수소화물 생성에 의한 원자분광분석법의 원리와 응용

차기원・정영철
인하대학교 이과대학 화학과
(1996. 7. 12. 접수)

Principles and application of HG-AS

Ki-Won Cha and Young-Chul Jung
Department of Chemistry, Inha University, Incheon 401-751, Korea
(Received July 12, 1996)

수소화물 생성에 의한 원자분광분석법(hydride generation atomic spectroscopy)(HG-AS)의 원리와 응용에 관해 설명하였다. 시론에서는 수소화물 생성 방법의 발전 과정을, 각 절에서는 수소화물 생성의 원리, 수소화물을 이용한 원소, 그의 원화화, 이들 이용한 원자흡수, 원자광학, 원자발광분광법에 관해서 설명하였다. 마지막으로 수소화물 생성 원자분광법의 검출한계와 공기 안개화 생성 원자분광법의 검출한계를 비교하고 방해 과정에 관해서도 설명하였다.

1. 서론

1955년 Walsh에 의해 원자흡수분광법(AAS)이 소개되었다. 전통적인 불꽃 AAS로 Sb, As, Se, Te와 같은 원소를 정량하던 감도가 낮았다. 이런 원소들의 분석은 가사의 부분에 있어 있으므로 일반적으로 사용되는 불꽃에 의해 흡수가 일어나 신호 대 잡음비(S/N)가 낮다(예를 들면 air-acetylene 불꽃을 사용하여 As를 분석할 때 193.7nm에서 62%가 불꽃기체에 의해 흡수된다).1) 낮은 온도의 argon-hydrogen 불꽃을 사용하면 193.7nm에서 불꽃 흡수가 15%까지 줄 수 있다. 그러나 이런 유형의 불꽃은 낮은 온도 배 푸에 원자흡수와 분해한 영해리에 의한 방해를 받는다. 전열 원자화 흡수분광법은 다른 문제점들이 있다.

탄소와 같은 특정한 물질에 의한 단파장에서 신호가 심하고 기질방해를 피할 수 없다. 또한 휘발성 원소, 즉 As와 Se 같은 경우 기질변형 과정이 없으면 탄화 또는 화합단계에서 분석손실이 일어날 수 있다.

1969년 Holak2)는 As의 정량을 위해 잘 알려진 AsH3 생성법(고전적인 Marsh 반응과 Gutzeit 방법)을 이용했다. Holak은 탄산과 아연 반응에 의해 생성된 AsH3를 액체질소 트랩에 묶고, 가열한 다음 질소가스를 통해 AsH3를 air-acetylene 불꽃에 통과시켜 분석하였다. 시료에서 As를 분리하여 불꽃 속으로 유도하여 기질의 방해를 감소시키거나 제거할 수 있었다. 이 경우 수소화물 생성법은 시료 도입과정에서 생기는 많은 문제점을 극복할 수 있었으나 불꽃물질에 의한 바탕흡수를 피할 수는 없었다.

수소화물 생성법은 휘발성 금속 수소화물을 만들여 원자화 장치로 보내는 원자분광법이다. Holak의 발표 이후 수소화물 생성법을 이용한 원소 분석에 관한 논문이 많이 발표되었다.

2. 금속 수소화물

2.1. 휘발성 수소화물 생성원소

수소화물 생성 원자분광분석법의 첫째 조건은 분석 원소들의 휘발성 금속 수소화물을 형성해야 되는 것이
다. 이런 수소화물을 형성하는 원소들은 주로 주기율표에서 4, 5 및 6족 원소이다. 그리고 이들 원소의 분석이 자외선 영역에 있다. 따라서 이들 원소들이 주로 수소화물 생성법에 의한 원자분광분석법으로 분석하는 데 적당하다. 예를 들면 Ge(265.1nm), As(193.7nm), Sb(217.6nm), Se(196.1nm), Pb(217.00nm), Bi(206.17nm), Te(214.28nm), 그리고 Sn(224.61nm) 등이 주로 분석된다. () 안의 값은 분석 경로이다.

2.2. HG-AS의 장점

원자분광분석에서 수소화물 생성법의 가장 큰 이점은, (i) 효과적인 선명도가 향상된 기질 방해로부터 분석성을 향상시키려면 원자들 각광에서 기질 영역에 있을 수 있는 점, (ii) 원자들은 전기적 안개화와 비교해서 아주 효율적인 시료 도입방법, (iv) 원자흡수성분법과 원자형광분광법, 그리고 원자발광분광법(AES)의 새로운 시료 도입 방법인 자동화의 용이성(대체 연속 시스템) 등이다.

2.3. HG-AS의 단점

수소화물 생성의 몇 가지 단점을 보면, (i) 용액에 공존하는 물질에 의한 수소화물 생성 효율의 감소, (ii) 원자화 장치까지 수소화물의 도입에 앞서 액체질소 덤프 트럼프와 같은 응축 장치나 balloon과 같은 포집 장치의 필요성, (iii) 외형의 수소화물 생성을 위한 산과 환원체 시약 농도 조절의 필요성, (iv) 분석물의 두 가지 산화상태에 따라 감도의 차가 특성하는 점, (v) As(III, V), Sb(III, V), Se(IV, VI), Te(IV, VI)에서 산화상태에 따라 감도차가 많다는 점, 따라서 이들은 산화상태를 선택해서 분석할 수 있는 가능성을 준다. 등이다.

3. 수소화물 생성반응

3.1. 금속수소화물

C, N, O, 그리고 합로겐 원소의 수소화물은 잘 알려져 있다. 그리고 6족 원소들의 수소화물들은 원자분광법 분석에서 중요하다. 이들 수소화물들은 화합성이며 적당한 기체로 원자흡수분광분석법(AAS), 원자형광분광분석법(AF), 그리고 원자발광분광분석법(AES)의 원자화장치 또는 무용장치로 쉽게 이동할 수 있다. 몇 가지 수소화물 형성 원소들의 물리적 특성은 Table 1에 실었다.

