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Abstract

An algorithm for computing the cubic spline interpolation coefficients
for polynomials is presented in this paper. The matrix equation involved is
solved analytically so that numerical inversion of the coefficient matrix is
not required. Forf (t) = t™, a set of constants along with the degree of
polynomial m are used to compute the coefficients so that they satisfy the
interpolation constraints but not necessarily the derivative constraints. Then,
another matrix equation is solved analytically to take care of the derivative
constraints. The results are combined linearly to obtain the unique solution
of the original matrix equation. This algorithm is tested and verified numeri-
cally for various examples.

1 Introduction

There are many recent reports of studies on representing functions by fuzzy sys-
tems or neural networks[1,2,3]. Futher works, however, are yet to follow in order
to present the characteristics of the particular function in its representation. For the
problem of representing a function using its cubic spline interpolation either by a
fuzzy system or a neural network, the numerical values of the coefficients obtained
from solving the matrix equation do not give any insights on how the coefficients
are related to the characteristics of the function.

In this paper, we present an algorithm by which one can compute the coef-
ficients of the cubic spline interpolation for polynomials of the fofrft) = t™

75



76 BYuNG Soo MOON

without solving the matrix equation. For an arbitrary polynomial, the coefficients
can then be computed by a linear combination of thosd foy = t™. A survey of
literature indicates that related studies on cubic splines are focused on the inverse
of the coefficient matrix[4], or on monotone functions[5,6], but none seem to con-
sider the same problem discussed here.

In the following, we assumé (t) = t™ and consider the cubic spline interpolation
of f(t) intheinterval [-1, 1]. Let; = —1+ jh, j=-3,-2,-1,0,... ,2n+4 withh = %
and let

(t —ti_2)3, ifte[ti_o, ti_1]
1 h3+3h2(t —ti_1) +3h(t —t_1)2 — 3t —ti_)3, ifte[t_q, t]
Bi(t) = 6 h3+3h2(ti 1 —t) + 3h(tiys — )2 = 3t — )3, ift €[t tija]
(tiz — )3, ift e[tz tio]
0, otherwise
1)

fori=-1,0,1,... ,2n+1. Consider the problem of finding the coefficierjts in
S(t) = c_1B_1(t) + CoBo(t) + C1B1(t) + ...Con+1 Bansa(t).

such thatS(t)) = f(t), 0 <i < 2n, S(ty) = «, andS(t;,) = B, whereB;’s

are cubic B-spline functions and g are arbitrary real numbers. Using the prop-
erties of cubic B-splines [7,p80], the problem can be written as solving the matrix
equation

Ac=Db (2

where ¢ = (C_1,Co, C1, ...Cn+1) ", b= (a, f(to), ... f(tzn), )T and

-1 010 0. .7
1410 0
0141 0. .
A= 3)
0000 141
| 0000-10 1,

Recall that we must have use= 1§ f'(to) andg = § f'(tzn) for O(h*) accuracy.
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2 Interpolation Without Derivative Constraints

In this section, we prove that for polynomials of the fofit) = t™, the inter-
polation coefficientsj, j = —1,0,...,2n 4 1 can be computed directly with-
out solving the matrix equation (2), even though the constraints % f'(tg) and
B = % f'(ton) are satisfied only whem < 4. These constraints will be considered
in the next section.

Lemma 1. Let m be a positive integer and l&t be defined successively by
A= 1, A= -1, and

= =
Ao =1-— é ig():ZkCZi Ao, Akgl = - :—3 §Zk+1C2i+1)u2i+1.
m
If do = Amandg; = Y “mCi j™'a for =1, £2, ... , thengs satisfy the set of

1=0
equations

g;-1+4q; +qj+1=6(j -D™  j=0,4+1 42 43,....

Proof. By a routine arithmetic, we have

m—I|

nCH{(—D™ 4] (D™ =6mC [™ 42 D kG mCie J

k=2,4,6,..
Hence, the sumj;_; + 4q; + qj;1 becomes
m m m—2 m—|
Z)"{(j —D)M A ™ (D)™ G = GZmQ M2 Z M Z kG mCieyy j™ 7K.
1=0 1=0 1=0 k=2,46,..

We separate the double sum into one part of éwveh's and the other of odi+1’s,
and reorder the sum so that the power of j is decreasing. Then we obtain

m k-2
6j™+6mCiia " +2 ) mC@Bh+ Y kG|
k=odd i=1,35,...

m k—2
+2 Z mCy (3hk + Z kCi Ai) ™K.

k=even i=0,2,4,...
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Now, we substitutev,’s by the successive definition formula, along with =
1, A1 = —1, to obtain

m m
6j™—6mCyj™ " —6 > mCj" +6 > mCyjm™k

k=odd k=even

which is identical to 6j — 1)™, and the proof is completed. Note that the above
works for the case of = +1, or j=0 withgp = Am. Q.E.D

When some of the;’s are computed iteratively, we find thiat = % A3=0,,y =

—%, A = %,)\.G = %,)q = —1—30, Ag = 3—94,)\.9 = 14,);10 = —66. Note thalxj’s

do not depend on the value of m which will be used as the degree of polynomial
throughout this paper, and thgts depend only on the value of m.

