Journal of the Society of Naval Architects of Korea (대한조선학회논문집)
- Volume 34 Issue 1
- /
- Pages.93-101
- /
- 1997
- /
- 1225-1143(pISSN)
- /
- 2287-7355(eISSN)
Hybrid Optimization Algorithm based on the Interface of a Sequential Linear Approximation Method and a Genetic Algorithm
순차적 선형화 기법과 유전자 알고리즘을 접속한 하이브리드형 최적화 알고리즘
- Received : 1996.02.05
- Published : 1997.02.01
Abstract
Generally the traditional optimization methods have possibilities not only to give a different optimum value according to their starting point, but also to get to local optima. On the other hand, Genetic Algorithm (GA) has an ability of robust global search. In this paper, a new optimization method - the combination of traditional optimization method and genetic algorithm - is presented so as to overcome the above disadvantage of traditional methods. In order to increase the efficiency of the hybrid optimization method, a knowledge-based reasoning is adopted in the part of mathematical modeling, algorithm selection, and process control. The validation of the developed knowledge-based hybrid optimization method was examined and verified applying the method to nonlinear mathematical models.
본 연구에서는 전통적인 비선형 최적화 기법의 문제점을 극복하기 위하여 유전자알고리즘과 지식베이스의 통합을 통한 새로운 개념의 최적화 기법을 개발하였다. 여기에서는 제한조건이 있는 비선형 최적화 문제를 해결하기 위해 사용되는 전통적인 순차적 선형화 방법과 새로운 유전자 알고리즘의 장단점을 서로 보완한 하이브리드형 최적화 기법을 개발하였다. 여기에 지식베이스를 통한 최적화 지원 기법 및 최적화 모델의 자동생성 모듈을 개발하여 최적화 모텔의 성능을 한층 개선할 수 있었다. 개발된 최적화 기법의 검증을 위하여 수학적 비선형 모델을 이용한 여러가지 기법의 비교 검토를 수행하였다.
Keywords