DERIVATIVES OF NEUMANN EIGENFUNCTIONS

SEUNG-JIN BANG

1. Introduction

Let B(r) $(0 < r < \pi)$ be an *n*-dimensional spherical cap which is a geodesic ball, of radius r, in the unit n-sphere, and Δ the Laplace operator on the unit n-sphere. Let us consider the following Neumann eigenvalue problem:

$$\Delta f + \mu f = 0$$
 in $B(r)$, $\frac{\partial f}{\partial n} = 0$ on $\partial B(r)$, (1)

It is well-known that there is a discrete sequence of nonnegative real numbers

$$0 = \mu_0 < \mu_1 \le \mu_2 \cdots \le \mu_m \le \cdots$$

satisfying (1).

In this note we are interested in the estimation of Neumann eigenvalues μ_i of a spherical cap B(r).

As the counter part T. Matsuzawa, S. Tanno[6] and S. Sato[7] found the method of computing the first Dirichlet eigenvalue on a 2-dimensional spherical cap, which is effective under the condition $r \approx \pi$. The author[3] gave the estimation of the radial components of Dirichlet eigenfunctions on an n-dimensional spherical cap as follows:

Let λ be a Dirichlet eigenvalue of a spherical cap B(r). Dirichlet eigenfunctions on a spherical cap B(r) are of the form

$$f_{\ell}(n,t,\lambda) = (\sin t)^{\ell} \{1 + \sum_{j=1}^{\infty} K_j(\lambda) \sin^{2j}(t/2)\},$$
 (2)

where

$$K_j(\lambda) = 2^j \prod_{k=1}^j \frac{-\lambda + (k-1)(n+k-2)}{k(n+2k-2)}$$

(Refer to [1]). Since each Dirichlet eigenvalue λ of a spherical cap B(r) satisfies $f_{\ell}(n,r,\lambda)=0$, λ is a zero of the function $g(\lambda)=f_{\ell}(n,r,\lambda)$ given by the series of functions. If j goes to the infinity, $K_{j+1}(\lambda)/K_j(\lambda)$ does to 1. As j is larger, $\sum_{j=1}^{\infty}K_j(\lambda)\sin^{2j}(r/2)$ is almost equal to the geometric series with ratio $\sin^2(r/2)$. If we can obtain the error when we compute a zero of $g_N(\lambda)=1+\sum_{j=1}^{N}K_j(\lambda)\sin^{2j}(r/2)$, instead of a zero of $g(\lambda)$, explicit computation of the error is possible.

2. Neumann Eigenfunctions

The basic properties of Neumann eigenvalues on a spherical cap B(r) are found in [4] pp. 39-52. Note that the derivative of the radial component of a Neumann eigenfunction on an odd dimensional spherical cap B(r) is a rational function of finitely many trigometric functions (see [2]). Neumann eigenfunctions on a spherical cap B(r) are the same form as (2). Simple computation shows that

$$\frac{\partial}{\partial t} f_{\ell}(n, r, \mu) = (\sin r)^{\ell - 1} [\ell \cos r + \sum_{j=1}^{\infty} K_j(\mu) \sin^{2j}(r/2)((j+\ell) \cos r + j)]. \tag{3}$$

Since Neumann eigenvalue μ of a spherical cap B(r) satisfies $\frac{\partial}{\partial t} f_{\ell}(n, r, \mu) = 0$, μ is a zero of the function $h(\mu)$ given by the series of functions, where

$$h(\mu) = \ell \cos r + \sum_{j=1}^{\infty} K_j(\mu) \sin^{2j}(r/2) ((j+\ell) \cos r + j), \tag{4}$$

$$K_j(\mu) = 2^j \prod_{k=1}^j \frac{-\mu + \ell(n+\ell-1) + (k-1)(n+2\ell+k-2)}{k(n+2\ell+2k-2)}.$$

Consider the following ratio $R = R(j, \mu, r)$ similar to the case of Dirichlet eigenfunctions:

$$\sin^{2j+2}(r/2)K_{j+1}(\mu)((j+\ell+1)\cos r+j+1)/\sin^{2j}(r/2)K_{j}(\mu)((j+\ell)\cos r+j) \ \ (5)$$

$$= \sin^2(r/2)(K_{j+1}(\mu)/K_j(\mu))(1 + \frac{\cos r + 1}{(j+\ell)\cos r + j}).$$

