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A Syndrome—distribution decoding MOLS L, codes
S. Hamy, D. G. Kmim and Y. S. Ky (KAIST)

ABSTRACT. Let p be an odd prime number. We introduce simple and useful decoding
algorithm for orthogonal Latin square codes of order p..Let H be the parity check
matrix of orthogonal Latin square code. For any z € GF(p)*, we call zHT the
syndrome of z. This method is based on the syndrome decoding for linear codes. In
Lp, we need to find the first and the second coordinates of codeword in order to
correct the errored received vector.

1. Introduction

The organization of this paper is as follows: In Section 1, we will recall the well-
known definitions concerning Latin squares and maximum set of orthogonal Latin
squares. And we will summarize a construction of p — 1 mutually orthogonal Latin
squares when p is a prime number [7]. v

In Section 2, for an odd prime p, we will review a p-ary codes of specified minimum
distance corresponding to p — 1 mutually orthogonal Latin squares (4]. And using
the weight enumerator of this code, we will find the minimum distance of its dual
code. So we shall show how its dual codes is to Hamming codes of order 2 over
GF(p).

In 1970, D. C. Bossen, R. T. Chien and M. Y. Hsiao {2] have constructed a
class of decodable multiple error-correcting codes which is based on one-step ma-
jority decoding method. In Section 3, we will prove the theorems which provide
an algorithm for orthogonal Latin square codes in Section 4. Finally, we will give
a syndrome-decoding algorithm and examples corresponding to each steps of this
algorithm.
matics Subject Classification. 05E99, 94B35.
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Definition 1. A Latin square of order p is p X p square array of numbers from an
p-symbol alphabet (say 0, 1,...,p—1) in which each row and each column contains
each symbol exactly once. Two Latin squares of the same order are (pairwise-)
orthogonal if, when one Latin square is superimposed on the other, every ordered
pair of elements are distinct. In particular, a set of Latin squares of the same order,
any pair of which are orthogonal, is called a set of mutually (pairwise-)orthogonal
Latin squares(MOLS).

Notice that we can permute rows and columns of the array preserving the Latin
square property. So, we can always permute the rows and columns of the array so
that the elements in the initial row and initial column are ordered. Also, if two
Latin squares are orthogonal, the relabeling can be done independently for each
square without destroying orthogonality.

To obtain a code corresponding to a set of mutually orthogonal Latin squares,
it is important to determine the maximum possible number of mutually orthogonal
Latin squares of given order p. Since [3], it is well known that p — 1 is an upper
bound. In particular if p is a prime number, there exist exactly p — 1 mutually
orthogonal Latin squares.

Theorem 1 [3]. For any p, there are at most p — 1 mutually orthogonal Latin
squares of order p.

Definition 2. A set of p— 1 mutually (pairwise-)orthogonal Latin squares of order
p is said to be a complete of mutually (pairwise-)orthogonal Latin squares.

Let p be an odd prime. Then there exists a finite field GF(p) with p elements.
Take an p X p array

and in the cell (3, j) of this array put the integer u; = u.(z, 7) given by
u=t-i1+j

where ¢ is a fixed nonzero element of GF(p). We write down the following Latin



A SYNDROME-DISTRIBUTION DECODING OF MOLS £, CODES 373

square [; of order p, 1 <t <p-—1,

0 1 p—1

t t+1 t+p—1

2t 2t+1 2t+p—1
(p—1)t (p—1)t+1 ... p-1Dt+p-1

where all expressions are to be taken mod p. In (1] and (7], we have seen that
{L1,...,Lp-1} is a set of p — 1 orthogonal Latin squares.
As an example, we can write down a set of four orthogonal Latin squares of order

5,

L 1 L2
01 2 3 4 01 2 3 4
1 2 3 4 0 2 3 4 01
2 3 4 01 4 0 1 2 3
3 4 0 1 2 1 2 3 40
4 0 1 2 3 3 4 0 1 2
Ls L4
01 2 3 4 01 2 3 4
3 4 0 1 2 4 0 1 2 3
1 2 3 4 0 3 4 0 1 2
4 0 1 2 3 2 3 4 01
2 3 4 01 1 2 3 40

In addition, when p is a prime power, we can get a similar result {7]. So we will

not discuss them here.
2. Orthogonal Latin square codes and its dual codes
S. W. Golomb and E. C. Posner [4] established an important connection between

the existence of sets of mutually orthogonal Latin squares and the existence of p-ary

codes.
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The following two concepts are equivalent:

(1) A set of p — 1 mutually orthogonal Latin squares of order p,
(2) An existence of linear code with length p + 1, minimum distance p,

p? codeword.

