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Predicting Nonlinear Processes for
Manufacturing Automation:
Case Study through a Robotic Application
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Abstract

The manufacturing environment is rife with nonlinear processes. In this
context, an intelligent production controller should be able to predict the
dynamic behavior of various subsystems as they react to fransient environmen-
tal conditions, the varying internol condition of the manufacturing plant, and
the changing demands of the production schedule. This level of adaptive
capability may be achieved through a coherent methodology for a learning
coordinator to predict nonlinear and stochastic processes. The system is fo
serve as a real time, online supervisor for routine activities as well os
exceptional conditions such as damage, failure, or other anomalies. The
complexity inherent in a learning coordinator can be managed by a modular
architecture incorporating case based reasoning. In the interest of concrete-
ness, the concepts are presented through a case study involving a knowledge
based robotic system.
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learning.
INTRODUCTION In this context, an intelligent production
controller should be able to predict the dynamic
Nonlinear processes constitute an inherent behavior of various subsystems as they react
component of the manufacturing environment. to transient environmental conditions, the vary-
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ing internal condition of the manufacturing
plant, and the changing demands of the
production schedule. This level of adaptive
capability may be achieved through a coherent
methodology for a leaming coordinator to
predict nonlinear and stochastic processes.

The next generation of manufacturing sys-
tems should incorporate adaptive capabilities to
accommodate to transient environmental condi-
tions as well as the changing goals of the
operator and the dynamic condition of the
factory itself. For instance, an automated
guided vehicle (AGV) must take into account
strategic knowledge such as prior information
on the available routes and their characteristics.
Since the enormous space of potential situa-
tions cannot be foreseen and enumerated in
aclvance, the coordinating system should incor-
porate versatile learning capabilities. A further
advantage of sach adaptive capacity lies in the
potential for steady improvement. By drawing
or. its accumulating experience, the system
shouid yield enhanced performance over time,
even in the absence of exceptional conditions
wich would stretch the boundaries of its
kriowledge base.

A complex system such as a mobile robot
operates in a highly dynamic environment.
Environmental disturbances may be caused by
physical phenomena such as mechanical failure,
or human activity such as passing workers, or
automated systems such as moving shuttles.
Due to the intrinsic complexity of automating

the operation of autonomous mobile robots,

control systems which have been fielded to

date address only specific tasks or limited
environmental scenarios. Moreover, exceptional
conditions such as damage or failure of
components have been handled with limited
prowess: for instance, a sudden failure of the
brakes in a manned vehicle invokes mno
automated response but rather relies on the
swift reflexes of the driver and the invocation
of manual procedures such as the use of the
handbrake.

The complexity of the domain and the
uncertainties which are often its derivatives
limit the effectiveness of traditional control
methods, Fortunately, this sitvation can be
remedied by an adaptive control methodology
using knowledge integration (Kim, 1994a).

Over the past decade, a popular methodology
for implementing leaming controllers has lain
in the neural network. Despite its many
advantages such as autonomous learning in
specific contexts, the neural approach has its
limitations. Among the limitations are the slow
rates of leaming and perhaps even more
importantly, the implicit nature of the learned
skill. More specifically, a neural network may
yield the correct response to a query but it
cannot explain the result or justify its “reason-
ing” (Kim, 1994b; etc.).

More extant control systems are islands of
automation, each of which performs a simple
regulatory function. An example in this vein is
found in the cruise control system, which

regulates only the speed of the vehicle; its



regulatory behavior ignores the status of other
sabsystems, except for manual intervention
such as the pressing of the brakes causing the
controller to disengage. In general, having a
portfolic of disparate systems leads to the
problem of suboptimization: in a nonlinear
context such as the realm of vehicle control,
the union of local optima determined by the
respective controllers is unlikely to lead to the
globally optimum action.