If j goes to infinity, R does to $\sin^2(r/2)$. As j is larger,

$$\sum_{j=1}^{\infty} K_j(\mu) \sin^{2j}(r/2) ((j+\ell) \cos r + j)$$

is almost equal to the geometric series with ratio $\sin^2(r/2)$. It seems that there is no simple relation between Neumann eigenvalues similar to [1] p.240, Proposition 1. It is clear that

$$(-n/2\mu)\frac{\partial}{\partial t}f_0(n,r,\mu) = \sin t f_0(n+2,\mu,r)$$

(see [2] p.4). If $\ell=0$, the Neumann problem reduces to the Dirichlet problem, and then we can apply to the results of [3]. We may assume that $\ell\neq 0$. If we obtain the error when we compute a zero of

$$h_N(\mu) = \ell \cos r + \sum_{j=1}^N K_j(\mu) \sin^{2j}(r/2) ((j+\ell) \cos r + j),$$

instead of a zero of $h(\mu)$, explicit computation of the error is possible. From now on, we consider an upper bound of $|h(\mu) - h_N(\mu)|$. Let

$$p(x) = \frac{-\mu + \ell(n+\ell-1) + x(n+2\ell+x-1)}{(x+1)(n+2\ell+2x)}.$$

If $n+2\ell>4$ then p(x) is decreasing, and if $n=2,\ell=1$ then p(x) is increasing. Let $j_p(r)$ be the greatest integer less than or equal to $-\ell\cos r/(1+\cos r)$. Then $j_p(r)$ is nondecreasing as a function of r. If $j>j_p(r)$ then $(j+\ell)\cos r+j>0$, and if $j\leq j_p(r)$ then $(j+\ell)\cos r+j\leq 0$. Let $j_q(\mu,r)=\min\{j':|R|<1$ for every $j\geq j'\}$. Note that $|R|\leq \sin^2(r/2)|K_{j+1}(\mu)/K_j(\mu)|(1+1/(j-j_p(r)))$ if $j>j_p(r)$.

3. Conclusion

If $r \approx \pi$, the above computation is not effective, because $\sin^2(r/2) \approx 1$. It seems that there is no results about Dirichlet or Neumann eigenvalues of any dimensional spherical cap of radius $r \approx \pi$ except [5],[6],[7].

All results on the unit n-sphere can be also transferred into those of $S^n(\kappa)$ and $RP^n(\kappa)$ (n-sphere and real projective space of constant sectional curvature $\kappa > 0$), if r, λ , and μ are replaced by $r\sqrt{\kappa}$, λ/κ , and μ/κ , respectively.

References

- [1] S.-J. Bang, Eigenvalues of the Laplacian on a geodesic ball in the *n*-sphere, Chinese J. Math. 15,4 (1987) 237-245.
- [2] ———, Notes on my paper "Eigenvalues of the Laplacian on a geodesic ball in the n-sphere," Chinese J. Math. 18,1 (1990) 65-72.
- [3] ——— and M.H. Kim, Zeros of a function given by the series of functions, Applied Math. Letters, 1,4 (1988) 331-334, Pergamon Press.
- [4] I. Chavel, "Eigenvalues in Riemannian geometry," Academic Press, 1984.
- [5] G. Del Grosso and F. Marchetti, Asymptotic estimates for the principal eigenvalue of the Laplacian in a geodesic ball, Appl. Math. Optim. 10 (1983) 37-50.
- [6] T. Matsuzawa and S. Tanno, Estimates of the first eigenvalue of a big cup domain of a 2-sphere, Comp. Math. 47,1 (1982) 95-100.
- [7] S. Sato, Barta's inequalities and the first eigenvalue of a cap domain of a 2-sphere, Math. Z. 181 (1982) 313-318.

DEPARTMENT OF MATHEMATICS, AJOU UNIVERSITY, SUWON, KYUNGGI-DO 442-749, REPUBLIC OF KOREA.