The [p+1,2,p] code derived from p — 1 mutually orthogonal Latin squares of
order p is orthogonal Latin square codes of order p. From Section 1 and the above
two concepts, we have the codewords as the form (¢, 7, i1+ J,...,(p—1) -1 + j),
0<i,j<p-1.

This construction has been generalized to multi-orthogonal higher dimensional
Latin hypercubes by Silverman [8]. In his terms, an orthogonal Latin square code is
equivalent to a set of d—1 mutually (n—d+1)-wise orthogonal (n—d+1)-dimensional
Latin hypercubes where n, d, is the length and minimum distance respectively.

For any given two cells (2, j), (', j'), we have the (t+2)-th coordinate ¢-i+ 7, t-¢'+
of the codewords corresponding to (%, j), (¢, 5') respectively. Since (¢-i+7)+(¢-¢'+J)
is the (¢ + 2)-th coordinate of the codeword corresponding to (i + #',j7 + j), a
[p+ 1, 2, p] orthogonal Latin square code is linear code with generator matrix G

10123 ... (p-1]_
[ 1111 ... 1 ]“[I“’PL

where I5 is 2 x 2 identity matrix and

Sl

Hence the parity check matrix H of orthogonal Latin square code £, is :

p—-1 p—1 1 0 . 0

p—2 p—1 0 1 . 0
H=[-PT )= |" . , :

1 p-100 ... 1

where I, is (p — 1) x (p — 1) identity matrix and PT is transpose of P.
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Example 1. Let p= 3. Then there exist 2 mutually orthogonal Latin squares,

Ly Ly
0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

Thus we get a [4, 2, 3] orthogonal Latin square code L3 of order 3 over GF(3)

with 9 codewords

(0000) | (0111) | (0222
(1012) | (1120) | (1201
(2021) | (2102) | (2210)

Then this code L3 is the only self-dual linear orthogonal Latin square code be-
cause for a 2-dimensional linear code £, the dimension of self-dual code E;} isp—1
and p— 1 =2 only when p = 3.

From (9], it is easy to see that a [p+ 1, 2, p] orthogonal Latin square code L,
is a maximum distance separable (MDS) code. Thus this code has the maximum
possible distance between codewords.

Consider the dual code £} of £,. It is well known that the error correcting
capability of a code is determined by the minimum distance between all pairs of
distinet codewords. Since £,, is linear, so is ,Cg-. Thus the minimum distance of ,Cj
is equal to the minimum weight among all non-zero codewords of Eg;. So if we use
the weight enumerator of E-P}, we can find not only the minimum distance but also
the error correcting capability of L;}-. Let A; denote the number of codewords of
weight ¢ in £,. The number of codewords of weight i in £, over GF(p) has been
completely determined in [5] and [6), i.e. |
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Thus

So, the weight enumerator A(z) of £, is Ag + ApzP where Ag =1, A, = p? — 1.
Let B(2) denote the weight enumerator of the dual code L. Then by [5] and [6]
we have

BE) =7+ - D A T )

=p2(1+ (p - D){(1+ (p— )2)P + (#° - 1)(1 - 2)7}

=1+ B33 +---,
where B3 is the number of codewords of weight 3. Thus the minimum distance of
Ly is 3, and so L is a single-error-correcting code. By (5], the dual code £} is a
[p+1, p—1, 3] MDS linear code over GF(p). Therefore £;- is perfect code because
(1+ (p+ 1)(p—1))-pP~! = pP*! where 1+ (p+ 1)(p — 1) is the number of vectors
in a sphere of radius 1 about a codeword and pP~! is the number of spheres.

Theorem 2 [9]. Let C be an [n,k,d] code over GF(p) with parity check matriz H.
C is MDS if and only if every n — k columns of H are linearly indenpendent.

From Theorem 2 and concept for the Hamming code of order 2, the dual code
L} is the Hamming code of order 2 over GF(p).