The need for joint optimization applies not
only to systems at a given level of operation,
as exemplified by control modules for balanc-
ing speed against safety on a slippery road, but
at different level of supervision, such as
navigation versus collision avoidance. The
limitations of existing control techniques may
be transcended by an integrated approach. The
approach tasks the form of a generalized
framework for learning control which accom-
moedates a portfolio of software and hardware
technologies acting in concert (Kim, 1990). In
the realm of software, the framework may be
implemented through the declarative techniques
of artificial intelligence as well as ihe procedur-
al methods of traditional computing. The
software methods range from rule bases and
frames to object oriented programming and
case based reasoning. The approach can
accommodate not only the methods of declara-
tive logic, but procedural methods such as
those from nonlinear adaptive control theory.

Among complex systems, chaotic processes

are perhaps the most difficult to predict
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(Farmer, 1982; Grassberger, 1983; Shaw, 1981).
Even so, knowledge based methods have been
used successfully for prediction in domains
ranging from economics and finance to science
and engineering (Scheinkman and LeBaron,
1989; etc.). This paper invesiigates the utility
of the case based approach to the manufactur-

ing environment.

BACKGROUND

The intelligent control of autonomous entities
has been a subject of extensive investigation,
especially over the past decade or two. One
relevant project is the Autonomous Land
Vehicle (ALV). Although the ALV program
has not yet met the expectations of its sponsors
or commeniators, its successes and failures are
instructive, as in any advanced-technology
project. Perhaps the main stumbling block in
this project has been the lack of an adequate
technology base to support pattern recognition
and image understanding in a complex
landscape.

A fundamental limitation of classical
methods of adaptive control lies in their
vulnerability to instability in the face of
unmodeled dynamics and unmeasurable distur-
bances. Even with improved algorithms such
as enhancements to model reference adaptive
control (MRAC), only local stability can be
guaranteed under imperfect knowledge of
system dynamics and disturbances. Moreover,

such algorithms can lead to impractical compu-
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tational burdens, as exemplified by the adaptive
procedure for which a Cyber 205 supercomput-
er was inadequate to respond in real time to
a simulated plant (Athans, 1988).

These limitations can be circumvented with
the use of nonlinear models of the plant, The
use of declarative methods of control obviates
the need for developing an exhaustive model
of the plant dynamics. This is especially
advantageous in the interest of accelerated
control system development, or in cases where
the physical dynamics of the plant are unknown.
Even in the down-to-earth task of fabricating
composites for aircraft, the effects of produc-
tion parameters such as temperature and
humidity on the final characteristics of the
cured part are imperfectly understood; yet
knowledge based systems have been successful-
ly developed for such production control
applications (Kim, 1991).

METHODOLOGY

Adaptation refers to the modification of
behavior patterns over time. such adaptive
behavior is useful for dealing with unknown
factors in current or future activities, More
specifically, they are effective in applications
where (a) predictive knowledge of the underly-
ing process is incomplete, and (b) variations in
inputs or environmental conditions may exceed
the predetermined range of values, or may be
sven assume wholly unexpected characteristics

(Kim, 1990), The framework and concepts for

learning systems have been tailored to applica-

tions in variows domains.

A learning system should make increasingly
useful decisions as it accumulates experience.
This is the express goal of the work in case
based reasoning (CBR). Perhaps the most
important advantage of CBR is the affinity 1o
human leamning and the ease of enhancing
system performance. The knowledge in a
particular domain can be stored in formats
which are conventional for that domain. This
is in contrast to other knowledge level
representations such as production rules, n
which the system developer is required to
extricate the pertinent decision rules used by a
human.

Case reasoning requires the retrieval of past
experience in the form of cases. In this task,
two types of difficulties can arise. The
matching problem refers to the task of
associating a new problem to pertinent prior
cases, More specifically, a target case is
maiched against prior cases as indicated in
Figure 1. A key issue lies in retrieving prior
cases which are similar to the new problem in
substantive tather than superficial ways. This
relates in part to the issue of indexing, which

case A case B target

Figure 1. General scheme for case based
reasoning.



deals with the organization of the case base.

