if there exists a subset
Eα ⊂ ∆ such that , for any α ∈ [0, 1],

µ(Ec
α) = 0 and Uα ∩ Eα = (Uα ∩ Eα)i ∩ Eα

where µ denotes Lebesgue measure on Rn and also show that, un-
der some conditions, Ri(α) = 0 if and only if component i is almost
irrelevant to γ.

1. Component Relevancy to the System

The CSF γ is weakly coherent if and only if supx̂∈∆[γ(1i, x̂)−γ(0i, x̂)]
> 0 for i = 1, 2, · · · , n; this is the weakest form of component rel-
evancy[2]. It is reasonable to say component i to be irrelevant(or
inessential) if γ(1i, x̂)− γ(0i, x̂) = 0 for all x̂ ∈ ∆. If equality holds for
all x̂ ∈ ∆−A,µ(A) = 0, then it is reasonable to define component i to
be irrelevant a.e. (almost irrelevant) to the system.

A subset U ⊂ ∆ is said to be an upper set if ŷ ∈ ∆ whenever ŷ ≥ x̂
and x̂ ∈ U . If U is an upper set, the vector ŷ is said to be a lower
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extreme vector of U if {x̂ ∈ ∆|x̂ ≤ ŷ} ∩ Ū = {ŷ}, where Ū denotes
the closure of Uα in ∆. For any CSF γ, let Qα denote the set of lower
extreme vectors of Uα; notice that Qα ⊂ ∂Uα and that if Uα is closed,
then Qα = Pα [4].

Proposition 1.1. The component i in a CSF γ is almost irrelevant
to γ if and only if supx̂∈∆[γ(1i, x̂)− γ(0i, x̂)] = 0 a.e. [µ].

Proof. (“if”) Suppose that supx̂∈∆[γ(1i, x̂) − γ(0i, x̂)] = 0 a.e. [µ].
Define the function γ′ : ∆ → [0, 1] by γ′(0i, 0̂) = 0, γ′(1i, 1̂) = 1
and γ′(xi, x̂) = γ(0i, x̂) for all x̂ such that x̂ 6= 1̂ or x̂ 6= 0̂. Define
E = {x̂ ∈ ∆|γ′(x̂) = γ(x̂)}; clearly µ(Ec) = 0. Choose α ∈ [0, 1] and
define Vα = {x̂ ∈ ∆|γ′(x̂) ≥ α}. Then Uα ∩ E = Vα ∩ E and, since
supx̂∈∆[γ′(1i, x̂)− γ′(0i, x̂)] = 0, V i

α = Vα. Choose x̂ ∈ (Uα ∩ E)i ∩ E.
Since (Uα ∩ E)i = (Vα ∩ E) ⊂ V i

α = Vα, x̂ ∈ Vα ∩ E, so x̂ ∈ Uα ∩ E.
Thus (Uα∩E)i∩E ⊂ Uα∩E. Since the reverse inclusion always holds,
we have shown that (Uα ∩E)i ∩E = Uα ∩E where µ(E) = 0. Since α
is arbitrary, component i is almost irrelevant to γ as claimed.

(“only if”) Suppose that component i is almost irrelevant to the
system γ. Then, by Proposition 2.1 of Baxter and Lee[4], yi = 0 for
all ŷ ∈ Qα ∩ [0, 1]n. Define Vα = ∪ŷ∈Qα∩[0,1]nU(ŷ) for each α ∈ [0, 1]
where U(ŷ) = {x̂ ∈ ∆|x̂ ≥ ŷ}, and define the function γ′ : ∆ → [0, 1]
by γ′(·i, 0̂) = 0, γ′(·i, 1̂) = 1 and γ′(x̂) ≥ α if and only if x̂ ∈ Vα −{x̂ ∈
∆|xj = 0, j 6= 1}(0 ≤ α ≤ 1). Define Wα = {x̂ ∈ ∆|γ′(x̂) ≥ α} and
observe that W0 = V0 = ∆ and that γ′(0̂) = 0 and γ′(1̂) = 1. It
suffices to show that γ′ = γ a.e. [µ] and supx̂∈∆[γ′(1i, x̂)− γ′(0i, x̂)] =
0. Firstly, we show that γ′ = γ a.e. [µ]. Define E = (0, 1)n − Dγ

where Dγ is the set of all discontinuity points of γ. We claim that
Uα ∩ E = Vα ∩ E for all α ∈ [0, 1]. If α = 0, the result is trivial,
so choose α ∈ (0, 1] and x̂ ∈ Uα ∩ E. Since x̂ ∈ Uα, there exists a
vector ŷ ∈ Qα such that ŷ ≤ x̂; since x̂ ∈ E, xj < 1 for j = 1, 2, · · · , n.
Thus yj ≤ xj < 1, j = 1, 2, · · · , n, so ŷ ∈ Qα ∩ [0, 1]n, and hence
x̂ ∈ Vα. Since x̂ ∈ E, we have shown that Uα ∩ E ⊂ Vα ∩ E. Now
choose ẑ ∈ Vα ∩E. Then ẑ ≥ ŷ for some ŷ ∈ Qα ∩ [0, 1]n by definition
of Vα, and hence ẑ ∈ Ūα. If ẑ ∈ Uα, i.e., ẑ ∈ Ūα − Uα, then x̂ ∈ Ūα,
γ(x̂+) ≥ α whereas x̂ /∈ Uα so that γ(x̂) < α, and hence x̂ ∈ Dγ ,
contradicting the assumption that x̂ ∈ E ∩Dc

