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Abstract

An algorithm for computing the cubic spline interpolation coefficients
for polynomials is presented in this paper. The matrix equation involved is
solved analytically so that numerical inversion of the coefficient matrix is
not required. Forf (t) = tm, a set of constants along with the degree of
polynomial m are used to compute the coefficients so that they satisfy the
interpolation constraints but not necessarily the derivative constraints. Then,
another matrix equation is solved analytically to take care of the derivative
constraints. The results are combined linearly to obtain the unique solution
of the original matrix equation. This algorithm is tested and verified numeri-
cally for various examples.

1 Introduction

There are many recent reports of studies on representing functions by fuzzy sys-
tems or neural networks[1,2,3]. Futher works, however, are yet to follow in order
to present the characteristics of the particular function in its representation. For the
problem of representing a function using its cubic spline interpolation either by a
fuzzy system or a neural network, the numerical values of the coefficients obtained
from solving the matrix equation do not give any insights on how the coefficients
are related to the characteristics of the function.

In this paper, we present an algorithm by which one can compute the coef-
ficients of the cubic spline interpolation for polynomials of the formf (t) = tm
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without solving the matrix equation. For an arbitrary polynomial, the coefficients
can then be computed by a linear combination of those forf (t) = tm. A survey of
literature indicates that related studies on cubic splines are focused on the inverse
of the coefficient matrix[4], or on monotone functions[5,6], but none seem to con-
sider the same problem discussed here.

In the following, we assumef (t) = tm and consider the cubic spline interpolation
of f (t) in the interval [-1, 1]. Lett j = −1+ jh, j=-3,-2,-1,0,. . . ,2n+4 withh = 1

n
and let

Bi (t) = 1

6



(t − ti−2)
3, if t ∈ [ti−2, ti−1]

h3+ 3h2(t − ti−1)+ 3h(t − ti−1)
2− 3(t − ti−1)

3, if t ∈ [ti−1, ti ]

h3+ 3h2(ti+1 − t)+ 3h(ti+1 − t)2− 3(ti+1 − t)3, if t ∈ [ti , ti+1]

(ti+2 − t)3, if t ∈ [ti+1, ti+2]

0, otherwise

(1)

for i=-1,0,1,. . . ,2n+1. Consider the problem of finding the coefficientscj ’s in

S(t) = c−1B−1(t)+ c0B0(t)+ c1B1(t)+ ...c2n+1B2n+1(t).

such thatS(ti ) = f (ti ), 0 ≤ i ≤ 2n, S′(t0) = α, and S′(t2n) = β, whereBj ’s
are cubic B-spline functions andα, β are arbitrary real numbers. Using the prop-
erties of cubic B-splines [7,p80], the problem can be written as solving the matrix
equation

Ac= b (2)

where c = (c−1, c0, c1, ...c2n+1)
T , b = (α, f (t0), ... f (t2n), β)

T and

A =



−1 0 1 0 0 . .

1 4 1 0 0 . .

0 1 4 1 0 . .

. . . . . . .

. . . . . . .

0 0 0 0 1 4 1
0 0 0 0 −1 0 1


(3)

Recall that we must have useα = h
3 f ′(t0) andβ = h

3 f ′(t2n) for O(h4) accuracy.
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2 Interpolation Without Derivative Constraints

In this section, we prove that for polynomials of the formf (t) = tm, the inter-
polation coefficientscj , j = −1,0, . . . ,2n + 1 can be computed directly with-
out solving the matrix equation (2), even though the constraintsα = h

3 f ′(t0) and
β = h

3 f ′(t2n) are satisfied only whenm ≤ 4. These constraints will be considered
in the next section.

Lemma 1. Let m be a positive integer and letλ j be defined successively by
λ0 = 1, λ1 = −1, and

λ2k = 1− 1

3

k−1∑
i=0

2kC2iλ2i , λ2k+1 = −1− 1

3

k−1∑
i=0

2k+1C2i+1λ2i+1.