3. Main Theorems

In this section, all the arithmetic operations (i.e. addition and multiplication)
are based on GF(p).
For convenience, we first define the following notation:

c=(c1,...,Cpt1) : codeword in L,,.
r=(r1,...,Tpt1) : received word.

e = (e1,...,€p41) : €rror vector.



A SYNDROME-DISTRIBUTION DECODING OF MOLS £, CODES 377

ie.r=c+e.

H : parity check matrix (see previous Section).
s = (s1,...,8p—1) : syndrome vector.
s(y=s—-1l-(p—-1,p-2, ...,2,1) = (4, 82,...,8p—1) : dual syndrome
with variable [ for 1 <l <p-1.
My(s) =#{i| s; = b, 1 <i < p-— 1} : syndrome distribution
for some syndrome s = (s1,...,8p—1) and some b € GF(p).
My(s(l)) =#{¢]| 8 =b, 1 <i < p— 1} : dual syndrome distribution
for some dual syndrome s(l) and some b € GF(p).

But, if codeword c¢ is changed into received word r with error e. Then s = HrT
= H(c+ e)T = HcT +HeT = HeT. So the i-th coordinate s; of syndrome s is

8; = —i-e1 — ez + e;19. Since L, has minimum distance p, we always assume that
the Hamming weight of e is less than or equal to p-2—
Theorem 3. Let r = (r1,...,7p+1) be a received word and s = (s1,...,8p-1)
syndrome of r.
-1
(1) Both vy aend rg are correct if and only if Mp(s) > pT
. . . . 1
(2) 1 is correct and ro is not correct if and only if My(s) > p;— for some

b € GF(p) — {0}.

Proof of (1). By previous paragraph, s; = —i-€; —ez+ej42, 1<i<p—1.
(=>) If both r; and r; are correct, e; = e = 0. So, 8; # 0if and only if e;4 2 # 0.

~1 il
But since Hamming weight of € is less than or equal to P 5 Moy(s) > p—z—
(<=) Suppose that r; is correct and g is not correct (i.e. e; = 0 and e3 # 0). Then

s; = 0 if and only if eo = e;42 # 0. But at most p elements of e3, e4,...,€ps1

. -3 ... . .
are nonzero. i.e. My(s) < %, which is contradict to hypothesis.

Suppose that r; is not correct and rq is correct(ie. €; # 0 and ey = 0). Then,

elements of

fori=1,...,p—1, s; =0if and only ifi-e; = €;; 9. But at most P

. =3 .. . .
€3, €4,...,€p+1 are nonzero. i.e. My(s) < pT, which is contradict to hypothesis.
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Suppose that both r; and rg are not correct(ie. e = €3 # 0). Then, for

i=1,...,p—1, s;=0if and only if i -€; + €2 = €;42. But, forz = - 93,6,~+2=0
€1

3 e -5
and for i # - —2, ei+2 # 0. But at most P elements of eg, ..., €,41 are nonzero.
o OF p+

ie. Mp(s) <1+ P—-;—S— = 1_)_;_3 This is contradict to hypothesis.

Proof of (2). (=) By assumption, e; = 0 and ez # 0. But since ez # 0, at least
p+1 p+1

elements of es, ..., €ep41 are zero. So, for b= —ez, My(s) >

(<=) Suppose that 7 is not correct and r, is correct (i.e. e; # 0 and e; = 0).

But since e; # 0, at most i of e3,...,ept1 are nonzero. Hence, for b # 0,

{ils,’=—i-61+6i+2=b}C{itei+2=0,i=—£—}U{ilei+2#0}. Thus
1
p—3_p-1

My(s) <14+ —— 5 = 5 This is contradict to hypothesis.

Suppose that both 7y and ro are not correct (i.e. e; # 0, e2 # 0). Then
at most 2—> clements of €3,...,€py1 are nonzero. So, for b # 0, {i | s; =

. b —-¢
-—i-61—62+6i+2 = b} C {z | €i4+2 = 0} U {'L | €i+2 # 0,2=— + 626 ez+2}. Hence
1
-3

My(s) L1+ —— P=5 = P2 This is contradict to hypothesis. [

2 2

Theorem 4. Suppose that ry is not correct (i.e. In Theorem 3, the conditions of
(1) and (2) are not satisfied ).
1
(1) ro is correct if and only if Mp(s(e1)) > p_—;_:_
(2) ro is not correct if and only if for some b# 0, My(s(e1)) > p-;— 3
Proof of (1). (=) By definition, the i-th coordinate of dual syndrome s(l) is §; =
~1-(e1 — 1) — ez + €;42. Hence by assumption e; = 0 and at least for 1 <7 <