To automate the task of matching in CBR,
previous cases can be orgamzed in some
fashion to enable to the rapid identification of
potentially relevant cases. To this end, previous
solutions can be indexed by their key attributes
and the features which distinguish them from
other cases. The indexing problem refers to the
task of storing cases for effective and efficient
retrieval. In terms of efficacy, the subsides are
accuracy - finding only relevant cases - and
completeness - identifying all relevant cases.

In forecasting a univariate time series, the
task of CBR is to predict the subsequent state
T+ 1 at time T based on delay vectors of the
form x, = (x, x,,, ", X,4). Each delay vector x,
represents a case in ihe context of univariate
forecasting. The basic structure of inputs and
outputs for the CBR approach is presented in
Fgure 2.

* CBR

— X

1+

Figure 2. General structure of the case based
reasoning method. in the study, the number of
neighbors was L=15

- Step 3. Compute the sum of weights :

:Step 6. Calculate the forecast for t+1 as the
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In the current study, the length of each delay
vector was 5; that is, & = 4. Moreover, the
number of neighbors was L =5, The pro-
cedure for employing the CBR method is listed
in Figure 3.

Step 1. Begin with current case x(1).

Step 2. Seek the J neighboring cases x() in the |
past which are closest to x{fj} according
to the distance function :

d = dAt), X1

J
tror= L &
1
Step 4. Determine the relative weight of i™ neigh-
bor :
1 d
o 350 )
Step 5. Find the successor xit+1) of each case

X1t} in the set of neighbors.

weighted sum of successors .

5te1) - F Wit 1)

Figure 3. Procedure for case based reasoning
using composite neighbors (Kim, 1995}.

In many practical contexfs, predictions must
be made in domains rife with casual factors
which are poorly understood. Even so, the
explanatory factors must be incorporated into
some model if predictions are to be accurate.
Comparison-based planning (CBP) is one ap-
proach to addressing this challenge (Klein,
1986). In making a prediction for the target
case, the designer first examines previous cases

which incorporate many of the causal factors
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in the current situation. The information in one
of these analogous cases is then used to make
a prediction for the target case by examining
the significant differences between the analo-
geus precedents and the target case.

A learning systemn, to be effective, must have
the ability to draw on knowledge from diverse
sources. The diversity can take the form of
di‘ferent formats for encoding knowledge as
well as multiple modules within a  single
representation format. The synergism of diverse
formats is exemplified by the integration of
praduction rules with the output of neural
networks. The second major category of
integration relates to the enhancement of
performance through the fusion of new infor-
mation with the old in an existing knowledge

base.
APPLICATION OF METHODOLOGY

A general framework for learning systems
has been developed for control automation in
various domains {Kim, 1990). Information from
the environment is acquired through sensors
and from directives from humans; the input
strzams are processed by a learning coordinator
in conjunction with dynamic trip requirements
and decisions of the user. The actions from the
system, implemented through the activators,
modify the external environment - such as the
clearance of an obstruction where appropriate
- or the internal environment - such as the

replacement of a malfunctioning unit by a

redundant one, In this arrangement, the reason-

ing phase of observation, prediction, action,
and evaluation proceed for each top-level
module as well as its subsystems in turn.

A versatile learning system must incorporate
input from multiple sources. To illustrate,
consider the realm of sensor fusion for
vehicles. The functional requirements on sensor
systems for a mobile system may be broadly
classified into internal and external categories.
Internal functions deal with proprioceptive
tasks such as monitoring for homeostasis and
malfunctions. External sensory functions, on
the other hand, include navigation, object
detection, object identification, and verification.
Any sensory modality exhibits a unique set of
advantages and limitations, such as resolving
capacity or attenuation in the atmosphere.
Moreover, any physical device is also suscep-
tible to malfunction or failure. For this reason,
the likelihood of accurate perception is in-
creased by integrating the input from multiple
modalities as well as multiple physical units
within a single modality. An example of the
effective fusion of several modalities lies in
the use of passive as active modes of infrared
and radio frequency emissions for detecting
objects.