시료 용액들은 상성에서 환원체에 의해 분석 원소의 휘발성 수소화물이 생긴다. 그 수소화물들은 argon-hydrogen 불꽃, 가열된 석영관 같은 원자화장치 또는 ICP, MIP와 같은 원자화 셜로 불활성 기체(대개 Ar 또는 N2)에 의해 이동된다. 수소화물은 원자화장치에서 기체상의 금속 원소로 분해되고, AAS, AF, AES와의 이해 측정된다.

| Table 1. Physical properties of metallic hydrides of practical analytical importance |
|------------------|------------------|------------------|
| Element | Hydride | ΔH_{f}° at 25℃ (Kcal/mole) | M.P.(℃) | B.P.(℃) |
| As | AsH$_{3}$ (arsine) | 15.9 | -116.9 | -62.5 |
| Bi | BiH$_{3}$ (bismuthine) | 66.4 | - | -22 |
| Ge | GeH$_{4}$ (germane) | 21.6 | -165.9 | -88.5 |
| Pb | PbH$_{4}$ (plumbane) | 59.7 | - | -13 |
| Sb | SbH$_{3}$ (stibine) | 34.7 | -88 | -18.4 |
| Se | H$_{2}$Se | 20.5 | -65.7 | -41.3 |
| Sn | SnH$_{4}$ (stannane) | 38.9 | -150 | -51.8 |
| Te | H$_{2}$Te | 36.9 | -51 | -2.3 |

Analytical Science & Technology
수소화물 생성에 의한 원자분량분석법의 원리와 응용

수소화물 생성 반응
 두 가지 중요한 반응에 의해 금속-수소화물이 생성된다. 초기의 반응은 Zn-HCl(또는 종류 H₂SO₄) 같은 금속-산 반응제이다.

\[
Zn + 2HCl \rightarrow ZnCl₂ + 2H\cdot M^{n+} \rightarrow MnH + H₂ (excess)
\]

이 반응제는 Zn-SnCl₃-KI 방법이라 할 수 있으며, 이런 환경에서는 주로 AsH₃, SbH₃ 그리고 H₂Se와 3가지 수소화물의 형성에 사용되어 있다. As(V), Sb(V), 그리고 Se(IV)는 산성 용액에서 KI와 SnCl₃에 의해 각각 As(III), Sb(III), 그리고 Se(IV)로 환전되고 금속 아연이 들어가기 전의 수소화물과 과량의 수소가 방출된다. 몇몇 저자들\(^{21,22}\)은 Zn-HCl 환경에서 KI와 SnCl₃의 영향에 대해 연구하였다. Zn-HCl 반응에서 최적의 HCl 농도는 As의 경우 1.5-3M, Sb의 경우 4-5.5M, 그리고 Se의 경우 대략 5M로 보고되었다.

Zn-HCl 반응 이외에도 다른 금속-산 반응이 연구되었다.\(^{23-25}\) Goulden과 Brooksbank\(^{23}\)는 AsH₃, SbH₃, H₂Se 생성에 Zn 대신 알루미늄 분말의 역할 slurry를 사용했다. Folloko와 West\(^{24,25}\)는 HCl, TiCl₃ 그리고 금속 Mg의 혼합물(즉, Mg-TiCl₃-HCl 반응)을 사용하여 AsH₃, SbH₃ 그리고 H₂Se 뿐만 아니라 BiH₃와 H₂Te도 생성하였다.

금속 산 반응의 중요한 단점은 단지 As, Sb, 그리고 Se(종종 Bi와 Te) 경우에만 사용할 수 있으며, 분석 시간은 환전 시간에 포함하여 분석이 완료되며, 대개 10분 이상이 걸 리기 때문에 대개의 경우 적당한 형태로(약화소산 용도에서 U-자판에 수소화물의 응축) 생성된 수소화물을 고려할 것이다.

두번째 수소화물 생성방법은 NaBH₄ 산(sodium tetrahydroborate) 반응제이다. 생성반응은 아래 반응식과 같다.

\[
NaBH₄ + 3H₂O + HCl \rightarrow H₃BO₃ + NaCl + 8H\cdot M^{n+} \rightarrow MnH + H₂ (excess)
\]

비록 NaBH₄가 전부터 유휴합성에 사용되어 왔지만 이 시약이 처음으로 원자분량법에 이용된 것은 1972년이다.\(^{26}\)

Schmidt와 Royer\(^{27}\)은 AAS에서 As, Bi, Sb, 그리고 Se의 수소화물 생성을 위해 환전체로서 NaBH₄를 최초로 사용했고 그 후 NaBH₄-산 반응은 Ge, Sn 그리고 Te와 그의 뒤 Pb의 정량까지 확장되었다.

NaBH₄-산(또는 HCl) 환전체는 원소의 용용성, 오염, 반응 시간, 환전 수확 등에 금속-산 환전체보다 우수하다. 따라서 NaBH₄-산 반응은 금속-산 반응체보다 HG-AAS에 주로 사용된다. 대부분의 금속수소화 물 생성의 반응 시간이 30초 이내에 이루어지고 Thompson과 Thomerson\(^{28}\)은 의해 설명된 포집장치가 필요 없다.

초기 연구에서는 반응 플라스크에 고체 NaBH₄ 분말을 넣어 사용하였으나, McDaniel\(^{21}\) 등은 NaBH₄ 용액에 비해 이 방법은 단지 40-60%의 효과를 낼다는 것을 알게 됐다. 0.5%에서 10%까지 다양한 농도의 NaBH₄ 용액이 사용된다.\(^{29,30}\) NaBH₄ 용액은 NaOH나 KOH의 알칼리성에서 안정하지만 알칼리의 농도가 너무 높으면 안 된다. 대개 0.1-2%의 NaOH 또는 KOH의 농도에서 NaBH₄ 용액을 안정화시킨다. 몇몇 저자들이\(^{31}\)은 NaBH₄ 용액이 불안정하므로 매일 준비해야 한다고 보고했다. 그러나 몇몇 연구자들은 NaBH₄ 용액을 0.45μm membrane filter\(^{31}\)를 통과시키려고거나 NaBH₄를 2% NaOH에서 녹여서 농도에 보완하려고 한다. 모든 수소화물에서 질산이나 활성이 어떤 경우\(^{32,33}\)에는 쓰이지만 염산은 주로 사용된다. 최적의 산도 범위는 대상 원소에 따라 다르다. As, Bi, Sb의 경우 1-3M, Ge는 1.5-3M, Pb나 Sn은 0.1-0.2M, Se는 1.5-3M, Te는 2.5-3.5M이다. Tartaric acid, malic acid, oxalic acid와 같은 유기산은 Ge, Pb, 그리고 Sn의 정량에 염산 대신 사용될 수 있다.\(^{34}\) 남의 수소화 물 생성의 경우, NaBH₄-산 반응체에서 K₂Cr₂O₇, (NH₄)₂SO₄, 그리고 KMnO₄와 같은 산화성 시약을 넣 음으로써 높은 금도를 얻었다.\(^{34,35}\)

형성된 수소화물은 Ar, N₂, He와 같은 음란 기체에 의해 용액에서 원자화장치로 직접 응용되거나(소위 "direct-transfer mode") 적당한 방법으로 포집이 되기 전에 원자화장치로 운반된다.