If q0 = λm andqj =
m∑

l=0

mCl j m−lλl for j=±1,±2, . . . , thenq′j s satisfy the set of

equations

qj−1+ 4qj + qj+1 = 6( j − 1)m, j = 0,±1,±2,±3, . . . .

Proof. By a routine arithmetic, we have

mCl {( j−1)m−l+4 j m−l+( j +1)m−l } = 6mCl j m−l+2
m−l∑

k=2,4,6,..

k+lCl mCk+l j m−l−k.

Hence, the sumqj−1+ 4qj + qj+1 becomes

m∑
l=0

λl {( j−1)m−l+4 j m−l+( j+1)m−l }mCl = 6
m∑

l=0

mCl λl j m−l+2
m−2∑
l=0

λl

m−l∑
k=2,4,6,..

k+lCl mCk+l j m−l−k.

We separate the double sum into one part of evenk+ l ’s and the other of oddk+ l ’s,
and reorder the sum so that the power of j is decreasing. Then we obtain

6 j m + 6mC1λ1 j m−1+ 2
m∑

k=odd

mCk(3λk +
k−2∑

i=1,3,5,...

kCi λi ) j m−k

+2
m∑

k=even

mCk(3λk +
k−2∑

i=0,2,4,...

kCi λi ) j m−k.
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Now, we substituteλk’s by the successive definition formula, along withλ0 =
1, λ1 = −1, to obtain

6 j m− 6mC1 j m−1− 6
m∑

k=odd

mCk j m−k + 6
m∑

k=even

mCk j m−k

which is identical to 6( j − 1)m, and the proof is completed. Note that the above
works for the case ofj = ±1, or j=0 withq0 = λm. Q.E.D

When some of theλ j ’s are computed iteratively, we find thatλ2 = 2
3,λ3 = 0,λ4 =

−2
3, λ5 = 2

3,λ6 = 2
3,λ7 = −10

3 , λ8 = 34
9 ,λ9 = 14,λ10 = −66. Note thatλ j ’s

do not depend on the value of m which will be used as the degree of polynomial
throughout this paper, and thatqj ’s depend only on the value of m.

Lemma 2. Let λk’s be defined as in Lemma 1 for k=0,1,2,. . . . Then we have
|λk| ≤ kk for all k ≥ 1.

Proof. We apply the mathematical induction separately on even k’s and odd
k’s. It is clear thatλ j satisfies the relation for j=1,2,3 and 4. Assume the state-

ment is true for alli < k. Then from |λ2k| ≤ 1 + 1
3

k−1∑
i=0

2kC2i |λ2i | ≤ 1 +

1

3

k−1∑
i=0

2kC2i (2i )2i ≤ 1+ 1

3
(1+ 2k− 1)2k and similarly from|λ2k+1| ≤ 1+ 1

3(2k+
1)2k+1, we have|λk| ≤ kk for all k ≥ 1. Q.E.D �

Lemma 3. Let m be an even positive integer andqj ’s be defined as in Lemma 1.
Then theqj ’s satisfyq− j+1 = qj+1 for j=1,2, . . . ,n+1.

Proof. Let r j = qj+1 − q− j+1, j=1,2, . . . ,n+1. Then we have 4r1 + r2 = 0
from the two equationsq−1 + 4q0 + q1 = 6 andq1 + 4q2 + q3 = 6. Also from
q− j−1 + 4q− j + q− j+1 = 6(− j − 1)m = 6( j + 1)m, andqj+1 + 4qj+2 + qj+3 =
6( j + 1)m, we haver j + 4r j+1 + r j+2 = 0, for j=1,2,3,. . . ,∞. From the first
relation 4r1+ r2 = 0, we haver2 = −4r1 and hence|r2| ≥ 4|r1|. From the second
relation r1 + 4r2 + r3 = 0, we haver3 = −r1 − 4r2 = −17r1 from which we
obtain |r3| ≥ 42|r1|. Continuing the same process, we have|r j | ≥ 4 j−1|r1|. On

the other hand, we have|qj | ≤
m∑

l=0

mCl | j |m−l |λl | ≤
m∑

l=0

mCl | j |m−l ml ≤ (| j | +m)m

and hence,|r j | = |qj+1− q− j+1| ≤ 2(m+ | j | + 1)m. Now, note that we can have
4 j−1|r1| ≤ |r j | ≤ 2(m+ | j | + 1)m for all j=1,2, . . . ,∞ only whenr1 = 0. Q.E.D
�
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Lemma 4. Let m be an odd positive integer andqj ’s be defined as in Lemma 1.
Then theqj ’s satisfyq1 = 0 andq− j+1 = −qj+1 for j=1,2, . . . ,n+1.

