THE CORONA THEOREM FOR BOUNDED FUNCTIONS IN DIRICHLET SPACE

Young-Chae Nah

ABSTRACT. In this paper we prove that the corona theorem for the algebra $H^{\infty}(\mathbf{D}) \cap D(\mathbf{D})$. That is, we prove that $\mathcal{M} \setminus \overline{\mathbf{D}}$ is an empty set where \mathcal{M} is the maximal ideal space of the given algebra.

1. Preliminary

Let **D** be the unit disk in the complex plane **C**. As usual $H^{\infty}(\mathbf{D})$ is the set of all bounded analytic functions on **D**. And $D(\mathbf{D})$ is the set of all analytic functions such that f' is square integrable with respect to the usual area measure. We know that $H^{\infty}(\mathbf{D}) \cap D(\mathbf{D})$ forms a Banach Algebra with the norm given by $||f|| = ||f||_{\infty} + ||f||_{D(\mathbf{D})}$ where

$$||f||_{\infty} = \sup\{|f(z)| : z \in \mathbf{D}\}$$

and

$$||f||_{D(\mathbf{D})}^2 = \int_{\mathbf{D}} |f'(z)|^2 dA(z).$$

The corona theorem for $H^{\infty}(\mathbf{D})$ was originally proved by L.Carleson [2] in 1962. Later P.Wolff gave a nice simpler proof using Littlewood-Paley integrals in 1979(see, for example, [3, Chapter 8]). This theorem was generalized for $H^{\infty}(\Omega)$ where Ω is a finitely connected domain and also for various subalgebras of $H^{\infty}(\mathbf{D})$. The corona problem can be

Supported by Mokwon University

Received by the editors on June 30, 1997.

¹⁹⁹¹ Mathematics Subject Classifications: Primary 47B38.

Key words and phrases: Banach Algebra, Corona Theorem, BMO, BMO(**D**), Dirichlet Space, Disk Algebra, Carleson Measure.

stated as follows. Let Ω be a domain in \mathbf{C} and let \mathcal{A} be a Banach algebra consisting of analytic functions on Ω . Further we assume that \mathcal{A} contains all constant functions. Suppose $f_1, f_2, ..., f_n \in \mathcal{A}$ satisfies $Max_{1 \leq i \leq n} |f_i(z)| \geq \delta > 0$ for all $z \in \Omega$. (These functions are called the corona data). Then, can we find functions $g_1, g_2, ..., g_n \in \mathcal{A}$ and a constant \mathbf{C} depending only on δ , $||f_1||, ||f_2||, ..., and ||f_n||$ such that $f_1g_1 + f_2g_2 + ... + f_ng_n = 1$ where $||g_i|| \leq C$ for all $i \in \{1, 2, ..., n\}$? (These g_i 's are called the corona solutions). It turns out that the corona theorem is equivalent to the fact that Ω is dense in \mathcal{M} where \mathcal{M} is the maximal ideal space of \mathcal{A} , that is \mathcal{M} is the set of all multiplicative linear functionals on \mathcal{A} . Note that, by identifying each $\omega \in \Omega$ with the point evaluation map $\lambda_\omega : \mathcal{A} \to \mathbf{C}$ defined by $\lambda_\omega(f) = f(\omega)$, we can consider Ω as a subset of \mathcal{M} . In this argument, we are using the Gelfand topology on \mathcal{M} . The set $\mathcal{M} \setminus \overline{\Omega}$ is called the corona. And the corona theorem says that $\mathcal{M} \setminus \overline{\Omega}$ is an empty set.

2. Main Theorem

In this section, we are going to prove the corona theorem for the algebra $H^{\infty}(\mathbf{D}) \cap D(\mathbf{D})$.

THEOREM. Suppose $f_1, f_2, ..., f_n$ are functions in $H^{\infty}(\mathbf{D}) \cap D(\mathbf{D})$ such that $\max_{1 \leq i \leq n} |f_i(z)| \geq \delta > 0$ for all $z \in \mathbf{D}$. Then there exists a constant $C = C(n, \delta)$ and $g_1, g_2, ..., g_n \in H^{\infty}(\mathbf{D}) \cap D(\mathbf{D})$ such that

(1)
$$f_1g_1 + f_2g_2 + \dots + f_ng_n = 1$$

and $||g_i|| \le C$ for all i = 1, 2, ..., n.