γ . Thus Vα∩E ⊂ Uα∩E,
and hence Uα ∩E = Vα ∩E for all α ∈ [0, 1] as claimed. Further, since
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Vα ∩ E = Wα ∩ E, γ′(x̂) = γ(x̂) for all x̂ ∈ E. But Ec ⊂ Dγ and
µ(Dγ) = 0 by Lemma 2.2 of Baxter and Lee[5], so µ(Ec) = 0. Thus
γ′ = γ a.e. [µ]. Secondly, we show that supx̂∈∆[γ′(1i, x̂)−γ′(0i, x̂)] = 0.
It suffices to show that V i

α = Vα for all α ∈ [0, 1]. Since V i
0 = V0 = ∆,

choose α > 0 and x̂ ∈ V i
α, i.e., (·i, x̂) = (·i, ẑ) for some ẑ ∈ Vα. Since

ẑ ∈ Vα, ẑ ≥ ŷ for some ŷ ∈ Qα ∩ [0, 1]n and since, by assumption,
component i is almost irrelevant to γ, yi = 0 by Proposition 2.1 of
Baxter and Lee[4]. Then xi ≥ 0 = yi and, since ẑ ≥ ŷ, xj = zj ≥ yj

for j 6= 1 so x̂ ≥ ŷ and hence x̂ ∈ Vα. Thus V i
α ⊂ Vα and, since the

reverse inclusion always holds, V i
α = Vα as claimed. This completes

the proof. � �

2. Approximation of the reliability importance

Suppose that X1, X2, · · · , Xn, the states of the components, are
independent random variables defined on the same probability space
(Ω,F , P ) and that γ is right-continuous so that γ(X̂) is F-measurable.
A computationally tractable expression for the stochastic performance
function Φ(α) = P{γ(X̂) ≥ α} occurs only in certain special case and,
although bounds can be constructed, these may not be appreciably
easier to calculate than Φ itself. However, Φ(α) can be easily evaluated
if Pα is finite. We observe that if Uα is closed and Pα is finite, then

P{γ(X̂) ≥ α} =
N∑

j=1

n∏
i=1

F̄i(y
(j)
i )−

∑ ∑
j1<j2

n∏
i=1

F̄i(y
(j1)
i ∨ y

(j2)
i )

+ · · ·+ (−1)N−1
n∏

i=1

F̄i( max
1≤j≤N

y
(j)
i ),

writing Pα = {ŷ(1), · · · , ŷ(N)}, the set of N minimal vectors, and
F̄i(x) = P{Xi ≥ x}, i = 1, 2, · · · , n, i.e., that P{γ(X̂) ≥ α} is eas-
ily evaluated. Suppose that γ is right-continuous at 1̂ and define the
mapping γ′ : ∆ → [0, 1] by γ′(X̂) ≥ α if and only if X̂ ∈ Uα ∩ Dαi

where Dαi = {X̂ ∈ ∆|Xi > δα}. Clearly γ′ is a right-continuous CSF.
Let Φ′(α) = P{γ′(X̂) ≥ α}. Then Ri(α) = Φ′(α)/F̄i(δα) − [Φ(α) −
Φ′(α)]/[1− F̄i(δα)]. We note that if Pα is finite, then Φ(α) and Φ′(α)
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are easily evaluated, and hence so is Ri(α). A CSF γ is called strongly
increasing if γ(x̂) > γ(ŷ) whenever xi > yi for i = 1, 2, · · · , n.

Proposition 2.1. Let γ be a strongly increasing CSF which is con-
tinuous at 0̂ and 1̂ and suppose that X1, · · · , Xn are independent, abso-
lutely continuous random variables, the support of each of which is the
unit interval. Then there exists a sequence {γm} of right-continuous

CSF’s for which each Pα is finite such that R
(m)
i → Ri uniformly as

m → ∞ on [a, b], 0 < a < b < 1, where R
(m)
i is the reliability impor-

tance of γm.

Proof. Define the mappings γ′(γ′′) : ∆ → [0, 1] by γ′(x̂)(γ′′(x̂)) ≥ α
if and only if x̂ ∈ Ūα(x̂ ∈ Ūα ∩ D̄αi). Clearly γ′ and γ′′ are right-
continuous CSF’s. Let

Φ′(α) = P{γ′(X̂) ≥ α} and Φ′′(α) = P{γ′′(X̂) ≥ α}.

Then

R′
i(α) = Φ′(α)/F̄ (δα)− [Φ′(α)− Φ′′(α)]/[1− F̄i(δα)]

where R′
i(α) is the reliability importance of γ′. Since Xi’s are abso-

lutely continuous and µ(∂Uα) = 0 and µ(∂Dαi
) = 0 by Lemma 2.1

of Baxter and Lee[5], R′
i(α) = Ri(α), 0 < α < 1. Since γ′, γ′′ are

right-continuous, there exist sequences {γ′m}, {γ′′m} of right-continuous
CSF’s, the Pα’s of which are all finite, such that Φ′m → Φ′ and Φ′′m →
Φ′′ pointwise as m →∞ where Φ′m(α) and Φ′′m(α) are P{γ′m(X̂) ≥ α}
and P{γ′′m(X̂) ≥ α} respectively. Then R

′(m)
i (α) → R′

i(α) pointwise
as m → ∞, and hence R

′(m)
i (α) → Ri(α) pointwise as m → ∞. Since

each Xi has support [0, 1] and γ is continuous at 0̂ and 1̂, we have
0 < P{Xi ≥ δα} < 1 for 0 < α < 1 and i = 1, 2, · · · , n. Further, since
γ is strongly increasing, each of the terms Φ′(α),Φ′′(α), PX̂(Dαi) is a
continuous function of α by the argument similar to the proof The-
orem 3.1 of Baxter and Lee[4], and hence R

′(m)
i → Ri uniformly on

[a, b], 0 < a < b < 1. � �

Remark. The approximation procedure above is only practicable
for small or moderate values of n since the computational complexity
of the calculation grows rapidly with n.
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