3.2. Collection mode
 초기에는 대부분은 수소화물 포집의 형태였다. 가압법\(^{42}\)과 고무풍선 포집법이 있었다. 금속-산 반응계는

Vol. 10, No. 1, 1997
수소화물 생성 반응이 완결되는 데 몇 분이 소요된다. 따라서 유리된 수소화물을 포집하여 가능한 한 짧은 시간에 김출기를 보내야 하는 것이 유리하다.

Holak는 처음으로 애클로모서서 U-관련 수소화물을 응축하는 방법을 사용하였다. U-관련 emph 投影 은 가열되고 수소화물은 즉시 김출계로 옮겨졌다. 이런 조립방법은 AAS와 AES에서 이용되었던 방법은 감공선후가 예기하기 때문에 분석물의 농축에 여전히 사용되고 있다. 대기압 MIP와 ICP에서는 금속 수소화물 생산시 생긴 과량의 수소 가스를 수소화물에서 분리하기 위해 응축제를 사용하여 한다. 응축기는 생산물의 선중축계로 이용되고 있다.

3.3. Direct-transfer mode

화학적로서 NaNH₄가 사용된 후 직접-이동 방법이 널리 보급되었다. 이 방법은 분출된 수소화물의 포집이 필요 없이, 직접 원자화장치로 수소화물을 도입함에 게된다.

수소화물이 철화행성하는 경우에 포집과정이 필요하고, 반면에 부르게 형성되거나 기상에서 풍란 정한 수소화물은 원자화장치에 직접 이동되어야 한다. Chapman과 Dale는 AsH₃, BiH₃ 그리고 H₂Se는 포집이 필요한 반면 PbH₄, SbH₃, SnH₄ 그리고 H₂Te는 직접-이동 방식이 적당하다고 보고하였다.

3.4. 자동화계

위에서 이미 논의된 바와 같이 NaNH₄ 산 반응기는 자동화의 요건이 명백하게 된다. NaNH₄ 반응기는 잘 반응속도는 수소화물의 생성을 신속하게 한다. 또한 중요한 점은 As, Bi, Ge, Pb, Sb, Se, Sn, 그리고 Te의 수소화물이 이 반응에 의해 생성되는 것이다. NaNH₄에 의한 AAS와 플라즈마 AES의 자동화가 이루어졌다.

지금까지 자동화된 계는 peristaltic pump와 pressurized reagent pumping계라 peristaltic pumping계가 더 일반적이다. pressurized reagent pumping계는 feed와 저장이 있어야 되며 peristaltic pumping계는 조작이 간단하다.

4. 분석 방법

수소화물 생성법을 이용하는 원자분광분석법은 원자흡수분광법(Holak), 원자형광, 그리고 플라즈마 원자발광 원자분광분석법이 이용되고 있다.

4.1. 원자흡수분광법

수소화물 생성법을 원자흡수분광법에 이용할 때 원자화장치는 불꽃, flame-in-tube atomizer, 가열 식영관, 그리고 촉열로 등이 사용된다.

4.1.1. 불꽃

Holak 등은 일반적인 air-acetylene 불꽃을 사용하였지만, N₂O-acetylene 불꽃과 같은 acetylene에 기초를 두 불꽃을 사용하여 원자화하였다. 자연산 과학에서 상대적으로 낮은 바람흡수를 나타내는 argon-hydrogen 불꽃이 사용되기도 했다. 이런 불꽃의 단점은 수소화물 생성 과정에서 생긴 많은 양의 수소에 의한 불꽃의 심도와 불꽃의 불안정성 때문에 흔드 특성에 변화를 일으키는 것이다.

4.1.2. Flame-in-tube atomizer

Siemer 등은 과장의 수소와 함께 발수되는 금속 수소화물을 T자형 식염관에 통과시켜 수소화물을 원자화하여 AAS로 분석하는 방법을 보고하였다.

소량의 산소를 수소화물과 같이 식염관에 통과시켜 연소하여 원자화한다. 연소 불꽃에 의해 내부적으로 가열되는 이런 유형의 식염관을 "관내불꽃(flame-in-tube)" 원자화장치라 한다. 이런 관내불꽃 원자화장치는, 그 후 oxygen-hydrogen 불꽃 또는 air-hydrogen 불꽃을 사용하기도 했다. 이렇게 함으로써 광도에 원자들이 오래 머무를 수 있어 감도가 크게 증가된다.

Dédina와 Rubeška는 Oxygen-hydrogen 불꽃의 관내불꽃 원자화장치로 H₂Se의 원자화 메카니즘을 연구했다. 그들은 수소화물 원자화 연분해에 의해서 일어나는 것이 아니라 불꽃 속에서 발생하는 H, OH와 같은 자유 레이지언에 의해 이루어졌다고 밝혔다. 그들 의 이론에 따르면, 원자화 메카니즘은 아마도 H 레이지언과 다음 두 단계 반응에 의해 이루어지는 것으로 생각된다.

\[
\text{SeH}_2 + \text{H} \rightarrow \text{SeH} + \text{H}_2 \quad \Delta H = -189 \text{KJ/mol}
\]
\[
\text{SeH} + \text{H} \rightarrow \text{Se} + \text{H}_2 \quad \Delta H = -131 \text{KJ/mol}
\]
4.1.3. Flame-heated quartz tube

Schmidt 등은 argon-hydrogen 불꽃으로 외부에서 가열된 석영관(quartz furnace tube)에 수소화물을 통과시켜 원자화하는 방법을 보고했다. 이 방법은 잡음(noise)을 제거할 수 있다. 석영관을 가열하는 대

argon-hydrogen 불꽃 대신 Thompson 등은 air-acetylene 불꽃을 사용했다. 생성된 금속 수소화물은 짐스 가스에 의해 관의 측면관을 통해 도입된다. 짐스 가스의 호흡 때문에 기관의 수소가 관 끝에서 점화되는 것을 방지할 수 있었다.

이런 방법의 장점은 불꽃장비가 소실하고 제거되어 원자화장치로서 argon-hydrogen 불꽃에서보다 감도가 매우 좋다.

4.1.4. Electrically heated quartz tube

Chu 등은 처음으로 불꽃 대신 전기로 가열된 석영관을 사용했다. 생성된 금속수소화물은 Ar, N₂ 및 He와 같은 운반 기체에 의해 석영관으로 운반된다. 이 방법은 argon-hydrogen 불꽃 원자화법보다 두 배는 더 감도가 좋은 원자화 방법이다. 이 방법은 관로에 원자들이 보다 오래 머물 수 있어 보다 높은 기증한계의 높은 유도를 얻을 수 있는 가능성이 있다. Fig. 1은 전기로 가열하는 석영관 원자화 장치이다.