A learning controller must supervise and
coordinate the activities of many subsystems.
The coordination of multiple decision making
units has been investigated through various
techniques, including game theory and team
theory (Kim, 1994}, The utility of coordinative



and competitive heuristics 1o the coordination
cof mobile robots, for instance, has been
validated through simulation studies (Egilmez
and Kim, 1992).

JASE STUDY

For the sake of concreteness, the adaptive
methodology has been applied to a robotic
application. The basic motivation behind the

case study is presented in Figure 4.
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slow-moving shuttles, S1 and S2, which convey
workpieces from one location to another.
Because the alleys allow for the passage of
only one platform (robot or shuttle) at a time,
the robot might reach its destination more
quickly by selecting a roundabout route rather
than a direct one.

The architecture for the robotic reasoning
system is given in Figure 6. The system
architecture has been used extensively in the
past for the design of intelligent systems (Kim,

Premise

Case Study

Simulation Format

module are observable andfor controllabie.

modules,

f.earning Methodology

to improve system performance.

® Manufacturing system performance can be enhanced through learning techniques.

® Simulation model consists of several modules with infermation hiding: only the inputs and outputs for each

eThe behavior of each module tends to be noniinear, and the internal model is unavailable to the other

¢ The context is a manufacturing system with muHivariate inputs. _
@ The performance criterion for prediction and planning pertains to accuracy and response time. An example :
is & mobile robot which responds swiftly to service requests from a flexible manufacturing cell. '

®The learning robot observes system behavior using case based reasoning and generates regulatory rules |

Figure 4. Highlights of the study.

Figure 5 shows the scenario for the simula-
tion study. The robot R travels with speed V
in response to service calls from flexible
machire cells F1, F2 and F3. It must navigate

its way despite the potential obstruction of two

1990}.

The simulation software was written in the
C language and run on a Pentium PC. The
input data in the form of Lorentz and Henon

processes were generated on an  Excel
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Figure 5. Simulation scenaric. Robot R travels with speed V and responds to calls for service from
flexible machine cells F1, F2, and F3. Each shuttle Si delivers workpieces from source A; to
destination B, traveling at speed C; {much less than V). Each aliey has room for two vehicles.

spreadsheet using equations described below.

The alternative models for the simulation
experiments are given in Table 1. The service
calls from each workcell are assumed to be
chaotic.

The functions of the robot relate to predic-
lion or planning. In the predictive task, the goal
of the robot is to characterize the service calls
in terms of the probability distribution of
interarrival times. For the planning task, the
nbjective of the robot is to generate a trajectory
which will ensure minimal travel times with
nigh probability.

A principal model of a chaotic process is
the Lorentz system characterized by continuous

variables (Lorentz, 1963). The discrete version
of the model takes the following form.

X = 1-7 40x,+ (o 40y,
ynl = (1'40}’; + (F-Z,)Atxf
2y = (1-b Atz + xy, 4t

The system of equations exhibits chaotic
behavior when the parameter values are 0 =
10, A4¢=0.025, r=28, and b= 8/3.

Another model of a chaotic process is the
Henon system which involves discrete variables
(Henon, 1976).

X = 1-AX + Y,
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Functional
E.equirements

Robat

Lufi . input ta
oformation
™1 censor Sysiem g Detector
= ¥ Learning System
z
g
g CBR
[1]
=4
Cutput from ¥Reasening Module
- Action Activator iystem [Prediction presenterl

Figure 6. System architecture for a learning robot. The manufacturing environment involves a nonlinear
model. The learning robot records historical information, and autonomously learns ic adapt to its
external environment,

Table 1. Simulation experiments. The interarrival times for service calls may be stochastic or deterministic
[chaotic), The service calls orise from F, for the robet, as well as Bi for shuitle 5. in either the stochastic
or deterministic milieu, the tosk of the robotfic agent can be categorized as simple prediction [while
remaining stationary, or planning (generation and execution of a trojeciory).