Lemma 2. Let Ay's be defined as in Lemma 1 for k=0,1,2,. . Then we have
|Ak] < Kk forall k > 1.

Proof. We apply the mathematical induction separately on even k's and odd
K's. Itis clear thati; satisfies the relation for j=1,2,3 and 4. Assume the state-
k-1
ment is true for alli < k. Then from|ix| < 1+ %szczqm < 1+
i=0
k-1

1 . 1

= Y aCa(2)? <1+ 3+ 2 1) and similarly from|iz 1| < 14 22k +
i=0

1)2+1 we haveliy| < k¥ for allk > 1. Q.E.D u

Lemma 3. Letm be an even positive integer ands be defined as in Lemma 1.
Then theq;'s satisfyq_j 1 = qj;1 for j=1,2,... ,n+1.

Proof. Letr; = Qj41 — 0-j+1,j=1,2,... ,n+1. Then we haver4 +r, = 0
from the two equationg_1 + 4gp + q; = 6 andq; + 49, + gz = 6. Also from
O-j-1+49-j +9-j41 =6(—] — DM = 6(] + D™, andqj;1 + 4dj+2 + dj+3 =
6(j + 1™, we haver; + 4rj;1 +rj42 = 0, for j=1,2,3,... ,00. From the first
relation 4, +r, = 0, we have, = —4r; and hencér,| > 4|r,|. From the second
relationry + 4r, +r3 = 0, we havers = —r; — 4r, = —17r; from which we
obtain|rs| > 4?|r,|. Continuing the same process, we have > 4i-Yr4|. On

m m

the other hand, we havej| < > “wCy[j ™ n] < D “mGiljI™'m < (1j|+m)"

1=0 1=0

and hencelrj| = |dj+1 — a-j+1] < 2(m+|j| + ™. Now, note that we can have
471y < Irjl <2m+[j|+ D™ forall j=1,2,... ,00 only whenr; = 0. Q.E.D

[ |
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Lemma4. Letm be an odd positive integer anggs be defined as in Lemma 1.
Then theq;’s satisfyq; = 0 andq_j 1 = —Qj4+1 forj=1,2, ... ,n+1.

The above follows from an argument similar to the proof of Lemma 3 with=
dj11 -+ 9_j11 replaced for ;. Note that when m is even, we have™2— 9= _

e6nm
B On+2 — On J-_n+2 — O-n Ohr2 — On
m 1

. Similarly when the degree m s odd, we have&]T =
which will be used in Theorem 1.
2n+1

Theorem 1. Let f(t) =t™ and letg(t) = Z G Bi (t) be the cubic spline inter-

i=—1
] . . v, On2 —Ch _
o in the interval [-1,1] with8 = e anda =
(=)™ *B. Then(c_1, Co. - - Cant1) = (A-ns Gonpts -+ 5 G-1, 0o, G, - - - » Gny2)/(6N™)
satisfies the equation (2), I%% for j=-n to n+2 are the interpolation coefficients.

polation of f (t) ont; = —1+

Proof. Recall thatc;’s are the unigue solution of the (2n+3) equations

—C1+C =«

Ci_1+4C; +Cj1 = f(tj)=<—1+%)m, j=012....2n

—Con—1 + Cony1 = B.

First, we consider the middle equations. By Lemme;3,satisfy the equations
qj-1+49; +dj11=6( — D", j=0,4+1,+£2,£3...

and hence if we defing; = g_n+j4+1/(6n™), then we have

Gontj +49ntin+Aniivz _ TNHTim _ym

Cj—1+4Cj + Cj11 = M n j

for j = 0,1,...,2n. Hence, the set of middle equations are satisfied. The last
equation is satisfied by the definition f and the first equation is satisfied due to
Lemmas 3and 4. Q.E.D |