Fig. 1. The atomic cell in the hydride method.

Goulden 등은 전기로 가열된 석영관 내에 argon-hydrogen 불꽃을 통과시켜 As, Sb, Se를 정량하였다. 최근 Reamer 등은 Se 측정을 위해 900℃로 가열한 석영관에 air-hydrogen 불꽃을 통과시켰다. 이를 경우, 발생된 H₂Se는 불꽃과 가열된 노에 의해 원자화가 되어 예기한 흡수 신호를 냈다.

최근에 Welz와 Melcher는 전기로 가열된 석영관 안에서 일어나는 금속 수소화물 원자화 메커니즘은 일반적에 의해서 생기는 것이 아니라, oxygen-hydrogen 불꽃 원자화장치에서 이미 Dédina 등이 제안한 것과 같이 600℃ 이상의 온도에서 발생하는 반응에서 형성된 수소 자유 레디칼과 금속 수소화물이 충돌하여 원자화한다는 결론을 얻었다.

Fig. 2는 수소화물 생성 원자분광분석을 할 수 있는 연속 호흡 주입계의 약도이다. 시료, HCl 및 NaBH₃,

Vol. 10, No. 1, 1997

Fig. 2. Continuous flow injection system.
용액이 일정한 속도로 반응실로 들어가고 발생된 금속
수소화물이 완전 가열의 N₂나 He에 의해 원자화실로
운반된다.

4.1.5. Graphite furnace atomizer
수소화물을 원자화하기 위한 연소를 위한 흙연으로 원
자화장치를 처음 보고한 사람은 1973년의 Knudsen과
Christian 등이다.

Akman 등은 최근 흙연으로서 AsH₅로부터 As의
원자 형성의 메카니즘이 대한 연구에서 1130K 온도
에서 AsH₅는 흙연로 표면에서 다음과 같이 분해되어
원자화된다고 보고했다.

\[
\text{AsH}_{5}(g) \xrightarrow{\text{분해}} \text{As}(s) \xrightarrow{\text{증기화}} \text{As}_{4}(g) \xrightarrow{\text{분해}} \text{As}_{2}(g) \xrightarrow{\text{원자화}} \text{As}(g)
\]

지금까지 발표된 수소화물 생성법은 AAS에 이용하
여 분석한 보문은 Table 2에 실었다. Table 2를 보면 여
러 가지 흙표에서 원조성 금속 수소화물을 형성하는
원소를 정량하는 방법을 설명하고 있다.

Table 2. Application of hydride generation-AAS

<table>
<thead>
<tr>
<th>Element</th>
<th>Matrix</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>stainless steel, cast iron</td>
<td>liq. N₂ trap</td>
<td>8</td>
</tr>
<tr>
<td>As</td>
<td>foods</td>
<td>decompose with HNO₃/H₂SO₄/HClO₄, evaporate to low bulk</td>
<td>13</td>
</tr>
<tr>
<td>As</td>
<td>ground water</td>
<td>Fe(OH)₃ coprecipitation</td>
<td>14</td>
</tr>
<tr>
<td>As</td>
<td>hair</td>
<td>digestion with H₂SO₄/HNO₃</td>
<td>34</td>
</tr>
<tr>
<td>As</td>
<td>atmospheric particulate matter</td>
<td>collected on glass fiber filters</td>
<td>36</td>
</tr>
<tr>
<td>As</td>
<td>biological samples</td>
<td>removal of interference with EDTA</td>
<td>46</td>
</tr>
<tr>
<td>As</td>
<td>molluscs, algae, river water</td>
<td>As(II), As(V), methylarsenic, dimethylarsenic</td>
<td>80</td>
</tr>
<tr>
<td>As</td>
<td>Tin plating solution</td>
<td>flame-heated quartz tube</td>
<td>129</td>
</tr>
<tr>
<td>Bi</td>
<td>copper</td>
<td>removal of Cu interference with La(OH)₃ coprecipitation</td>
<td>30</td>
</tr>
<tr>
<td>Bi</td>
<td>blood, urine</td>
<td>wet-oxidize with HNO₃/HClO₄ ashing, redissolve in HCl and inject aliquot into NaBH₄ soln.</td>
<td>48</td>
</tr>
<tr>
<td>Bi</td>
<td>river and sea waters</td>
<td>Fe(OH)₃ coprecipitation-flotation separation</td>
<td>108</td>
</tr>
<tr>
<td>Ge</td>
<td>rocks</td>
<td>removal of interferences with EDTA</td>
<td>54</td>
</tr>
<tr>
<td>Ge</td>
<td>natural water</td>
<td>liq. N₂ trap to preconcentrate</td>
<td>64</td>
</tr>
<tr>
<td>Ge</td>
<td>coal ashes</td>
<td>N₂O·C₂H₄ flame</td>
<td>100</td>
</tr>
<tr>
<td>Ge</td>
<td>soap</td>
<td>flame-heated quartz tube</td>
<td>131</td>
</tr>
<tr>
<td>Pb</td>
<td>air, water, vegetation</td>
<td>elimination of interference by citric acid and KCN</td>
<td>37</td>
</tr>
<tr>
<td>Pb</td>
<td>urine</td>
<td>inorganic, diethylene, triethylene</td>
<td>67</td>
</tr>
<tr>
<td>Pb</td>
<td>drinking waters</td>
<td>Cu and Ni interference, MnO₂ coprecipitation</td>
<td>78</td>
</tr>
<tr>
<td>Sb</td>
<td>natural waters</td>
<td>Sb(II), Sb(V), methyl Sb species, liq. N₂ trap</td>
<td>66</td>
</tr>
<tr>
<td>Sb</td>
<td>geological materials</td>
<td>H₂SO₄·HNO₃·HClO₄ digestion</td>
<td>82</td>
</tr>
<tr>
<td>Sb</td>
<td>atmospheric particulates</td>
<td>cellulose filter collection, thiocyanate addition to remove Cu interference</td>
<td>99</td>
</tr>
<tr>
<td>Sb</td>
<td>foods</td>
<td>digest with HNO₃, H₂SO₄ and HClO₄</td>
<td>102</td>
</tr>
<tr>
<td>Sb</td>
<td>Tin plating solution</td>
<td>flame-heated quartz tube</td>
<td>129</td>
</tr>
<tr>
<td>Sb</td>
<td>gasoline, fuel, oil crude, oil</td>
<td>digest with acid, under reflux, to destroy matrix</td>
<td>11</td>
</tr>
</tbody>
</table>
4.2. 원자형광분광법(AFS)

