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Abstract

Assembly/Disossembly Queueing Networks {ADQNs) with finite buffers have been used s
major tool for evaluoting the performances of manufacturing and parallel processing systems.
In this study, we present simple but effective methods which yield throughput upper and lower
bounds for ADQNs with exponential service times and finite buffers. These methods are based
on the monotonicity properties of throughputs with respect to service times and buffer capacities.
The throughput-upper bounding methed is elaborated on with general network configuration
{specifically acyclic configuration). But our lower bounding method is restricted o the ADQNs
with more specialized configuration. Computational experiments wil! be performed te confirm
the effectiveness of our throughput-bounding methods.

1. Introduction

The operation of manufacturing and parallel processing
systems is often approximately described by a finite-
buffered queueing network of assembly/disassembly type.
In a manvfacturing system, units may be built by
assembling multiple subunits and a unit may be disintegrat-
ed into one or more subunits for the required operation.
In a parallel processing system, disassembling occurs
when a job (program) is split into tasks (subprograms)
that can be concwrrently run on a number of different

processors. Assembling occurs whenever a job is allowed
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to be executed only after the completion of other tasks.

In this paper, we investigate the throughput-bounding
methods for ADQNs with finite buffers and exponential
service times. Previous studies i the literatre has been
mostly confined to the ADQNs with infinite buffers [3,
5, 11]. See Liu and Perros [11], Baccelli and Massey |3,
and the numerons references therein for the ADQNs with
infinite buffers. But only a few studies represent some of
the effort that has been dedicated to the analysis of
ADQNs with finite buffers [4, 8, 10]. Furthermore,
throughput analysis, due to the unavailability of closed-
form exact solutions for the AD{)Ns, has been centered
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on developing an approximale measure.

As an alternative or a supplement to the approximate
approach, one may be interested in bounds which can be
obtained with much less computational effort. Within our
knowledge, two studies dealing with the throughput
bounds for ADQNs with finite buffers have been
published [9,10). Hopp and Simon [9] have obtained
bounds for the ADQNs with three-server simple assembly
configurations. Lipper and Sengupta {10] have studied
assembly nerworks where all buffers have the same
cupacity. The objective of this study is to extend to
ADQNs with more general configuration.

This paper is organized as follows: In Section 2, an
ADOQN model is described. In Section 3, the throughput-
upper and lower bounding methods are presented. In
Section 4, extensive computational experiments are

conducted, followed by a conchusion in Section 3.

2. Model Description

Consider an ADQN which consists of K service
fzcilities and M finite buffers. Unless otherwise mentioned,
we assume there is a single server in each service facility,
so service facility § and server § will be used interchange-
ably with each other. Server / has the sets of upstream
and downstream buffers, denoted by () and D)
respectively, For each buffer j there exist only one

upstream and one downstream server, denoted by 4 and

df, respectively. Assume that the configuration of an
ADQN is acyelic (i. €., it does not contain any undirected
cycle). Server i with Uli)=9, which receives customers
from outside the system, is never starved, while server {
with D({)= @, which sends customers to outside the
system, is never blocked.

A disassembly server splits 2 departing customer into
a number of customers, each to be forwarded one-to-one
1o its downstream buffers. On the other hand an assembly
server may initiate its service only when each of ils
upstream buffers is occupied, i. e., there is at least one
customer waiting to be served at each upstream buffer.
A server, just before a service initiation, confirms whether
ot not its downsiream buffers are free. If at least one of
these buffers is full, the service initiation is postponed
umil all downstream buffers are free. This blocking
mechanism is called Blocking Before Service (BBS) [12].

To introduce three specialized network configorations,
consider the ADQNs with more restricied cenfiguration
as follows: server K is the only server to make
disassembly andjor assembly operations and Ulu)=@,
jeUK), Did)= @, keDIK). This type of ADQNs i
specifically called simple ADQN (see Fig. 1 (b))
Moreover, networks with D{K)=@ and U{K)=® will be
called simple assembly (see Fig. 1 (a)) and simple

disassembly networks, respectively.

