Studies on the Fusibility of Fly Ash-Flux Mixtures

융제 첨가 비산회의 융융성 연구

  • Yang, Hyun S. (Dept. of Industrial Chemistry, Graduate School, Chungnam Nat'l Univ.) ;
  • Lee, Kyu C. (Dept. of Industrial Chemistry, Graduate School, Chungnam Nat'l Univ.) ;
  • Park, Chu S. (Korea Institute of Energy Reserch) ;
  • Received : 1997.08.19
  • Accepted : 1997.10.22
  • Published : 1997.12.10

Abstract

The effects of CaO and MgO fluxes on the fusibility of fly-ashes were investigated for two different fly-ashes. A fusion temperature of mixtures of selected fly-ashes and fluxes were measured by the ASTM test method(D1857) and the differential thermal analysis. IDT of these samples added CaO and MgO as a fluxing agent dropped in the range of 114 to $294^{\circ}C$ and 80 to $224^{\circ}C$, respectively. Compared with ash fusion temperature to Base/Acid ratio, the lowest ash fusion temperature were measured in the range of 0.7 to 0.8 for CaO-fly ash mixtures and 0.3 to 0.4 for MgO-fly ash mixtures. As a result, MgO in small addition acted as a more effective flux than CaO. A conventional Base/Acid ratio and liquidus point of ternary diagram did not show a good correlation with ash fusion temperature for these samples. In pure fusion temperature of fly ash-mixtures, DTA was better method than ASTM test method.

구성분이 상이한 2종의 비산회를 대상으로 CaO와 MgO융제의 첨가시 용융온도변화에 대하여 고찰하였다. 용융온도측정을 위하여 ASTM 용융온도측정법과 시차열분석법이 사용되었다. CaO융제의 첨가시 시료에 따라 $111{\sim}294^{\circ}C$의 융점(IDT)강하효과를 얻을 수 있었으며 MgO첨가시에는 $80{\sim}224^{\circ}C$의 융점강하효과를 보였다. Base/Acid Ratio와의 비교에서 CaO flux는 0.7~0.8, MgO flux는 0.3~0.4의 범위에서 가장 낮은 용융온도로 측정되었다. 따라서 적은 첨가량으로도 MgO는 CaO보다 더 효과적인 융제로 작용하였다. 이러한 융제첨가시의 용융온도 변화는 용융성 분석에 보편적으로 사용되어지는 Base/Acid ratio와는 상관성이 없음을 알 수 있었고 $XO-SiO_2-Al_2O_3$ [X=Ca, Mg]삼성분계의 liquidus 온도와도 일치하지 않음을 알 수 있었다. 시차열분석결과와 ASTM용융온도와의 비교에서 용융성과 흐름성(점성)등의 물성이 복합적으로 반영되어 있는 ASTM측정법 보다는 시차열분석이 비산회의 순수한 용융온도를 분석할 수 있는 측정법임을 확인할 수 있었다.

Keywords

References

  1. Material Research Society Symposia, Proceedings v.65 Fly Ash and Coal Disposal Ⅱ M. G. Josch(et al.)
  2. 한국전력공사, H-1-9-82 일본의 석탄회 재활용관련 조사보고서 남호기
  3. KIER-941129 청정석탄활용기술개발 손재익외
  4. Cement and concret Research v.14 Utilization of by-products from Western coal Combustion In the Manufacture of Mineral Wool and Other Ceramic Materials O. E. Manz
  5. Yokosuka Research Laboratory Rep. No. EW91010 Establishiment of Gasifier Operation Index for Slag discharging Performance M. Ashizawa
  6. Combustion fossile Power Systems J. Singer(et al)
  7. Cheistry of Coal Utilization v.1 E. P. Barreff;H. H. Lowry(Ed.)
  8. Fuel v.66 Prediction of Ash Fusion Temperature from Ash Composition for Some New Zealand coals V. R. Gray
  9. J. of Eng. Power An empirical study of the relation of chemical properties to ash fusion temperatures E. C. Winegarter;B. T. Rhodes
  10. J. of Eng. Power An Empirical Study of the Relation of Chemical Properties to Ash Fusion Temperature E. C. Winegartner;B. T. Rhodes
  11. J. of Eng. Power, ASME v.98 Examination of the relationship between ash chemistry and ash fusion temperatures in various coal size and gravity fractions using Polynomial Regressin Analysis R. W. Bryers;T. E. Taylor
  12. J. of Kor. Ind. & Eng. Chem. v.80 산화성 및 환원성분위기에서 석탄회분의 용융성 박주식;이시훈;최상일;양현수
  13. Fuel v.60 Corrleation between ash-fusion temperatures and ternary equilibriun phase diagrams F. E. Huggins;G. P. Huffman
  14. Energy Eng. J. v.4 석탄 회분의 융착성향 예측 이시훈;박주식
  15. Fuel v.60 Investigation of the High-Temperature Behaviour of Coal Ash in Reducing and Oxidizing Atmoshperes F. E. Huggins;G. P. Huffman;G. R. Dun-myre
  16. Fuel v.65 Studies of the Fusibility of Coal Ash H. Unuma;S. Sayama
  17. World Congress of Chem. Eng. The Behavior of Ash Fusion in High-Temperature Coal Gasification M. Hirato;Y. Ninomiya
  18. ASME Inorganic Transformation and Ash Deposition during Combustion S. A. Benson
  19. J. of Eng. Power v.101 Effect of Composition on Melting Behavior of Coal Ash K. S. Vorres
  20. 세라믹스 총론 下 김병훈