NaBH₄ 환원에 의해 생긴 수소화물을 AFS로 측정하는 방법이 Thompson와의 의해 처음으로 보고되었다. 수소화물은 Pyrex관에서 연소되는 argon-hydrogen 불꽃 속으로 통과하고 이관에 microwave cavity window를 장착하였다. 발생된 원자는 microwave-들 높기 무선극 등에 의해 들려고 발생된 형광은 분산 측정계에 의해 검출된다 (As 193.7nm, Sb 231.1nm, Se 196.0nm, Te 214.3nm). 이 방법에서 원소들의 검출 한계는 0.06~0.1ppb였다. 대부분 원소들의 수소화물 은 250nm 이하의 자외선 영역에서 AFS에 의해 검출 된다. 또한 수소화물 생성 반응에 의해 메트릭스로부터 분석물이 분리되기 때문에 메트릭스에 의한 방해가 없으므로 비분산 AFS가 가능하다.

Fig. 3은 수소화물생성법을 AFS에 이용하여 동시에 여러 원소를 정량할 수 있는 장치의 약도이다. 그림에서 4가 원자화 셀이고 여기에 금속 수소화물들을 통과시켜 원자화한 후 발생한 형광을 광전관으로 측정한다. Table 3은 HG-AFS에 의해 분석된 본문을 열기한 것이다.

4.3. 원자발광분광법(AES)

4.3.1. Inductively coupled plasma (ICP)

수소화물 생성법을 AES로 분석하기 위해 사용되는 원자화장치는 주로 ICP이다.

Thompson 등은 As, Bi, Sb, Se, Te의 수소화물을 ICP AES로 처음으로 분석하였다. NaBH₄ 반응에 의해 이들 원소의 수소화물이 계속 발생되고 이들이 직접 ICP에 도달되어 원자화되고, 원자선 발광세가 측정되어 동시에 여러 원소들이 정량된다. 이런 연속 수소화물 발생계는 적도로 전통적인 용액 안개화 방법으로
Table 3. Application of hydride generation- AFS

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomizer</th>
<th>Matrix</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>Ar-H₂ flame</td>
<td>silicon semiconductor waste waters</td>
<td>use of Zn/SnCl₂/KI preferred to NaN₃₃₅₀ nondispersive AFS system</td>
<td>121</td>
</tr>
<tr>
<td>Sb</td>
<td>Ar-H₂ flame</td>
<td>H₂PO₄</td>
<td>Sb(Ⅲ), Sb(Ⅴ), nondispersive AFS system</td>
<td>119</td>
</tr>
<tr>
<td>Se</td>
<td>Ar-H₂ flame</td>
<td>H₂PO₄</td>
<td>NaN₃₃₅₀ reduction, nondispersive AFS system</td>
<td>123</td>
</tr>
</tbody>
</table>

보다 10배 이상 검출한계가 향상된다. 용액에 존재하는 어떤 금속은 Se나 Te 같은 원소들의 검출한계를 낮추는 결과를 가져온다.

수소화물 생성을 ICP에 적용할 때 문제점은 수소화물과 함께 도입되는 화학반응 부산물(H₂, H₂O, 그리고 CO₂)이 중 - 저 전력의 ICP원을 고는 것이다. 그래서 Thompson 등⁵⁶은 ICP가 깨지지 않게 하기 위해 비교적 높은 RF 전력(2.7 5.0kW)을 사용했다. 비슷하게 Sommer 등⑩은 수소화물 생성-ICP AES에 의한 Sn의 경향에서 높은 전력을 N₃ Ar ICP(3.3kW)을 사용했다.

연속 호름법(자동화된 채)으로 다양한 시료에 있는 원소들을 ICP-AES로 정량하였다. Table 4는 지금까지 보고된 수소화물 생성-ICP AES 방법으로 분석한 원소의 실험 조건들을 보여 준다.