{a) A simple assembly network

(b} A simple ADQNs

Fig 1. Two examples of ADQNs
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Service times at server { are dismbuted according to

exponential distribution with rate £, and those of different
servers are mutually independent. Let {§; #=12,..} be
the sequence of service times of server /, and denote
§={S4=1,..K} where $="5, . n=1 (note that X="7 if
PiX=x)}=P(Y =x), x€R [14]). Customers in each buffer
are served in a FIFO {first-in first-out) manner. A server
provides its service simultancously to the cusiomers, one
for each of Its upstream bufters which is assumed to reside
therein while being served. Let B={B.B;-.B,;} where
BJ denotes the capacity of buffer j.

The initial condition is given by E={m.,mg,-~,mM}
where m; Tepresents the number of customers in buffer j
at time 0. Let &; (=Bj—mj), j=1,..M. be the number of
the empty spaces (holes) in buffer j at time 0.

The notation F=(B,S) is used to denote the network
with network parameters {B.3). Let £=(X.m) denote the
network coupled with an initial condition 2. The
throughputs of ¥ and = are denoted by TH(Z) and TH
(.2}, respectively.

We now establish a set of recursive equations which
depicts the evolutionary process of the ADQN, and which
will become the basis of the development of our
throughput-bounding methods. Let B, and D; | dencte the
service beginning and departure time of the nth customer
at server i, respectively. Assuming that the network X
starts with the initial condition #, the following evolution

equations represent the system dynamics:

Bi.n:maij g ent) {Di',n - I'Di{;,n - m‘;‘qu,n ) }' (D
=1,..K nzl, 2

Dy =B, #S;, i

W

where Diﬂ=0, i=1,...K and n=0.

It is instructive to note that B, is determined by taking
into account three conditions: the first is that server 7 must
be available. The second is that all upstream buffers of
sarver § must be non-empty. And finally all downstream
tuffers of server { must be non-full. The first condition

7

is saisfied when server / has completed its (n— Lkh

service, which occurs at time D, =

is satisfied when server "y jell), has completed its

.- The second condition

{n ~mj]th service, which occurs at time D, i The third
r

condiion 1s satisfied when server dq, gD, has

completed its (n—hq)lh service, which occurs at time

D, =
instant of beginning of service is the maximum of these

Since these conditions must all be satisfied, the

three times. Equation (2) simply states that the time of
the departure tite of the nth customer at server { is equal
10 the time of its service beginning plus the duration of

the service time.

3. Throughput Upper and Lower Bounds

According to our literature survey, there is no study
dealing with the approximate methods for finite-buffered
ADQNs with general configuration such as ours. In the
absence of approximae methods, one may just be
interestzd in conservative but easily obtainable secured
bounds in order to get a fast impression of the sysiem
performance {9, 107. Hopp et. al [9] obwined throughput
bounds for three-server simple assembly networks and
Lipper et. at {10] derived threughput bounds for simple
assembly networks where all buffers have the same
capacity. In this section, we suggest two throughput-
bounding methods with no restriction on the buffer size
and the number of servers: one for the upper bounds of
ADQNs with acyclic configuration and the other for the
lower bounds of simple ADQNs.

3.1 Throughput upper beunds for acyclic ADQNs

Consider an acyclic ADQN, Z=(8,$}. Let r(i,}) denote
the set of servers and buffers on a route from server i
to server I Let (LD be the subset of ri), composed
of only the buffers in r(i,/). Denote the throughput of an
ordinary queueing system, M/M/1/B, with arrival rate 4
and service rate # by flAR, 4, ie,



A ABLBYCAB BTy i A

B, 1= (3)

AB/(B+1) if A= p

lLemma 1. Consider two ADQNs, & W3, (H] k=
12, where BY=B%, and m"=p. Then s“)ss @
I...K, implies ,i_’)!-,ﬂ s Ej