Proof. By a normal family argument, we may assume that the corona data $f_1, f_2, ..., f_n \in H^{\infty}(\mathbf{D}) \cap D(\mathbf{D})$ are analytic on a neighbourhood of the closed unit disk $\overline{\mathbf{D}}$. So we can also assume that

 $||f_i|| \leq 1$ for all i = 1, 2, ..., n. It is clear that

(2)
$$\varphi_i(z) = \frac{\overline{f_i(z)}}{\sum_{j=1}^n |f_j(z)|^2}, \quad i = 1, 2, ..., n$$

are non-analytic solutions of (1). Let $g_i = \varphi_i + \sum_{j=1}^n (b_{i,j} - b_{j,i}) f_j$ where $b_{i,j}$ satisfies $\bar{\partial} b_{i,j} = \varphi_j \bar{\partial} \varphi_j$. Then it is easy to check that $\bar{\partial} g_i = 0$ and $g_1, g_2, ..., g_n$ satisfies (1) except the norm conditions. Here we are using the following notations:

We will also use $||f||_{D(\mathbf{D})}^2$ to denote $\int_{\mathbf{D}} |\nabla f|^2 dA$ for a non-analytic function f. Let $1 \leq j, k \leq n$. As in the case of $H^{\infty}(\mathbf{D})$ (see, for example, [3, Chapter 8]), our problem is equivalent to finding a function $b_{j,k}$ on \mathbf{D} such that

$$\bar{\partial}b_{j,k} = \varphi_j \bar{\partial}\varphi_k$$

in **D** where φ_j , φ_k are as in (2) and $||b_{j,k}|| = ||b_{j,k}||_{\infty} + ||b_{j,k}||_{D(\mathbf{D})} \leq C$ for some constant C depending only on δ and n. Let's use b and g instead of $b_{j,k}$ and $\varphi_j \bar{\partial} \varphi_k$. Then (4) becomes

(5)
$$\bar{\partial}b = g$$
.

We are looking for b satisfying $||b|| \le C$ for some constant depending only on δ and n. Direct calculation shows that (as in [3, page 326])

(6)
$$|g(z)|^2 \le \frac{4}{\delta^6} \sum_{i=1}^n |f_i'(z)|^2.$$

In order to find a solution of (5) with $||b||_{\infty} < C_1(n, \delta)$, it is enough to show that |g(z)|dA(z) is a Carleson measure (see [3, page 320]). Let $Q = Q_{\theta,h} = \{z \in \mathbf{D} : |z| \ge 1 - h \text{ and } \theta - h \le Arg z \le \theta + h\}$ for 0 < h < 1. From (6), we have

$$\int_{Q}|g(z)|dA(z) \leq \left(\int_{\mathbf{D}}|g(z)|^{2}dA(z)\right)^{rac{1}{2}} (ext{Area} \ \ Q)^{rac{1}{2}} \leq rac{2\sqrt{2}}{\delta^{3}}\sqrt{n}\,h = C_{2}(n,\delta)h.$$

Hence |g(z)|dA(z) is a Carleson measure and so, by [3, Theorem 1.1],

(7)
$$\inf\{\|\psi\|_{\infty}: \bar{\partial}\psi = g\} \le A_1 C_2(n, \delta)$$

for some absolute constant A_1 . Now let

$$H_0(z) = \frac{1}{\pi} \int_{\mathbf{D}} \frac{g(\xi)}{z - \xi} dA(\xi).$$

Then

$$\bar{\partial}H_0 = g$$

in **D** (see, for example, [5, page 364]). Hence, by (6),

(9)
$$\int_{\mathbf{D}} |\bar{\partial} H_0|^2 dA \le \frac{4n}{\delta^6}.$$

Furthermore ∂H_0 is the Beurling transform of g. And so, as in ([1], page 411),

$$\int_{\mathbf{D}} |\partial H_0|^2 dA \le A_2 \int_{\mathbf{D}} |g(z)|^2 dA(z)$$

for some absolute constant A_2 . Hence, by (6),

$$\int_{\mathcal{D}} |\partial H_0|^2 \le A_2 \frac{4n}{\delta^6}.$$

Combining this inequality with (4), and (9), we have

(10)
$$||H_0||_{D(\mathbf{D})}^2 = \int_{\mathbf{D}} |\nabla H_0|^2 dA \le C_3(n,\delta).$$