Table 4. Hydride generation-ICP AES

<table>
<thead>
<tr>
<th>Element</th>
<th>Excitation</th>
<th>Matrix</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>ICP</td>
<td>waste waters, steel</td>
<td>digest with HNO₃/HCl</td>
<td>87</td>
</tr>
<tr>
<td>As</td>
<td>ICP</td>
<td>waste waters</td>
<td>KI addition</td>
<td>126</td>
</tr>
<tr>
<td>Se</td>
<td>ICP</td>
<td>soil, sediments</td>
<td>dissolve in HNO₃/HClO₃, prereduction of Se(Ⅳ) to Se(Ⅵ) with KBr</td>
<td>85</td>
</tr>
<tr>
<td>As, Sb</td>
<td>DC discharge</td>
<td>sea water, fresh water, oxidized marine sludge samples</td>
<td>He atmosphere, As 228.8nm, Sb 252.8nm</td>
<td>26</td>
</tr>
<tr>
<td>As, Bi, Sb,</td>
<td>ICP</td>
<td>crop samples, rice flour, wheat flour waters</td>
<td>HNO₃·HClO₃·H₂SO₄ digestion</td>
<td>92</td>
</tr>
<tr>
<td>Se, Te</td>
<td>ICP</td>
<td>crop samples, rice flour, wheat flour waters</td>
<td>KBr prereduction, preconcentration by La(OH)₃ coprecipitation</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Hydride generation</th>
<th>ICP</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>NaN₃ Ar, 1M HCl, liq. Ar trap, batch</td>
<td>1.2KW</td>
<td>69</td>
</tr>
<tr>
<td>As</td>
<td>NaN₃ Ar, 1M HCl, batch</td>
<td>1.2KW</td>
<td>87</td>
</tr>
<tr>
<td>As</td>
<td>NaN₃ Ar, 3M HCl, continuous</td>
<td>3.5KW</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>NaN₃ Ar, 2M HCl, continuous</td>
<td>1.6KW</td>
<td>91</td>
</tr>
<tr>
<td>As</td>
<td>NaN₃ Ar, 3M HCl, batch</td>
<td>1.5KW</td>
<td>126</td>
</tr>
<tr>
<td>Pb</td>
<td>NaN₃ Ar, 0.5M HCl-0.8M H₂O₃, continuous</td>
<td>1.2~2KW</td>
<td>55</td>
</tr>
<tr>
<td>Element</td>
<td>Reaction</td>
<td>Power</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Se</td>
<td>NaBH₄, 5M HCl, continuous</td>
<td>2.7KW</td>
<td>85</td>
</tr>
<tr>
<td>Se</td>
<td>NaBH₄, 0.5M HCl, continuous</td>
<td>1.25KW</td>
<td>88</td>
</tr>
<tr>
<td>Sn</td>
<td>NaBH₄, 0.08M HNO₃, continuous</td>
<td>1.6KW</td>
<td>51</td>
</tr>
<tr>
<td>Sn</td>
<td>NaBH₄, 1% tartaric acid, continuous</td>
<td>2.7KW</td>
<td>53</td>
</tr>
<tr>
<td>Sn</td>
<td>NaBH₄, 0.3M HCl, continuous</td>
<td>3.3KW, N₂-Ar ICP</td>
<td>125</td>
</tr>
<tr>
<td>As, Se</td>
<td>NaBH₄, 4~5M HCl, continuous</td>
<td>1.4KW</td>
<td>94</td>
</tr>
<tr>
<td>As, Se</td>
<td>KI/NaCl / HCl-Al slurry, continuous</td>
<td>1.6KW</td>
<td>52</td>
</tr>
<tr>
<td>Ge, Sn</td>
<td>NaBH₄, 0.1M HCl, continuous</td>
<td>2.7KW</td>
<td>86</td>
</tr>
<tr>
<td>As, Bi, Sb</td>
<td>NaBH₄, 6M HCl, continuous</td>
<td>2.7KW, simultaneous</td>
<td>90</td>
</tr>
<tr>
<td>As, Bi, Sb</td>
<td>NaBH₄, 6M HCl, continuous</td>
<td>1.25KW, simultaneous</td>
<td>79</td>
</tr>
<tr>
<td>As, Ge, Sb</td>
<td>NaBH₄, 7%M HCl, batch, liq. N₂, trap, gas chromatographic separation with Chromosorb 102</td>
<td>1KW, sequential</td>
<td></td>
</tr>
<tr>
<td>As, Sb, Se</td>
<td>NaBH₄, 6M HCl, continuous</td>
<td>1.25KW, simultaneous</td>
<td>96</td>
</tr>
<tr>
<td>As, Bi, Sb, Se, Te</td>
<td>NaBH₄, 5M HCl, continuous</td>
<td>2.7KW, simultaneous</td>
<td>83, 84</td>
</tr>
<tr>
<td>As, Bi, Sb, Se, Te</td>
<td>NaBH₄, 5M HCl, continuous</td>
<td>2.7KW, simultaneous</td>
<td>93</td>
</tr>
<tr>
<td>As, Bi, Ge, Sb, Se, Te</td>
<td>NaBH₄, 15% HCl-10% H₂SO₄, batch, liq. N₂, trap</td>
<td>0.9KW, simultaneous</td>
<td>97</td>
</tr>
<tr>
<td>As, Bi, Ge, Sb, Se, Te</td>
<td>NaBH₄, 10% HCl-20% H₂SO₄, continuous, Tandem nebulization system</td>
<td>0.85KW, simultaneous</td>
<td>92</td>
</tr>
<tr>
<td>Pb, Sb, Se, Sn, Te</td>
<td>NaBH₄, 2.4M HCl, continuous</td>
<td>1.3KW, simultaneous</td>
<td>89</td>
</tr>
</tbody>
</table>

5. 수소화물법의 감도, 검출한계, 정밀도

수소화물 생성법의 검출한계와 전통적 용액 분광법에서 얻은 검출한계를 Table 5에 나타내었다. 용액의 적정 분석에 비해 수소화물 생성법의 검출한계가 일반적으로 1000배 향상되었다. Table 5에서, AAS와 AFS에 대한 용액 검출한계는 argon-hydrogen 불꽃을 사용하여 얻어졌다.

일반적으로 수소화물 생성과 여러 가지 원자화장치의 최적화된 실현 조건 때문에 수소화물 생성-AAS, AFS, plasma AES의 분석값의 정확한 비교는 매우 어렵다. 따라서 Table 5에서 보여 주는 데이터를 사용할 때는 검증도를 체크해야 한다.

많은 연구자들은 수소화물 생성 방향은 시료의 처리 법이 훨씬 빠르고, 처리 과정에서 공존 이온에 의한 계통 오차의 영향을 받을 수 있음을 보여 주었다. 그러므로 표준물 청가 방법이나 메트릭스로부터 분석물 분리하여 분석하는 방법의 개발이 요구된다.

6. 방 해

대부분의 수소화물 생성-AAS, AFS, plasma AES에 관한 논문들은 방해에 대해 다루고 있다. 방해 메커니즘은 잘 알려져 있지 않았지만, 하이브리드의 수소화물 형성 과정과 액체시료에서 수소화물이 방해되는 과정에서 발생한다. 기체상에서 일어나는 방해의 가능성이 고려되어야 한다.44 Dédina의 방해는 시료 용액으로부터 수소화물 형성과 그의 방해 과정, 또는 수소화물이동 또는 원자화장치 내에서 발생한다. "액체상방해"는 수소화물 생성 속도 방해, 그리고 시료 용액에서 분석물의 수소화물 생성효율 방해로 발생한다. "기체상방해"는 휘발성 방해물에 의해 생긴다. 이론적 방해들은 직접효과(휘발성 방해물의 형태에 의한 것)와 "memory" 효과(휘발성 방해물이 이동한 후 장치 표면에서 방해효과가 지속되는 것)가 있을 수 있다. 기체상방해와 수소화물이 시료 용액에서 원자화장치로 이동할 때 이동 경로에 따라 일어나는 "이동방

Vol. 10, No. 1, 1997
Table 5. Comparison of detection limits (ng/mL) for analytical atomic spectrometric techniques utilizing conventional solution nebulization and hydride generation

<table>
<thead>
<tr>
<th>Element</th>
<th>AAS Solution nebulization</th>
<th>Hydride generation</th>
<th>AES Solution nebulization</th>
<th>Hydride generation</th>
<th>AFS Solution nebulization</th>
<th>Hydride generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICP</td>
<td></td>
<td>ICP</td>
<td></td>
<td>MIP</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>630</td>
<td>0.8</td>
<td>40</td>
<td>0.02</td>
<td>0.35</td>
<td>100</td>
</tr>
<tr>
<td>Bi</td>
<td>44</td>
<td>0.2</td>
<td>50</td>
<td>0.3</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Ge</td>
<td>20</td>
<td>3.8</td>
<td>150</td>
<td>0.2</td>
<td>0.15</td>
<td>100</td>
</tr>
<tr>
<td>Pb</td>
<td>17</td>
<td>0.6</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Sb</td>
<td>60</td>
<td>0.5</td>
<td>200</td>
<td>0.08</td>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>Se</td>
<td>230</td>
<td>1.8</td>
<td>30</td>
<td>0.03</td>
<td>1.25</td>
<td>40</td>
</tr>
<tr>
<td>Sn</td>
<td>150</td>
<td>0.5</td>
<td>300</td>
<td>0.05</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Te</td>
<td>44</td>
<td>1.5</td>
<td>80</td>
<td>0.7</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

a Ref. 3; b Ref. 96; c Ref. 19; d Ref. 100; e Ref. 37; f Refs. 69, 94, 97; g Ref. 97; h Ref. 70; i Ref. 55; j Ref. 94; k Ref. 51; l Ref. 92; m Ref. 118; n Ref. 122; o Ref. 120.