Proof. The proof is conducted using the coupling
theorem [16], Assume thar §¢'~F, and S?)'vGI., i=lo,
K, and generate successive service times for server i from
SE]; F(U) and SE}G‘-“](U"), where U,, n=12,.
represent iid. uniformly distributed random variables.
From definition, S E?:sz?v atmost surely, n=1. Hence by
the evolution equations (1) and (2}, it is evident that
Df;ﬁDf; almost surely, n=1, i=1....K. Thus, the proof

is completed. a

l.emma 2. Consider two ADQNs, W (s, (’U) k=
M ang _Emgg() implies

1.7, Then S('): Srsm
DLz Dl

X

Sl S

Proof. As shown in equations (1) and (2}, the departure
times of nth customer at server i, D.
three factors : D. D and Dd Ak

=
the increase of buffer capacities decreases the value of

is determined by
- . Note that
the thid term, D, ,—, (h=B,—m), aod recursively
effects the realization of departure times. From this fact,
we deduce that D;, is decreasing in 8, o

Theorem 1. Consider two acydiic ADQNs, 5%=( s ),
k=12 Then SV= $% ix1, K or BV <B® impiies
TH(=") < TH(Z").

Procf. Let E(X) be the expectation of randem variable
X. By Lemma 1 and 2 and noting the following fact:

TH( )' ],I 1 yK9

n—»mE(D

the proof is immediately completed. G

Remark. Note that Lemma 1, 2 and Theorem 1 hold

(a)

(b)

Fig 2. Two six-servers ADQINs



in the general service times, provided that the service
times of each server are i.1.d. {independent and identically
distributed) random variables.

Since the dynamics of acyclic ADQNs with exponential
service times forms an irreducible Markov process, we
have the following asymptotic resuit independent of initial

conditions.

Corallary 1. Consider two ADQNs with exponential
service times, S k=1.2. Then S?)z s Ez), i=1,..K or
B <89 implies TH(x)<TH(z®).

We are now ready to derive throughput upper bounds
(TUBs) for acyclic ADQNs with exponential service
times. we first construct several decomposed systems, sach
of which yields a TUB for the original ADQN, as

indicated in the following procedure.

Decomposition procedure:

{ i) Among all pairs of servers, select the pairs (i.f) such
that r(i)= @. Let W be the set of these pairs.

(ii) For a pair (i)W, set §;=7 (that is, g=w), ¥k
(=i8) and Broo, jerti,h, where I is the unit
step functicn at zero. Let D)) denote the decom-
posed system constructed by the pair of servers 1
and 1, (iJ)

Note that the decomposed system D{if} becomes an
solated M/M/A/B’ system with B'=% jer'"(:‘J)Bj’ arrival
ate u; and service raie 44, For example, consider a
Jecomposed system D(1.4) of the six-server ADQN given
in Fig 2 (b). Note that the decomposed system becomes
an M/M/1/B with buffer size (Br+B.), arrival rate # and

service Tate M.

Theorem 2. For an acyclic ADQN with exponential
service times, S, THDGD), (LDeW, is a TUB of Z.
Hence,

TH(2)é(iﬂgwlTH(D(i,I})}=(i_‘rIr}|énw{ﬂ BZ e p By

Procf. Since Fz J for any distribution function F of
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a positive random variable, TH(D(D), GHEW, is an
upper bound of TH(X) by Theorem 1 2

3.2 Throughput lower bounds for simple ADQNs
In this subsection, we derive throughput lower bounds
(TLBs) for a simple ADQN Z. Let g(AB, 1) be the
empty probability of an isolated queueing system,
M/M/1/B, with arrival rate A and service rate x, ie.,
(1- p¥(1— 4% if el

gl 4B, 1= { e el (4)

where 2= Af p.