1
p — 1 the number of e;;2 which is zero is greater than or equal to P ; . So
1
Mo(s(er)) > P-'Qi-.
(«=) Suppose that 7y is not correct. Then for 1 <7 < p—1, the number of e;;2

-5 -
which is not zero is less than or equal to P 5 So My(s(er)) < 8—2—2 This is
contradict to hypothesis.
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Proof of (2). (=) By assumption , for 1 <7 < p— 1, the number of e;19 which is
p-; 3. So b= —ea2, Mp(s(e1)) > ——;—3

(<) Suppose that ry is correct. Then for 1 <7 < p~1, the number of e,
which is not zero is less than or equal to p ; 3. So b#0, Ms(s(er)) < _p;_
This is contradict to hypothesis. O

zero is greater than or equal to

Note: since Mo(s(e1)) and My(s(e1)) (for some b # 0) is greater than or equal

+1
5~ in Theorem 4. My(s(e1)) = My(s(e1)) = be'rg%:fp) My(s(l)) for 1 <1<

p— 1. In (2) of Theorem 4, we can take ¢ such that §; = b, 8;11 = b, because

to

+1 .
Ms(s(e1)) > p_z__ Then ¢ = 1343 —Tite, 2 =Tip2 —1- 1.

4. The syndrome-distribution method of L, and examples

Algorithm
STEP 1 : If Mp(s) > p; 1, then by Theorem 3-(1), r is decoded into ¢ =
(r1, T2, "1+ T2, (D= L)ry 4 19).

STEP 2 : If Mp(s) < p-1 and Mp(s) > p-i2- 1 for b# 0, then by Theorem 3-(2),
r is decoded into ¢ = (ry, B,m1 + B,...,(p— 1)r1 + B) where B =9 + b.

STEP 3 : In the case that the conditions of Step 1 and Step 2 are not satisfied,

if Jnes Mo(s(l)) > p; 1, then by Theorem 4-(1) codeword ¢ = (A, 12, A+

T2,...,(p — 1)A + 72), where A = riy3 — r;yo for the i satisfying the condition
8 = 0, ;31 = 0 (the i-th coordinate satisfying this statement exists, because

+1
Jnow Mo(S(l)) p2

STEP 4 : In the case that the condjt:izons of Step 1 and Step 2 are not satisfied, if for
some b 0 maz My(s(D) > ; then c = (4, B, A+ B,...,(p—1)A+ B),
where A = 143 — 12, B =149 — i - A for the 7 satisfying the condition §; = b,

§i+1 = b.
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Example 2. Let p=5,r=(2,3,1,3,4,1).

H=

= N W
o O O

- OO
= O OO

4 1
4 0
4 0
4 0
G

is the parity check matrix for L5 over GF(5). Then the syndrome s of r

HrT =

— R W
NGRS
coo
cCom~o
oo o
—_—o oo
LW
OO M-

Since My(s) > 5—;—1 = 2, both r; and 7 are correct. By Step 1, ¢ = (2,3,2 +

3,4+ 3,1+3,3+3) =(2,3,0,24,1).

Example 3. Let p=5,r=(1,3,3,1,0,1). Then the syndrome s of r is (4, 1,4, 4).
Since Mp(s) < é; = 2 and My(s) > = 3, by Theorem 3-(2) r; is correct.
By Step 2, we have B=3+4=2and ¢c= (1,2,3,4,0,1).

Example 4. Let p=5,r=(3,2,1,0,2,3). Then the syndrome s of r is (1,2, 1, 4).
From Mo(s) < 2, for any b # 0 Ms(s) < 3 and s(4) = (0, 0, 3, 0), we get
Mo(s(4)) >3 andso by Step3c=(4, 2, 1, 0, 4, 3).

Example 5. Let p=5,r=(2,1,3,4,0,1). Then the syndrome s of r is (0, 4, 3, 2).
From My(s) < 2, for any b # 0 My(s) < 3, and s(1) = (1, 1, 1, 1), we get
Mi(s(1)) >4 and so by Step4 ¢ = (1, 2, 3, 4, 0, 1).
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