해마다. 이동방형은 분석수소화물의 지연(이동속도, 방해)과 손실(이동효율방해)을 가져온다. 원자화장치 내부에서 생기는 방해는 주어진 형태의 원자화장치에서서 수소화물 원자화 메가너قاعدة의 원인이 된다.

일반적으로 액체상태에서 방해가 있으며, 그것은 수소화물의 늦리 형성이나 수소화물 형성의 여제로부터 생긴다. 수소화물 형성의 감소율의 원인은 공중 물질 이 확인시각(예, NaBH₄)을 대부분 소비하고 분석물 을 위해 아주 적은 양만 남기는 경량 반응의 결과일 것이다. 그 외에 다른 원자가 상하로 다른 화학적 환경은 수소화물 형성 비율을 감소시킬 수 있다. 분석물과 방해를 사이의 환경시각은 보다 늦리 수소화물 형성¹¹¹ 뿐만 아니라 공장이나 분석물 원산의 불용성 혼합물 형성에서도 생긴다.

Smith¹²는 As, Bi, Ge, Sb, Se, Sn, 그리고 Te의 정량에서 48.7% 방해 원소의 효과에 대한 측정적 연구를 했다. 여기서 방해효과에 어떤 경향성이 관찰되었다. Cu, Ag, Au, Pt, Rh, Ru, Ni 및 Co 이온에서의 환상 약간의 방해가 있고 알칼리 급속이온, 알칼리 토측원 소이온, Bi, Al, Ga, Ti, Zr, Hf, Mg, La, Mn, V 및 Y에서의 확장성 급속 수소화물은 7가지 원소 분석에서 이루어진 방해가 없다. 또한 거의 모든 확장성 수소화물이 다른 모든 확장성 수소화물을 방해한다는 것이 발견되었다. Ni와 Pt족의 모든 원소는 수소화환응 에 촉매이며, 종종 산화에 대한 효과적 촉매이다. 그들 은 또한 그 자신의 두께에 비해 상당히 많은 양의 수소를 흡수할 수 있다.

2가 이온의 방해와 수소화물 형성 원소 상호간의 방해에 대하여 연구한 결과, Dedina는 ⁷⁷Se 추적자 (tracer)를 사용하여 Se의 AAS 측정에서 Sn, Pb, As, Sb, Bi, Te 및 Hg 이온의 방해를 연구한 결과 Sn, As, Sb, Bi, Te가 강한 기상의 방해를 나타내며, As, Bi는 액상 방해로 나타났다. 그는 판매 산소-수소불 껁 원자화장치가 비록듯 전열 섬영관 원자화장치보다 20~30% 정도로 방해가 감소되었다고 보고했다. 몇몇 연구자들은은 지료 녹 мног 과정에서 사용된 무기산의 방해에 관한 연구를 했다.
이상의 결과로부터 다음과 같은 결론을 내릴 수 있다. 수소화물 생성 방법과 관련된 원자분광분석법은 많은 발해를 방치하는 한. 이러한 발해는 수소화물 생성 과정 뿐만 아니라 원자화장치의 유효(예, 분광기 가열된 섬유관 ICP의)에도 의존한다.

지금까지 여러 가지 방법으로 방해를 제거하거나 감소시키려는 연구를 해 왔다. 그 중 가장 간단한 방법은 반응 매체의 산도와 NaNBH₄의 양을 증가시키기 때문이다. 반응안은 NaNBH₄의 양이 증가하면 감소되는 경향이 있다. Brown 등은 NaNBH₄ 대신에 가리움체와 환원제의 역할을 크롬한 NaNH₄CN을 사용하면 Ni와 Cu의 발해가 대부분 감소할 것이라고 했다. 방해를 제거하거나 감소시키기 위해 여러 가지 가림제제가 사용되었다. 이들에 수소화물을 방해 방해에 앞서 EDTA⁺⁶, KCN⁺⁶, citric acid와 KCN⁺⁷, thiosemicarbazide⁺⁶, 1, 10-phenanthroline⁺⁷, thiosceramic acid와 1, 10-phenanthroline⁺₁₀, KSCN⁺¹⁻⁹, oxalic acid⁺⁶, tartaric acid⁺⁶, thiourea⁺⁶, pyridine 2-aldoxime⁺⁴, thiglycolic acid⁺¹⁴와 pyrogaloll, cuferon 등의 가리움체가 발해에 기여하는 것으로 보고하다. 여러 원소로부터 방해를 제거하기 위한 시도로서 La(OH)₃⁺⁸, Fe(OH)⁺⁴와 hydrated MnO₂⁺⁷와의 공정, 용액추출⁺⁶, 그리고 이온환수כים⁺⁸에 의한 분리 등이 발표되었다.

위에서 설명한 바와 같이 방해를 감소하거나 제거하기 위한 몇 가지 실용적 방법이 있지만 이런 경우에도 표준을 참가 방법이 사용되어야 한다. 표준물 참가법은 시야 방해 완전으로 이루어져야 한다. 시료처리, 분리, 에비조차, 가리움, 그리고 환원 검출과정을 시료와 같이 수행한다.

7. 원소의 화학종

원소들은 시료에서 여러 가지 화학종 형태로 존재한다. 몇 가지 시료에서 화학종에 대한 정보는 유독성, 생물활성, 생물적 특성, 그리고 식물들의 이동이 화학종 형태에 따라 다르기 때문에 매우 중요하다. 수소화물 생성과 분리 과정은 수소화물 성질 원소의 화학종에 따라 다르다.