Lemma 3. The empty probability of buffer j, j< U(K)
in a simple ADQN, X, is less than or equal to that of
M!M!lfBj with arrival rate #"J and service rate H, 1€,
PN0)Sglu, B, ), jEUK).

Proof, By similar arguments as the case of TUB, Hopp
et al. [9] showed that the empty probability of buffer
(je U(K)) in the simple assembly network, in which server
K experiences the so-called starvation delay (the delay
owing to postponing service initiation until each of its
ppstream buffers is occupied), is less than or equal to
that of the associated M/M/1/B. In the simple ADQNSs,
server K experiences not only starvation delay but also
blocking delay. Note that this blocking defay may create
some additional opportanity of postponing service initia-
tion and of increasing the number of customers in the
upstream buffers of server X, Hence it is obvious that the
empty probability of buffer j (/€UIK)) in the simple
ADOQNSs is less than or equal to the one in the simple
asserbly networks. Thus, the proof is completed. 3

Consider another simple ADQN, £, which is obtained
from the original network ¥ by exchanging the upsiream
and downstream servers of each of all buffers. The
network X7 is called the reverse network of £ [2, 13].
The notations pertaining to the network X7 are denoted
by the superscript T.
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Lemma 4.({2]} Consider a simple ADQN with expo- Lemma 3 and 4 directly lead to the following theorem.
nential service times X and its reverse network 37, The
blocking probability of a buffer in £ is equal to the Thearem 3. For a simple ADQN with exponential
empty probability of the buffer in X, service times, X,

Table 1. Throughput bounds for K-server simple assembly networks (K=4,5,5)

k] v w w a w w8 B B B & Eat|TUB ! %er|TiB | e
03 02 01 015 2 3 2 0077 [ 0079 | 26 -0.034| 56.0
01 03 04 02 2 4 4 0.086 | 0.085 | 0.0 |[0.064| 255
10 05 04 03 5 3 3 0244 | 0254 | 41 |0223| 45
05 03 03 02 5 4 5 0.181 | 0.185 | 22 |0.474| 39
, |02 0z 02 o 3 2 2 0079 | 0086 | 89 |0065; 17.7
103 03 03 Of 4 2 3 0091 | 0002 | 11 .0.089| 22
104 03 05 015 4 3 3 0138 ' 0140 | 14 0135 22
05 04 08 015 3 3 3 0143 0145 | 14 0140| 21
05 07 10 03 4 4 5 0281 {0283 | 07 0277| 14
03 04 05 01 3 4 3 0097 | 0.098 | 1.0 [0.097| 00
03 04 03 03 01 2 1 1t 0.084 | 0.075 | 172 |0.022] 66,0
03 02 03 05 Of 2 2 1 1 0.088 | 0.075 | 103 |0.036| 471
05 03 04 05 03 2 2 2 2 0.177 | 0200 130 |0.167| 56
10 05 05 10 03 2 3 3 2 0247 | 0270 | 9.3 |0202| 182
10 15 10 15 05 2 2 3 0352 | 0375 | 65 0232 340
*los 05 08 10 02 2 3 2 2 0.455 | 0.158 | 1.9 [0.134| 135
15 10 15 10 10 2 3 3 2 0594 | 0.667 | 12.3 {0.083| 86.0
15 20 10 20 10 3 3 3 2 0701 | 0750 | 7.0 |0417] 41.0
20 15 10 15 10 3 3 3 3 0709 | 0.750 | 58 |0437: 384
15 20 10 15 05 3 4 3 3 0457 | 0467 | 22 |0.440| 37
05 05 05 05 05 02 |2 2 2 2 2 |0155[0179| 155 ;0.004| 304
03 03 03 04 04 04,2 2 2 2 2 |0156 0227 455 | m| .
10 15 10 05 015 03| 2 2 2 2 2 |023 |0245| 42 |0.187| 208
15 30 20 10 10 05| 1 2 3 2 3 |035 |0375| 56 |0253| 287
15 1.0 20 15 13 07 |2 3 2 2 2 ‘0511|0589 | 153 |0255| 501
®los 12 10 10 10 033 2 2 2 3 o023 02| 67 02111 166
(15 15 20 30 15 102 2 3 2 3 0691|0789 142 |0312 548
05 04 03 04 08 01| 3 3 3 2 5 |0093i0095! 22 |0000| 32
‘04 03 06 02 05 032 2 3 2 3 |014|os8| 97| - | -
| 05 02 04 04 02 03|3 2 3 2 3 |019|0188[ 187 | - | -