Lorentz model Henon mode!
Prediction Predict interarrival times Predict interarrival times
with Probability with probability
distributions distributions
Planning Generate a probabilistic Generate a probabilistic
trajectory trajectory
Y1 = Bx, menied in our simulation software. The simula-

tion utilized case based reasoning (CBR) for

The model yields chaotic behavior for the forecasting the process. In the CBR approach,
parameter values of A= 1.4, and B=0.3 previous patterns of events - in terms of time
The Lorentz and Henon models were imple- and location - are stored in a case base. This
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database of prior events is then used to forecast
future events. The predictions are utilized by
the robot and shuttles to make decisions geared
toward minimizing response delays.

The average response delay of the system
under a Lorentz model of interarrival times is
shown in Figure 7. The corresponding chart for
the Henon model is presented in Figure 8. The
average response delay is computed as the
arithmetic mean of response delays for the first

300 events in the simulation run.

|-—0——rm using CBR ---»- using CBR

¥ &

response detay

5 8.9 ¥4 15.5 19 22.5
pean interarrival time {sec.}

Figure 7. Perfaormance under the Lorentz model.
Eolid line indicates the response delay of the
system without any prediction module, while the
dashed line indicates system behavior using
CBR as the prediction technigue.

According to the figures, the average
response delay is improved by using the
leaming technique regardless of the Lorentz or
Henon interarrival times. Further, the improved
performance is evident at any of the mean
intzramrival times tested.

Under the null hypothesis of equal perfor-
mance, the outcome of one approach is as

likely to supercede or to underperform the

——not using CBR ---»- using Cm

respense delay

0 P . ' El i
5 8.5 12 15.5 18 2.5
mean interarrival tiee {sec.)

Figure 8. Performance under the Henon model.
Suolid line indicates the response delay of the
system without any predictive module, while the
dashed line indicates system behavior using
CBR as the prediction technique.

other approach. In this context, the Wilcoxon
test may be applied to determine the level of
significance for the disparity in performance
for the two methods. The resulting calculations
for the Lorentz model are shown in Table 4.
The sum of signed ranks is 7,=21 and T = 0.
Consequently the test stafistic is T=min{T,, T} =
0. According to widely available tables, the

Table 2. Wilcoxon test for the Lorentz model.
Method A denotes the lack of CBR, while method
B incorporates CBR,

Method | Methad [Ditference| Rank of | Signed :

A B difference} rank
112408 | 21.88 | 220 5 +5
212020 {1878 | 142 3 +3
31777 { 1636 | 141 2 12
4| 1589 1 1451 1.38 1 +1
51 1411 | 1217 1.94 4 +4
61377 | 979 | 398 ] +B




Table 3. Wilcoxon test for the Henon mode,
Method A represents the lack of CBR, while
method B includes CBR.

Method Melhodeiﬂerence Rank of | Signed
A B difference| rank

2343 | 21.75 1.68 4 +4

20,08 | 1947 0.91 +1

17.95 | 16.97 0.98 +2

1510 | 1224 | 286 +5

enlenl snlealml =

1
2
15.86 | 14.36 1.50 3 +3
5
&

1446 | 981 465 +6

significance level is p { 0.05.

A similar test is outlined for the Henon
model in Table 3. The disparity in performance
is again significant at level p { 0.05.
Consequently, the use of CBR improved results
at a statistically significant level.”

CLOSURE

This paper has explored the premise that
system performance can be improved by using
leamning techniques such as CBR, The approach
was validated through a case study involving
a robotic system.

A self-learning predictive methodology is
applicable to any autonosous entity, whether

an autemated taxi, underwater surveyor, or a
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flying drone. The technology of a highly
intelligent control system will be useful to the
automation of complex plants ranging from the
supervision of an automated factory, the
management of energy in an office building,
or the regulation of a public utility. Other
applications include resource management in
communication networks as well as monitors
for ship operations or as controllers for

automated shuttles.
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