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Abstract

For two dimensional elasticity, we suggest a new complex variable method
using the Navier’s displacement equation. This method gives alternative dis-
placement and stress formulae to those resulting from the Muskhelishvili’s
complex function method.

1 Introduction

Functions of a complex variable were introduced into plane elastic problems in
1909 by Kolosov. The resulting developments have been described by Muskhe-
lishvili [1], Sokolnikoff [2], England [3], etc. There are two well - known funda-
mental methods, say, Westergaard method and Muskhelishvili’s complex potential
method, both of which are based on the Airy stress functions.

The Westergaard method constitutes a simple versatile tool for solving a certain
class of plane elasticity problems. However, in general, this method is not available
for the domain of which boundary is not simple nor for various boundary condi-
tions. Muskhelishvili generalized the Airy stress function for the two - dimensional
elasticity by using two analytic functions,φ(z) andχ(z), say, complex potentials.
The functionφ is related to the Airy stress function, andχ is an arbitrary analytic
function, which are defined in the next section.

It is known that the plane elasticity problems reduce to the solution of Navier’s
displacement equations subjected to certain boundary conditions. In this paper, us-
ing these Navier equations, we present an alternative complex variable method to
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the Muskhelishvili’s complex function method. On writing the Navier equations
in complex variable notation two real valued functions,h(x1, x2) and g(x1, x2)

are introduced, which consist of the first derivatives of the displacement compo-
nents. This results in an analytic function composed of the functions,h(x1, x2) and
g(x1, x2). Using the Hooke’s law and strain - displacement relationship, we obtain
the equivalent formulae of the stresses and displacements to those derived by the
Muskhelishvili’s method.

2 Muskhelishvili’s Complex Function Method

In this section, to compare the present method with those developed before, we
summarize the Muskhelishvili’s complex function method [1].

2.1. Determination of the Displacements from the Airy Stress Function

Let the region� in the plane be simply connected and letψ be the Airy stress
function such as

σxx = ∂2ψ

∂y2
, σyy = ∂2ψ

∂x2
, σxy = ∂2ψ

∂x∂y
. (1)

Equilibrium equation of the stresses implies that the Airy stress function satisfies
the biharmonic equation, that is,

12ψ = 0 .

To find the displacementsu1 and u2, using the Airy stress functionψ , we con-
sider the following equations which may be derived from the equations in (1), the
Hooke’s law with the plane strain condition and the strain - displacement relation :

λθ + 2µ
∂u1

∂x
= ∂2ψ

∂y2
, λθ + 2µ

∂u2

∂y
= ∂2ψ

∂x2
,

µ

(
∂u2

∂x
+ ∂u1

∂y

)
= − ∂

2ψ

∂x∂y
, (2)

whereθ = ∂u1
∂x + ∂u2

∂y . From the first two of these equations,

2(λ+ µ)θ = 1ψ i.e. λθ = λ

2(λ+ µ) 1ψ ,
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so that we have

2µ
∂u1

∂x
= ∂2ψ

∂y2
− λ

2(λ+ µ) 1ψ , 2µ
∂u2

∂y
= ∂2ψ

∂x2
− λ

2(λ+ µ) 1ψ .

Introducing a functionP(x, y) defined as

1ψ = ∂2ψ

∂x2
+ ∂

2ψ

∂y2
= P , (3)

it follows that

2µ
∂u1

∂x
= −∂

2ψ

∂x2
+ λ+ 2µ

2(λ+ µ) P , 2µ
∂u2

∂y
= −∂

2ψ

∂y2
+ λ+ 2µ

2(λ+ µ) P (4)

From (3), we note that
1P = 12ψ = 0 ,

that is,P(x, y) is aharmonicfunction.
Now let Q(x, y) be a harmonic conjugate function ofP(x, y) such that

f (z) = P(x, y)+ i Q(x, y) (5)

is an analytic function. The functionQ may be determined for a givenP apart
from an arbitrary constant. Furthermore, if we take a functionφ as

φ(z) = p+ iq = 1

4

∫
f (z)dz, (6)

then, sinceφ is analytic,

φ′(z) = ∂p

∂x
+ i

∂q

∂x
= 1

4
(P + i Q) .

Thus

∂p

∂x
= ∂q

∂y
= 1

4
P ,

∂p

∂y
= −∂q

∂x
= −1

4
Q . (7)

SubstitutingP = 4∂p
∂x = 4∂q

∂y into the formulae (4), we have

2µ
∂u1

∂x
= −∂

2ψ

∂x2
+ 2(λ+ 2µ)

λ+ µ
∂p

∂x
, 2µ

∂u2

∂y
= −∂

2ψ

∂y2
+ 2(λ+ 2µ)

λ+ µ
∂q

∂y
.