{1}: (TUB-ExactlExact x 100
(2): (Exact-TLBYExact x 100
(3): meaningless bound {negative value)
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Table 2. Throughput bounds for K-server simple ADQNs {K=6,7)

K| w m m & m w w8 B B B B B |Exact| TUB |%er|TLB | %errm]
15 10 15 15 20 05 1T 2 2 1 2 0323 |0.375| 16.1 |0.118| 64.1
19 20 15 15 20 07 2 3 2 1 2 0.452 | 0.810 | 35.0 |0.218| 51.8
15 20 15 15 20 05 2 3 3 2 2 0.433 : 0.462 6.7 0.381| 120 i
16 20 15 15 20 1.0 2 3 3 2 3 0.693 [ 0.789 | 139 10.323| 53.4
10 15 25 25 30 10 2 4 3 3 13 0.660 | 0.667 | 1.1 10.487| 262
10 15 25 25 30 05 2 3 3 3 4 0.426 | 0429 | 0.7 [0.408] 40 |
25 20 15 15 25 05 2 2 2 1 2 0.365 | 0.462 | 2.7 0280 23.3
15 20 15 15 2D 03 2 3 2 1 2 0.246 CL290E 17.9 |0.224| B9
15 20 25 25 20 05 2 3 3 2 2 0446 | 0462 36 |0.413] 7.4

|25 30 15 15 20 10 2 3 3 2 3 0.736 | 0.877 | 192 |0.472| 359
20 20 30 15 20 1.0 2 1 2z 3 3 0.633 | 0.667 | 54 |0.257| 594
10 15 25 25 30 08 2 4 3 3 3 0.586 | 0.590 | 0.7 |0.511] 12.8
15 20 25 30 25 1.0 2 2 2 g 2 0.716 { 0.789 | 10.2 |0.365| 49.0

P10 10 10 15 20 05 3 2 3 2 2 0.400 | 0.428 | 7.3 [0.300| 25.0 :

P30 20 10 20 20 07 4 3 2 2 3 0.530 [ 0543 | 25 0444l 182
10 10 15 20 20 05 3 2 2 2 2 '0.403 | 0.429 6.5 ‘0.309 23.3
20 30 15 15 20 10 3 3 3 2 4 L 0.749 | 0877 | 171 j0.542] 27.6
30 20 20 15 20 1.0 2 3 3 3 2 0.776 | 0.923 | 18.9 '0.524° 325 .
20 25 30 25 30 1.0 2 3 2 4 4 0.825 | 0.857 | 3.9 [0.717 131 ;
15 15 35 20 30 1.0 3 2 4 3 4 0.757 | 0789 42 |0.628 18.0 .
10 10 15 20 20 20 05 3 2 2 1 2 2 | 0365|0428 17.3 0.209' 427 !
19 20 15 15 20 10 03 2 3 2 2 1 1 0221 |0.290 ¢ 31.2 |0.162, 28.7
10 15 25 20 25 30 05| 2 3 1 2 3 2 |0383|0417! 88 |0.291] 240
10 20 25 15 20 25 03| 2 2 2 3 1 2 |0256|0281| 98 [0.228) 110
15 10 10 15 10 20 Q.3 2 1 2 2 1 2 10218 | 0.231 6.0 (0,133 39.0
10 15 25 20 25 30 07| 2 3 2 2 3 2 |0521|0543| 42 |0.358] 313
25 20 15 30 15 25 05| 2 2 2 2 2 1 |0309|0482| 158 |0.296 258
1.0 10 15 20 20 20 05 3 2 2 2 2 2 | 0400|0420 | 7.3 |D.285 288
15 20 15 10 15 20 03] 2 8 2 2 1 2 |0250|0290| 160 [0.216] 136

