Reforming of Propane by Carbon Dioxide using Ni/γ-A12O3 Catalysts

Ni/γ-Al2O3 촉매상에서 이산화탄소에 의한 프로판의 개질

  • Kim, K. H. (Dept. of Chern. Eng. RIIT, Pusan National University) ;
  • Kim, J. H. (Dept. of Chern. Eng. RIIT, Pusan National University) ;
  • Chang, S. C. (Dept. of Chern. Eng. RIIT, Pusan National University) ;
  • Park, D. W. (Dept. of Chern. Eng. RIIT, Pusan National University)
  • 김경훈 (부산대학교 공과대학 화학공학과 생산기술연구소) ;
  • 김종화 (부산대학교 공과대학 화학공학과 생산기술연구소) ;
  • 장성진 (부산대학교 공과대학 화학공학과 생산기술연구소) ;
  • 박대원 (부산대학교 공과대학 화학공학과 생산기술연구소)
  • Received : 1997.01.03
  • Accepted : 1997.05.29
  • Published : 1997.06.10

Abstract

Reforming of propane by carbon dioxide using NiO/${\gamma}$-$A1_2O_3$ was carried out in a pulse or continuous kid bed reactor. NiO/${\gamma}$-$Al_2O_3$ showed higher dissociation ability of $CO_2$ than NiO/${\gamma}$-$Al_2O_3$, and the former exhibited higher conversion of propane than the latter. The presence of oxygen in the reaction mixture of propane and $CO_2$ increased the conversion of propane and reduced the amount of carbon deposit on the catalyst surface. Mechanical mixture catalyst of NiO/${\gamma}$-$Al_2O_3$ and $Ga_2O_3$ showed higher stability to deactivation than NiO/${\gamma}$-$Al_2O_3$ itself. The synergistic effect between NiO/${\gamma}$-$Al_2O_3$ and $Al_2O_3$ was also observed in this study.

본 연구는 펄스 반응기 및 고정층 연속반응기를 사용하여 ${\gamma}$-알루미나에 담지된 니켈촉매상에서 이산화탄소에 의한 프로판의 개질반응 특성을 고찰한 것이다 Ni/${\gamma}$-$A1_2O_3$촉매가 NiO/${\gamma}$-$A1_2O_3$촉매보다 $CO_2$의 해리능력과 프로판의 개질 능력이 우수한 것으로 나타났다. 프로판과 $CO_2$의 혼합물에 산소를 추가한 결과 프로판의 전환율이 증가하였고 표면의 탄소침적도 감소함을 알 수 있었다. Ni/${\gamma}$-$A1_2O_3$$Ga_2O_3$의 기계적 혼합 촉매는 Ni/${\gamma}$-$A1_2O_3$자체보다 촉매의 활성이 오래 유지되었고 두 상의 협동에 의한 상승효과(synergistic effect)가 관찰되었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Appl. Catal. v.30 Y. Amenomiya
  2. Appl. Catal. v.18 T. Tagawa;Y. Amenomiya
  3. Appl. Catal. v.28 B. Denise;R. P. A. Sneeden
  4. Chem. Ind. & Tech. v.12 S. E. Park;J. S. Chang;K. W. Lee
  5. Nature v.352 A. T. Ashcroft;A. K. Cheetham;M. L. H. Green;P. D. F. Vernon
  6. React. Kinet. Catal. Lett. v.24 Y. Sakai;H. Saito;T. Sodesawa;F. Nozaki
  7. Catal. Lett. v.25 J. Nakamura;K. Aikawa;K. Sato;T. Uchijima
  8. J. Catal. v.141 A. Erdohelyi;J. Cserenyi;F. Solymosi
  9. J. Catal. v.144 J. R. Rostrup-Nielsen;J. H. Bak Hansen
  10. Chem. Lett. (Chem. Soc. of Japan) T. Hattori;S. Yamauchi;A. Satsuma;Y. Murakami
  11. Stud. Surf. Sci. Catal. v.84 S. Yamauchi;A. Satsuma;S. Komai;T. Hattori;Y. Murakami
  12. 71th CATSJ Meeting Abstract v.35 T. Sodesawa;T. Takahashi;S. Takagi;S. Sato;F. Nozaki
  13. J. of Korean Ind. & Eng. Chem. v.6 D. W. Park;J. H. Kim;S. E. Na;S. H. Park;S. W. Park
  14. Appl. Catal. v.108 A. Erdohelyi;J. Cserenyi;E. Paapp;F. Solymosi
  15. Principles of Catalyst Development J. T. Ricardson
  16. Appl. Catal. v.81 L. T. Weng;B. Delmon
  17. J. of Korean Ind. & Eng. Chem. v.5 D. W. Park;S. E. Na;K. H. Kim;W. H. Lee;J. S. Chung
  18. J. Chem. Soc. Faraday Trans. v.87 B. Zhou;K. T. Chuang;X. Guo