The above follows from an argument similar to the proof of Lemma 3 withsj =
qj+1 + q− j+1 replaced forr j . Note that when m is even, we have

q−n+2 − q−n

6nm
=

−qn+2 − qn

6nm
. Similarly when the degree m is odd, we have

q−n+2 − q−n

6nm
= qn+2 − qn

6nm
,

which will be used in Theorem 1.

Theorem 1. Let f (t) = tm and letφ(t) =
2n+1∑
i=−1

ci Bi (t) be the cubic spline inter-

polation of f (t) on t j = −1+ j

n
in the interval [-1,1] withβ = qn+2 − qn

6nm
andα =

(−1)m−1β. Then(c−1, c0, . . . c2n+1) ≡ (q−n,q−n+1, . . . ,q−1,q0,q1, . . . ,qn+2)/(6nm)

satisfies the equation (2), i.e.,
qj

6nm
for j=-n to n+2 are the interpolation coefficients.

Proof. Recall thatci ’s are the unique solution of the (2n+3) equations

−c−1+ c1 = α

cj−1+ 4cj + cj+1 = f (t j ) = (−1+ j

n
)m, j = 0,1,2, . . . ,2n

−c2n−1+ c2n+1 = β.
First, we consider the middle equations. By Lemma 1,q′j s satisfy the equations

qj−1+ 4qj + qj+1 = 6( j − 1)m, j = 0,±1,±2,±3 . . .

and hence if we definecj = q−n+ j+1/(6nm), then we have

cj−1+ 4cj + cj+1 = q−n+ j + 4q−n+ j+1 + q−n+ j+2

6nm
= (−n+ j

n
)m = tm

j

for j = 0,1, . . . ,2n. Hence, the set of middle equations are satisfied. The last
equation is satisfied by the definition ofβ, and the first equation is satisfied due to
Lemmas 3 and 4. Q.E.D �

Lemma 5. Let qj ’s and λ j ’s be defined as in Lemma 1. Ifm ≤ 4, then we
haveqn+2 − qn = 2mnm−1, and q−n+2 − q−n = (−1)m−12mnm−1, and hence
α = h

3 f ′(−1) andβ = h
3 f ′(t1) are satisfied, whereα andβ are as defined in

Theorem 1.
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Proof. From the definition ofq′j s, we have

qn+2 − qn =
m−1∑
l=0

mClλl ((n+ 2)m−l − nm−l ),

By directly substituting m=1,2,3, and 4 in the left hand side of the above relation,
it is trivial to verify that the result is the same as 2mnm−1 for each m. The second
part of Lemma follows fromh

3 f ′(−1) = (−1)m−1m
3n and h

3 f ′(1) = m
3n . Q.E.D �

3 Corrections of the Solution for Derivative Constraints

In this section, we consider the remainderr0 = h
3 f ′(1)−β ands0 = h

3 f ′(−1)−α
in the first and the last equation of (2) respectively, whereβ = qn+2 − qn

nm
and

α = (−1)m−1β. If m is even, thenqj ’s are symmetric in the sense of Lemma 4,
while they are antisymmetric when m is odd as in Lemma 5. It is also easy to verify
that the cubic spline interpolation coefficientscj ’s in (2) for an arbitrary differen-
tiable function f (t) are symmetric when it is even, and antisymmetric when it is
odd.