S|15 20 15 15 15 20 05| 2 3 2 2 2 2 |0415|0462| 113 |0316] 239
1. 20 15 20 20 15 08 3 2 3 2 2 2 | 0601|0718 19.5 (0.305) 49.3
1.5 20 10 20 20 30 05 2 3 2 3 1 2 | 0386 0429 | 111 |0.283| 26.7
1.0 15 25 20 25 30 05 2 3 2 2 3 2 | 0416 | 0428 31 |0.358| 138
10 20 25 15 20 25 03| 2 2 2 3 2 2 |0274|0281| 26 |0.257] 62
15 10 10 15 10 20 05| 2 3 2 2 3 2 |0382]0429| 123 |-241| 369
25 t& 25 18 25 30 10 2 3 2 2 2 3 | 0.752 | 0.877 | 166 |0.369| 50.9
15 10 15 10.15 20 05| 2 2 2 3 2 2 |038410429| 117 |0.244] 365 !
15 15 15 10 20 25 05| 3 2 2 2 3 2 |0403|0482| 146 (0312 226 |
1% 20 10 20 20 30 Q5 2 3 2 3 1 2 | 0.386 10429 | 1.1 |0.283| 26.7
10 20 25 15 20 25 05| 2 2 2 3 2 3 |0416]0429| 31 [0.354] 149 |

{1}: {TUB-Exact)/Exact x 100
{2); (Exact-TLBYExact x 100



Table 3. Throughput upper bounds for six-server acyelic ADQNs

K 1 F s A Ha A B B B, B B Exact | TUB %err
05 07 03 05 07 02 | f 1 1 1 1 | 0412 | 0143 | 277
03 10 05 10 02 0B ! 1 2 1 2 2 | 0150 | 0185 | 233

P10 10 05 03 10 05 2 1 2 2 2 | 0213 | 0245 | 150
16 10 08 10 02 15| 2 2 1 1 3 ! 0160 | 0167 | 4.3
05 03 05 10 15 10! 2 1 3 2 2 | 0182 | 0188 | 33
1§ 05 10 10 10 20 ' 2 2 3 2 i| 0410 | 0429 1 46
20 20 10 05 QB 08 | 2 1 2 3 2 | 033 ;0363 | 97

I |03 10 05 10 05 10 | 2 3 3 2 2 | 0262 | 0245 | 12
10 10 05 10 20 10| 2 3 3 2 2 | 0405 | 0429 | 58
10 05 05 08 20 10! 2 2 3 3 3 | 0321 | 0333 | 37

l15 20 15 07 15 20 ! 2 3 2 1 2 ! 0459 | 0477 | 59
10 20 30 10 15 10 | 2 1 2 3 3 | 0847 | 0750 ¢ 159
15 20 15 10 15 20 | 2 3 3 2 3 | 0726 | 0789 | 87
0 15 25 10 25 30 | 2 4 3 3 3 | o766 ! 0833 | 87
10 20 25 07 20 25| 3 3 4 3 4 | 0659 | 0.680 | 32
05 07 03 05 07 ¢2 | 1 1 1 1 1 | 0110 | o120 | 81
63 10 05 10 02 06 | 1 2 1 2 2 | 0157 | 0175 | 115

40 10 05 03 10 05 | 2 1 2 2 2 ! 0243 | 0281 | 158
10 10 08 10 02 15 | 2 2 1 t 3 | o162 | 0487 ;1 31
05 03 05 10 15 10 | 2 1 3 2 2 | 0201 | o245 | 219
15 05 10 10 10 26 | 2 2 3 2 1 | 0398 : 0429 | 78
20 20 10 05 0B 06 | 2 1 2 3 2 | 0392 | 0476 | 214