Integration gives

2µu1 = −∂ψ
∂x
+2(λ+ 2µ)

λ+ µ p+ f1(y) , 2µu2 = −∂ψ
∂y
+2(λ+ 2µ)

λ+ µ q+ f2(x) .
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Substituting these expressions into the third equation in (2) and noting that

∂p

∂y
+ ∂q

∂x
= 0 ,

we have
f ′1(y)+ f ′2(x) = 0 ,

and thus
f1(y) = c3y+ c1, f2(x) = −c3x + c2 ,

wherec1, c2 andc3 are arbitrary constants . In this equations,f1 and f2 mean the
rigid body motion for the displacements.

Omitting the rigid body displacements, the following displacement formulae
are attained :

2µu1 = −∂ψ
∂x
+ 2(λ+ 2µ)

λ+ µ p , 2µu2 = −∂ψ
∂y
+ 2(λ+ 2µ)

λ+ µ q . (8)

2.2. Complex Representation of the Displacements and Stresses

Noting that1ψ = P and that, from (7),

1(px+ qy) = x1p+ y1q + 2

(
∂p

∂x
+ ∂q

∂y

)
= 4

∂p

∂x
= P ,

it follows that
1(ψ − px− qy) = 0 .

Thus the Airy stress function may be written as

ψ(x, y) = px+ qy+ p1 ,

wherep1 is some harmonic function . Now, let

χ(z) = p1 + iq1 ,

whereq1 is a harmonic conjugate top1. Since the region is assumed to be simply
connected,χ is analytic.

The Airy stress functionψ can be rewritten by

ψ(x, y) = Re
[
zφ(z)+ χ(z)

]
, (9)
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or

2ψ(x, y) = zφ(z)+ zφ(z)+ χ(z)+ χ(z) . (10)

Noting that ∂
∂x = ∂

∂z + ∂
∂z and ∂

∂y = i
(
∂
∂z − ∂

∂z

)
, it is easily found that

2
∂ψ

∂x
= φ(z)+ zφ′(z)+ φ(z)+ zφ′(z)+ χ ′(z)+ χ ′(z) ,

2
∂ψ

∂y
= i

{
−φ(z)+ zφ′(z)+ φ(z)− zφ′(z)+ χ ′(z)− χ ′(z)

}
. (11)

To derive the formulae of the displacements and stresses, it will be more con-
venient to deal with the expression

∂ψ

∂x
+ i

∂ψ

∂y
= φ(z)+ zφ′(z)+ χ ′(z) . (12)

From the equation (8) withφ(z) = p+ iq and (12), we have

2µ(u1 + iu2) = −
(
∂ψ

∂x
+ i

∂ψ

∂y

)
+ 2(λ+ 2µ)

λ+ µ φ(z)

= κφ(z)− zφ′(z)− χ ′(z) , (13)

where

κ = λ+ 3µ

λ+ µ = 3− 4ν ,

for the plane strain condition which we have assumed when the equations (2) are
derived. In the case of the plane stress, the formula (13) is available when we
replace the Poisson’s ratioν by ν

1+ν , that is,κ = (3− ν)/(1+ ν). Next, for the
representation of the stresses, using (1),

σxx + iσxy = ∂

∂y

(
∂ψ

∂y
− i

∂ψ

∂x

)
= −i

∂

∂y

(
∂ψ

∂x
+ i

∂ψ

∂y

)
=
(
∂

∂z
− ∂

∂z

)(
∂ψ

∂x
+ i

∂ψ

∂y

)
.
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Substitution of (12) into this equation gives

σxx+ iσxy = φ′(z)+ φ′(z)− zφ′′(z)− χ ′′(z) . (14)

Similarly, since

σyy− iσxy = ∂

∂x

(
∂ψ

∂x
+ i

∂ψ

∂y

)
=
(
∂

∂z
+ ∂

∂z

)(
∂ψ

∂x
+ i

∂ψ

∂y

)
,

we have

σyy− iσxy = φ′(z)+ φ′(z)+ zφ′′(z)+ χ ′′(z) . (15)

In addition, equations (14) and (15) result in

σxx + σyy = 2
{
φ′(z)+ φ′(z)

}
= 4 Re[φ′(z)] (16)

σxx − σyy+ 2iσxy = −2
{

zφ′′(z)+ χ ′′(z)
}
. (17)

3 Alternative Method Using the Navier Equations

In this section we have developed a new complex variable method for the plane
elasticity, which results in the equivalent formulae of the displacements and stresses
to the Muskhelishvili’s ones.

The displacement vectoru = u1+ iu2 satisfies the following Navier equation :

µ1u+ (λ+ µ)div(gradu) = 0 , (18)

or

µ1u1 + (λ+ µ) ∂
∂x1

(
∂u1

∂x1
+ ∂u2

∂x2

)
= 0

µ1u2 + (λ+ µ) ∂
∂x2

(
∂u1

∂x1
+ ∂u2

∂x2

)
= 0 , (19)

where the Lam´e constantλ, shear modulusµ and the constantκ are such as

µ = E

2(1+ ν) , λ = 2µν

1− 2ν
,
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and

κ =
{

3− 4ν for plane strain condition
3−4ν
1+ν for plane stress condition.