Thus, we may consider only half of the equations in (2). For the case of even m,
the middle equationq0 + 4q1 + q2 = 0 becomes 4q1 + 2q2 = 0, the next set
of equations areqj + 4qj+1 + qj+2 = 6 j m, j=1,2, . . . ,n, and the last equation is
−qn + qn+2 = 0, so that we have only (n+2)-equations for the (n+2)-unknowns;
q1,q2, . . . ,qn+2. For the case of odd m, we start with the equationq1+4q2+q3 = 6
which becomes 4q2 + q3 = 6 from q1 = 0. The rest of the equations are the same
as in the case of even m, so that there are (n+1)-equations for the (n+1)-unknowns.
Using the following Lemma, one can solve the remaining part of the equation (2)
explicitly, i.e., without solving a matrix equation.

Lemma 6. Let A be ann× n matrix whose entries are the same as in (3) except
for the first row which is replaced by(4,2,0, . . . ,0) and letp = (p1, p1, . . . , pn)

be the solution ofAp = en, whereen is the unit vector with the last entry of
value 1. Ifα1 = 0.5, αk+1 = 1/(4− αk), for k=1,2, . . . ,n, then we havepn =
1/(1− αn−2αn−1) and pk = −αk pk+1 = (−1)n−kαkαk+1αk+2 . . . αn−1 pn for k=n-
1,n-2, . . . ,1. When the first row is(4,1,0, . . . ,0), the samepk’s for k 6= 1 and
p1 = −1

4 p2 satisfy the equation.

Proof. First, consider the case where the first row is(4,2,0, . . . ,0). It is
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routine to verify that 4p1 + 2p2 = 0 and−pn−2 + pn = 1. For 2≤ k ≤ n − 1,
note thatpk−1+ 4pk + pk+1 = (−1)n−k+1(αk−1αk − 4αk + 1)αk+1αk+2 . . . αn−1 pn

which is 0 sinceαk is defined byαk = 1/(4− αk−1). A similar proof for the case
where the first row is(4,1,0, . . . ,0) is omitted. Q.E.D �

Combining the results of Theorem 1 and Lemma 6, we have proved the following
Theorem.

Theorem 2. Let f (t) = tm where m is an even positive integer and letqj =
m∑

l=0

mCl j m−lλl , j=-n,-n+1,. . . ,n+2, whereλl ’s are as defined in Lemma 1. Ifpj ’s

are defined iteratively bypn+2 = 1/(1− αnαn+1) and pk = −αk pk+1, whereαk’s
are as defined in Lemma 6, then(q−n+ρpn+2,q−n+1+ρpn+1, . . . ,q0+ρp2,q1+
ρp1,q2 + ρp2, . . . ,qn+2 + ρpn+2) whereρ = m

3n
− qn+2 − qn

6nm
, define the cubic

spline interpolation coefficients forf (t). If m is odd, then withpn+1 = 1/(1−
αn−1αn), pk+1 = −αk pk, for k=n-1,n-2,. . . ,2, andp1 = −1

4 p2, the coefficients
become(q−n−ρpn+1,q−n+1−ρpn, . . . ,q0−ρp1,q1,q2+ρp1, . . . ,qn+2+ρpn+1).

Example 1. The interpolation coefficients forf (t) = t6 at t j = −1 + j

5
,

j=0,1,2,. . . ,10, computed by the above algorithm using double precision calcu-
lations are as follows;

Original Proposed Algori thm Proposed Algori thm
Cubic Spline Without Correction With Correction

c5 −0.00000322 −0.00000356 −0.00000356
c6 0.00000643 0.00000711 0.00000643
c7 0.00004149 0.00003911 0.00004149
c8 0.00392360 0.00393244 0.00392360
c9 0.03092012 0.03088711 0.03092012

c10 0.13453998 0.13466311 0.13453994
c11 0.43092025 0.43046044 0.43092011

The differences between the coefficients in the first and the third column are purely
computational errors and the differences in the second and third column are due to

ρpj , whereρ = m

3n
− qn+2 − qn

6nm
. Note that the magnitude ofρ should decrease as

the number of divisions n increases since the second term inρ is of order(−1+
1
n)

m − (−1 − 1
n)

m. Therefore, the corrections contribute less as the number of
divisions becomes larger.
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