1o 10 05 10 05 10 | 2 3 3 2 2 | 0251 | Q20| 78
10 10 05 10 20 10 2 3 3 2 2 . 0410 | 0420 . 46
10 05 ©05 08 20 10 2 2 3 3 3 | 0.345 ; 0429 | 243
15 20 15 07 15 20 . 2 3 2 1 2 | 0560 | 0642 | 146
10 20 30 10 15 10 ° 2 1 2 3 3 | o621 | 0750 | 208
15 20 15 10 15 20 | 2 3 3 2 3 | 0795 | 0933 | 174
10 15 25 10 25 30 | 2 4 3 3 3 | 0707 | 0789 | 116
10 20 25 07 20 25 3 3 4 3 4 | o6o4 | 0882 | 27

I: The network given in Fig. 2 (a)
Il The netwerk given in Fig. 2 (b)
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Proof.
TH(L k= 4 d 1= PV ;e gV 20 0r UiV 2B)]

=[1-( I P(NJ:[))+ T P(NJ,=BJ,—J)]
JEUK) JEDIK)

S0 3 PINAD 3 PIN=0))]
JELIR) JEUIK)
by Lemma 4

21-( T gy B T gl B, )]
ety ™ jerty ¥

by Lemma 3

Since U(K)=D(K) and u(=d, j€ U'(K), the proof is
completed. a

Remark. Note that our TLB—-o¢ as g is o, that is
our lower bounding method will perform poorly for the
case where 2} . je LK) U D(K). But the TLBs become
tighter for the case where a2, jeUKIUDIK).

4. Computational results

To show the effectiveness of the suggested throughput-
upper and lower bounding methods, computational exper-
iments are first conducted with ten input instances for
cach case of K-server simple assemnbly networks given in
Fig 1 (a} (K=4.5,6) (Table 1} and twenty input instances
for each case of K-server simple ADQNs given in Fig 1
[b) (K=6,7) {Table 2). Since there are no reported bounds
or approximate solutions in the existing lilerature,
vompanson is made only with exact solutions,

As shown in Table 1 and Table 2, our TLB (Throughput
ower Bound) becomes looser as the ratio of arrival rate
and service rate of the decomposed system becomes
smaller, whereas our TUBs are very tight in most input
-nstances, Table 3 summarizes the results of computational
experiments conducted with fifteen instances for each of

rwo six-server ADQNs given in Fig. 2 (a) and Fig. 2 (b).
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In these cases, we suggest only our TUBs because our
lower bounding methed does not perform any further for
the networks other than the simple ADONs.

The exact solutions shown in the tables are obtained
by solving steady-state balance equations on HP 725 W/S
with 32Mbytes memory. The complexity of this numerical
method mainly depends upon the number of states
(7 :E,(l-rBI-)}, which limits the size of our experimental
problems to those with the number of states below 3000.
Moreover, experimental test indicates that the computation-
al times for exact solutions increase explosively as the
size of problem increases. For example, problems with
more than 2000 states require several tens of hours.
Considering the memory size and computational time for
obtaining exact solutions, the size of experimental data is
chosen. Note that our upper and lower bounding functions
have the closed forms and hence the computational times
for bounds are trivial.

5. Coneluding Remarks

In this study, we have addressed throughput-upper and
lower bounding methods for acyclic ADQNs with
exponential service times, The throughpui-bounding
methods are based upon the monotonicity properties of
network throughputs with respect to service times and
buffer capacities. The exiensive computational experi-
ments indicate that the proposed bounding methods
perform satisfactorily in the tightness of bounds. It may
be worthwhile to note that our throughput-bounding
methods are devised for ouly the throughput measure.
Since the whole developmeni of our paper has been
dedicated to throughput-bounding methods, it would he
of future rescarch interest to develop un efficient

approximate method.
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