7.1. 무기화학종

As, Sb, Se, Te는 일반적으로 용액에서 두 가지 산화 상태로 존재한다. 즉 As⁺³와 As⁺⁵, Sb⁺³와 Sb⁺⁵, Se⁺⁴와 Se⁺⁶, Te⁺⁴와 Te⁺⁶ 등이다. NaNBH₄ 환원제의 강경 중 하나는 원소의 에비 환원(예, As⁺³→As⁺¹)이 불필요한 점이다. 그러나 NaNBH₄ 환원제를 사용할 때도 금속 수소화물 형성 효율성이 시료의 산화 상태에 따라 다를 수 있다. KI는 As와 Sb⁺³에 대한 전체 농도를 정량하기 위한 사전 환원제로 NaNBH₄ 반응에서 사용되어 왔다. KI⁺⁺⁺⁺⁻⁻⁻ אחרונות 전환

Aggett와 Aspeli는 As⁺⁵를 AsH₃로 전환하는 두 가지 단계(즉, As⁺⁵→As⁺³, As⁺³→AsH₃)는 다른 반응 속도를 가지고 있다고 하는 것을 이용하여 As⁺³와 As⁺⁵의 선택적 정량 방법을 보고했다. 환원의 첫 단계, 즉 As⁺³→As⁺³의 환원능력은 pOH에 의존한다. pOH 4.5에서는 오직 As⁺³만이 AsH₃로 전환된다. 5M HCl에서 환원이 이루어지면 As의 양이 정량의 두 가지 형태의 방식으로 수행된다. ¹⁴

Tsujii는 수소화물 생성-비분산 AFS에 의한 Sb⁺³와 Sb⁺⁵의 선택적 정량을 보고했다. Sb⁺³과 Sb⁺⁵의 전체량은 KI에 의한 Sb⁺³을 Sb⁺³으로 미리 환원하여 정량한다. 용액에 HF를 가하면 Sb⁺⁵에 의한 Sb⁺³ 생성이 억제되어 Sb⁺³의 선택적 정량이 이루어진다. Sb⁺³ 농도는 두 가지의 차이에 의해 정량될 수 있다.

Cutter는 4M HCl에서의 끓는 물 중에서 Se⁺⁴를 Se⁺⁴로 환원하여 전체 Se량을 정량하고 4M HCl에서 Se⁺⁴만의 수소화물을 생성하고 Se⁺⁴를 정량하여 Se⁺⁴와 Se⁺⁴를 분리 정량했다.

Jin은 수소화물 생성-AS에 의해 산성 용액에서 Te⁺⁴와 Te⁺⁴의 전체량을 분석했다. 전원 에너지나 NaNBH₄ 용액이 사용되면 오직 Te⁺⁴의 신호만이 얻어진다. 반면에 titanium⁺³ chloride

Vol. 10, No. 1, 1997
7.2. 유기 금속 화합물

여러 신화 상태를 갖는 몇 개의 원소들은 수소화물 생성에 의해 정량화하였으나 환경시료와 생물학적 시료 등의 조성 교란을 포함한 진정 원소는 다양한 유기물 형태로 정량할 수 있다. 다양한 화합물이 선택적으로 증발되여 분리되고 AAS와 AES에 의해 정량된다.

Methylarsenic acid, CH₃AsO(OH),와 dimethylarsine acid, (CH₃)₂AsO(OH),는 pH 1~2에서 NaBH₄와 수소화물 반응을 가하면 각각 methylarsonic acid, CH₃AsH₃,와 dimethylarsenic acid, (CH₃)₂AsH₂로 환원된다. 유효한 수소화물은 안전 보호소와 분광 공정 환경에 포함된다. 생 각된 염소의 화학적 성질로 AsH₃는 (-62.5°C), methylarsine(2°C), dimethylarsine(55°C)의 끓는 점에 따라 트랩으로부터 확산된다. 이와 같이 유기성 혼합물의 분리와 정량은 수소화물을 만들어 포함하고 끓는 점을 이용하거나 gas chromatography에 의해 분리하여 AAS와 MIP AES에 의해 정량된다.

Arsenite, arsenate, monomethyarsinite, dimethyarsinite, p-aminomethylarsinite가 크로마토그 래프분리에 의해 분리되어 정량된다. 이 과정에서 이온 교환 크로마토그래피로 분리하고 용액에서 AsH₃를 분해하여 흐름으로 원자화장치나 전기로 가열된 석영관에 이용하는 AAS로 정량된다. Burns 등은 tin tetraalkyl과 alkyltin chloride를 기체 액체 HPLC로 분리한 후 가열된 석영관에 이용한 AAS로 정량하였다.

8. 다원소 분석

AES와 AFS는 동시 다원소 분석이 가능하다. 그러나 AFS법은 상존화된 유용한 기가 다룰기 때문에 아직까지는 널리 보급되지 못하고 있다. 동시 다원소 분석에서 HG-ICP AES법이 먼저 이용되었다. Tompson 등은 수소화물 생성에서 사용된 최적 반응 조건을 이용하여 As, Bi, Sb, Se, 그리고 Te를 동시에 분석하였다. 이들의 백운 세기는 polychromator를 사용하여 각각의 채광을 분리하여 동시에 측정된다. 원소들의 검출 한계는 0.8~1.0ppb 범위이다. 이 방법은 실제 시료방정식의 양에서 적용되며 수소화물 생성 과정은 8가지의 수소화물 생성 원소를 모두에 적용한다.

8가지 수소화물 생성 원소 이외의 다른 원소의 검출 한계는 수소화물을 형성하여 분석할 것의 수소화물을 형성하지 않고 분석한 결과가 같은 것으로 조사되어졌 다.

9. 결론

수소화물 생성 방법은 확실하게 많은 관계에서 직접 용액 안개화 방법보다 감도가 우수한 방법이다. 이것은 검출 한계(감도) 관계에서 특히 그러하다. 현재 대부분의 제조업체들은 원자흡수분광기와 유도 방광 플라즈마 원자방출분광기에 몇 가지 유형의 수소화물 생성 장치를 종종 제공한다. 전열 석영관 원자화장치가 주로 사용된다. 널리 보급된 ICP AES는 직접 이중 연속 화학법의 안전한 플라즈마 장치를 이용한다. 원소에 따라 감도가 다르다는 것을 지적할 필요가 있다. 이것은 보급에 어려움이 있다. 그러므로 방해이 온의 메카니즘 설명과 그들의 원인 또는 개개에 관한 연구가 이루어져야 한다. 더욱이 수소화물 생성 방법으로 정량할 때, 단지 8가지 원소만이 일반 공기 안개화 시 료 도입법보다 감도가 약 100~1000배 크고 그 외 원소에는 감도 증가가 생기지 않는다. 연속적인 원소 분석을 할 수 있는 AES법은 분석 시간과 분석 비용 절감 등에서 적절한 방법이다. 수소화물 생성법을 이용하는 ICP 또는 MIP 원자방출분광법은 앞으로의 연구가 더욱 기대된다. 높은 감도, 높은 선택성, 그리고 빠른 분석 속도 때문에 발전이 기대된다.

참고문헌