Let

∂u1

∂x1
+ ∂u2

∂x2
= h(x1, x2) and

∂u1

∂x2
− ∂u2

∂x1
= g(x1, x2) . (20)

Then

1u1 = ∂h

∂x1
+ ∂g

∂x2
and 1u2 = ∂h

∂x2
− ∂g

∂x1
,

so that the equation (19) becomes

(λ+ 2µ)
∂h

∂x1
+ µ ∂g

∂x2
= 0 ,

(λ+ 2µ)
∂h

∂x2
− µ ∂g

∂x1
= 0 . (21)

If we take a complex function

f (z) = (λ+ 2µ)h(x1, x2)− iµ g(x1, x2) , z= x1+ i x2 , (22)

then, by the relations

∂

∂z
= 1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z
= 1

2

(
∂

∂x1
+ i

∂

∂x2

)
,

equation (21) implies that

2
∂

∂z
f (z) = 0 , that is, f (z) is analytic .

Now, from the definition off (z) in (22),

h(x1, x2) = 1

2(λ+ 2µ)

{
f (z)+ f (z)

}
and g(x1, x2) = i

2µ

{
f (z)− f (z)

}
.

(23)

If we take an analytic functionφ(z) and set

f (z) = 4ν

λ
(λ+ 2µ) · φ′(z) , (24)
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for simplicity, then the equations in (23) give

h(x1, x2) = 2
(ν
λ

) {
φ′(z)+ φ′(z)

}
,

g(x1, x2) = 2i

(
ν

µ

)(
1+ 2

µ

λ

) {
φ′(z)− φ′(z)

}
. (25)

On the other hand, from the relation (20),

2
∂

∂z
(u1+ iu2) = h(x1, x2)− ig(x1, x2) ,

so that

2(u1+ iu2) =
∫

h(x1, x2)− ig(x1, x2)dz+ R(z) , (26)

whereR(z) is an arbitrary analytic function.
By substituting (25) into (26),

2(u1+ iu2)

= 1

µ

∫ (
2νµ

λ

){
φ′(z)+ φ′(z)}+ 2ν

(
1+ 2

µ

λ

) {
φ′(z)− φ′(z)}dz+ R(z)

= 1

µ

∫
(1− 2ν)

{
φ′(z)+ φ′(z)}+ 2(1− ν){φ′(z)− φ′(z)}dz+ R(z)

= 1

µ

[
κφ(z)− zφ′(z)

]
+ R(z) .

For an analytic functionξ(z), if we takeR(z) = − 1
µ
ξ(z) then we have

2µ(u1 + iu2) = κφ(z)− zφ′(z)− ξ(z) . (27)

We identify the coordinates asx1 = x, x2 = y and denote the strain components
as

εxx = ∂u1

∂x
, εyy = ∂u2

∂y
.

Using Hooke’s law and (25), for the plane strain condition, we have

σxx+ σyy = E

(1+ ν)(1− 2ν)
{εxx+ εyy} =

(
λ

ν

)
{εxx + εyy}

=
(
λ

ν

)
h(x1, x2)

= 2
{
φ′(z)+ φ′(z)

}
. (28)
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By the Hooke’s law and the strain - displacement relation it follows that

σxx − σyy+ 2iσxy = E

1+ ν
{
(εxx− εyy)+ 2i εxy

}
= 2µ

{(
∂u1

∂x1
− ∂u2

∂x2

)
+ i

(
∂u1

∂x2
+ ∂u2

∂x1

)}
= 4µ

∂

∂z
(u1+ iu2) .

Substituting (27) into this equation, we have

σxx − σyy+ 2iσxy = −2
{

zφ′′(z)+ ξ ′(z)
}
. (29)

Subtraction of (29) from (28) gives

σyy− iσxy = φ′(z)+ φ′(z)+ zφ′′(z)+ ξ ′(z) . (30)

Addition of (29) to (30) gives

σxx + iσxy = φ′(z)+ φ′(z)− zφ′′(z)− ξ ′(z) . (31)

We can observe that, if we setξ(z) = χ ′(z), the formulae (27) – (31) are equiv-
alent to the Muskhelishvili’s formulae in (13) and (17). It should be noted that the
present approach is simple in calculation and for explanation compared with the
usual methods.

Complex variable representation of the displacements and stresses is useful for
the analysis of the plane elasticity, in general. In fact, it has been shown in the lit-
erature that the complex variable method is available for many problems in linear
elastic fracture mechanics. Particularly, the representation in (27)-(31) or in (13)-
(17) provides principal basis on the formulation of the boundary integral equations
to solve the various crack problems in the plane. One can expect that proper varia-
tions of the formulae in (27)-(31) may result in the efficient numerical schemes for
some practical applications such as interface crack problems.
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