DOI QR코드

DOI QR Code

The patch tests and convergence for nonconforming Mindlin plate bending elements

  • Park, Yong-Myung (Steel Structure Technology Division, Research Institute of Industrial Science and Technology) ;
  • Choi, Chang-Koon (Department of Civil Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 1997.07.25

Abstract

In this paper, the classical Irons' patch tests which have been generally accepted for the convergence proof of a finite element are performed for Mindlin plate bending elements with a special emphasis on the nonconforming elements. The elements considered are 4-node and 8-node quadrilateral isoparametric elements which have been dominantly used for the analyses of plate bending problems. It was recognized from the patch tests that some nonconforming Mindlin plate elements pass all the cases of patch tests even though nonconforming elements do not preserve conformity. Then, the clues for the Mindlin plate element to pass the Irons' patch tests are investigated. Also, the convergent characteristics of some nonconforming Mindlin plate elements that do not pass the Irons' patch tests are examined by weak patch tests. The convergence tests are performed on the benchmark numerical problems for both nonconforming elements which pass the patch tests and which do not. Some conclusions on the relationship between the patch test and convergence of nonconforming Mindlin plate elements are drawn.

Keywords

References

  1. Atkinson, K. (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.
  2. Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey.
  3. Bazeley, G.P., Cheung, Y.K., Irons, B.M. and Zienkiewicz, O.C. (1966), "Triangular elements in plate bending. Conforming and nonconforming solutions", Proc. 1st Conf. Matrix Methods in Structural Mechanics, AFFDL-TR-CC-80, Wright Patterson A.F. Base, Ohio, 547-576.
  4. Belytshko, T. and Lasly, D. (1988), "A fractal patch test", Int. J. Numer. Methods Eng., 26, 2199-2210. https://doi.org/10.1002/nme.1620261005
  5. Choi, C.K. and Kim, S.H. (1989), "Coupled use of reduced integration and nonconforming modes in quadratic Mindlin plate element", Int. J. Numer. Methods Eng., 28, 1909-1928. https://doi.org/10.1002/nme.1620280814
  6. Choi, C.K. and Park, Y.M. (1989), "Nonconforming transition plate bending elements with variable midside nodes", Comp. Struct., 32, 295-304. https://doi.org/10.1016/0045-7949(89)90041-2
  7. Choi, C.K. and Schnobrich, W.C. (1975), "Nonconforming finite element analysis of shells", J. Eng. Mech. Div. ASCE, 101, 447-464.
  8. Donea, J., and Lamain, L.G. (1987), "A modified representation of transverse shear in Co quadrilateral plate elements", Comput. Meth. in Appl. Mech. and Eng., 63, 183-207. https://doi.org/10.1016/0045-7825(87)90171-X
  9. Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate elemtns with substitute shear strain fields", Comp. Struct., 23, 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
  10. Hughes, T.J.R.and Cohen, M. (1978), "The heterosis finite element for plate bending", Comp. Struct., 9, 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
  11. Irons, B.M. and Razzaque, A. (1972), "Experience with the patch test for convergence of finite element methods", Math. Foundations of the Finite Element Method, (Ed. A. K. Aziz), Academic Press, 557-587.
  12. Kim, S.H. and Choi, C.K. (1992), "Improvement of quadratic finite element for Mindlin plate bending", Int. J. Number. Methods Eng., 34, 197-208. https://doi.org/10.1002/nme.1620340112
  13. Pugh, E.D.L., Hinton, E. and Zienkiewicz, O.C. (1978), "A study of quadrilateral plate bending elements with reduced intergration", Int. J. Number. Methods Eng., 12, 1059-1079. https://doi.org/10.1002/nme.1620120702
  14. Razzaque, A. (1986), "The patch test for elements", Int. J. Numer. Methods Eng., 22, 63-71. https://doi.org/10.1002/nme.1620220106
  15. Stummel, F. (1980), "The limitations of the patch test", Int. J. Numer. Methods Eng., 15, 177-188. https://doi.org/10.1002/nme.1620150203
  16. Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A nonconforming element for stress analysis", Int. J. Numer. Methods Eng., 10, 1211-1219. https://doi.org/10.1002/nme.1620100602
  17. Taylor, R.L., Simo, J.C., Zienkiewicz, O.C. and Chan, A.C.H. (1986), "The patch Test-A condition for assessing FEM converegence", Int. J. Numer. Methods Eng., 22, 39-62. https://doi.org/10.1002/nme.1620220105
  18. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York.
  19. Verma, A. and Melosh, R.J. (1987), "Numerical tests for assessing Finite Element model convergence", Int. J. Numer. Methods Eng., 24, 843-857. https://doi.org/10.1002/nme.1620240502
  20. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971)," Reduced intergration technique in geral analysis of plates and shells", Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211

Cited by

  1. The best of the enhanced displacement non-conforming plate/ shell elements vol.7, pp.1, 2000, https://doi.org/10.1007/BF02736184
  2. A simple method of stiffness matrix formulation based on single element test vol.7, pp.2, 1999, https://doi.org/10.12989/sem.1999.7.2.203
  3. Two-dimensional nonconforming finite elements: A state-of-the-art vol.6, pp.1, 1998, https://doi.org/10.12989/sem.1998.6.1.041
  4. Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999) vol.17, pp.3, 2000, https://doi.org/10.1108/02644400010324893
  5. Weighted Integral SFEM Including Higher Order Terms vol.126, pp.8, 2000, https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
  6. Variable-node non-conforming membrane elements vol.16, pp.4, 2003, https://doi.org/10.12989/sem.2003.16.4.479
  7. Quadratic NMS Mindlin-plate-bending element vol.46, pp.8, 1997, https://doi.org/10.1002/(sici)1097-0207(19991120)46:8<1273::aid-nme754>3.0.co;2-n