Lemma 5. Letg;’s andi;’s be defined as in Lemma 1. th < 4, then we
haveOhio — g = 2mn™ 1 andg_ni2 — gon = (=)™ 12mn™1, and hence
o = 2f/(-1) andp = Bf'(ty) are satisfied, where and 8 are as defined in
Theorem 1.
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Proof. From the definition ofq]s, we have

m-1
iz — O = Y _mCia((N+2)™" —n™,
1=0
By directly substituting m=1,2,3, and 4 in the left hand side of the above relation,
it is trivial to verify that the result is the same as\@"~* for each m. The second

part of Lemma follows from f'(—1) = % andif'()=2.QED ®

3 Corrections of the Solution for Derivative Constraints

In this section, we consider the remaindge= 2 f'(1)— g andsy = 1 f'(-1) —«
On+2 — O and

nm
o = (=)™ 14, If mis even, thery;’s are symmetric in the sense of Lemma 4,
while they are antisymmetric when mis odd as in Lemma 5. Itis also easy to verify
that the cubic spline interpolation coefficientss in (2) for an arbitrary differen-
tiable function f (t) are symmetric when it is even, and antisymmetric when it is
odd.

in the first and the last equation of (2) respectively, whére-

Thus, we may consider only half of the equations in (2). For the case of even m,
the middle equatiory + 49; + g2 = 0 becomes & + 2q, = 0, the next set

of equations arg; + 49;;+1 + Qj+2 = 6j™, j=1,2,... ,n, and the last equation is

—0On + One2 = 0, so that we have only (n+2)-equations for the (n+2)-unknowns;
J1, 92, - - - , Ony2. Forthe case of odd m, we start with the equatipn4g,+qg; = 6

which becomesd + gz = 6 fromqg; = 0. The rest of the equations are the same
as in the case of even m, so that there are (n+1)-equations for the (n+1)-unknowns.
Using the following Lemma, one can solve the remaining part of the equation (2)
explicitly, i.e., without solving a matrix equation.

Lemma 6. Let Abe ann x n matrix whose entries are the same as in (3) except
for the first row which is replaced bt, 2,0, ... , 0) and letp = (py, P1, ... » Pn)

be the solution ofAp = e,, whereeg, is the unit vector with the last entry of
value 1. Ifa; = 0.5, a1 = 1/(4 — ay), for k=1,2,... ,n, then we have, =
1/(1 — an—oan_1) and px = —axPr1 = (—D)" Koo 102 - - . en_1Pn for k=n-
1,n-2,...,1. When the first row ig4, 1,0, ... , 0), the samepy’s for k # 1 and

py = —31 p, satisfy the equation.

Proof. First, consider the case where the first ron4s2,0,... ,0). ltis
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routine to verify that 4, + 2p, = 0and—py_2+ pn = 1. For2<k < n -1,
note thatpx_1 + 4pk + Pt = (D" (10 — o + Dtk 10tki2 - - - on—1Pn
which is 0 sincexy is defined byey = 1/(4 — ax_1). A similar proof for the case
where the first row ig4, 1, 0, ... , 0) is omitted. Q.E.D [ |

Combining the results of Theorem 1 and Lemma 6, we have proved the following
Theorem.

Theorem 2. Let f(t) = t™ where m is an even positive integer anddet=
m

ZmQ jm*')q ,J=-n,-n+1,... ,n+2, where\|’s are as defined in Lemma 1. it s

1=0
are defined iteratively byn,» = 1/(1 — anany1) andpx = —ak Prr1, Whereoy'’s

are as defined in Lemma 6, théq., + pPni2, G-ni1+ PPnsts --- » o+ P2, O +

m — . .
PP1, G2 + PP2, ... , Ony2 + PPni2) Wherep = an % define the cubic
spline interpolation coefficients fok(t). If m is odd, then withp,,1 = 1/(1 —
On_10tn), Pxe1r = —ok Pk, for k=n-1,n-2,... .2, andp; = —%pz, the coefficients
becom&d_n—ppPni1: G-ny1—0Pn, - - - s Go—LP1, 1, G2+PP1, - - - 5 On2+0Pnta)-
Example 1. The interpolation coefficients fof (t) = t® att; = —1 + l,
j=0,1,2,..,10, computed by the above algorithm using double precision calcu-
lations are as follows;

Original | Proposed Algorithm Proposed Algorithm

Cubic Spling Without Correction With Correction

cs | —0.00000322 —0.00000356 —0.00000356
Cs 0.00000643 0.00000711 0.00000643
C; 0.00004149 0.00003911 0.00004149
Cs 0.00392360 0.00393244 0.00392360
Co 0.03092012 0.03088711 0.03092012
Ci0 0.13453998 0.13466311 0.13453994
C11 0.43092025 0.43046044 0.43092011

The differences between the coefficients in the first and the third column are purely

computational errors and the differences in the second and third column are due to

m J—
pP;j, Wherep = n % Note that the magnitude @f should decrease as

the number of divisions n increases since the second tepnsrof order(—1 +
%)m —(-1- %)m. Therefore, the corrections contribute less as the number of
divisions becomes larger.
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