For $f \in L^2(\partial \mathbf{D})$, let

$$\|f\|_{B(\partial \mathbf{D})}^2 = \int_{-\pi}^{\pi} rac{1}{h^2} \int_{-\pi}^{\pi} |f(e^{i(s+h)}) - f(e^{is})|^2 ds dh.$$

Then it is well known (see [6, page 152]) that there exists an absolute constant A_3 such that

(11)
$$\frac{1}{A_3} \int_{\mathbf{D}} |\nabla u|^2 dA(z) \le ||f||_{B(\partial \mathbf{D})}^2 \le A_3 \int_{\mathbf{D}} |\nabla u|^2 dA(z),$$

where u is the Poisson integral of $f \in L^2(\partial \mathbf{D})$. By (10), we see that $|\nabla H_0(z)| dA(z)$ is a Carleson measure and so, by [7, Theorem 1.1.2], $||H_0||_{BMO} \leq C_4$. Here BMO is the set of all functions in $L^2(\partial \mathbf{D})$ which have bounded mean oscillations. Hence $H_0 \in L^2(\partial \mathbf{D})$. Now (10) and (11) implies that

$$||H_0||_{B(\partial \mathbf{D})} \le C_5(n,\delta).$$

We know that every solutions of (5) is of the form $b(z) = H_0(z) + h(z)$ where h(z) is in the Disk algebra $A(\mathbf{D})$ (see,for example, [3, page 321]). Let H^2 be the Hardy space. Let's use BMOA(\mathbf{D}) for the set of functions which are obtained from harmonic extensions of all functions in BMOA = BMO $\cap H^2$. Since $A(\mathbf{D}) \subset BMOA(\mathbf{D})$, the above argument implies that

(13)
$$\inf\{\|H_0 - F\|_{\infty} : F \in BMOA(\mathbf{D})\}$$

$$\leq \inf\{\|\psi\|_{\infty} : \bar{\partial}\psi = g\} \leq A_1C_2(n, \delta)$$

by (7). Peller and Hruscev proved that there exists an unique $F_0 \in BMOA(\mathbf{D})$ satisfying

(14)
$$||H_0 - F_0||_{\infty} = \inf\{||H_0 - F_0||_{\infty} : F \in BMOA(\mathbf{D})\}$$

and furthermore

(15)
$$||F_0||_{B(\partial \mathbf{D})} \le A_4 ||H_0||_{B(\partial \mathbf{D})}$$

for some constant A_4 (see [4], page 103). Hence, by (11), (12), and (15), we have

$$(16) \quad ||F_0||_{D(\mathbf{D})} = \left(\int_{\mathbf{D}} |\nabla F_0|^2 dA\right)^{\frac{1}{2}} \le \sqrt{A_3} ||F_0||_{B(\partial \mathbf{D})} \le C_6(n, \delta).$$

Combining (10), and (16), we have

(17)
$$||H_0 - F_0||_{D(\mathbf{D})} \le C_7(n, \delta).$$

Finally, combining (13), (14), and (17), we have

$$||H_0 - F_0|| \le C(n, \delta).$$

Since $\bar{\partial}(H_0 - F_0) = g$ in **D**, we complete the proof of our theorem. \Box

References

- 1. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequality and related topics, North Holland, 1985.
- 2. L. Carleson, Interpolations by bounded analytic functions and the corona theorem, Ann. Math 76 (1962), 547-559.
- 3. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- 4. S. V. Hruscev and V. V. Peller, Hankel operators best approximations, and stationary Gaussian process, Russian Math. Surveys 37 (1982).
- P. Koosis, Introduction to H_p spaces, London Mathematical Society Lecture Notes Series 40, Cambridge University Press, 1980.
- 6. E. M. Stein, Singular integrals and differentiability prorerties of functions, Princeton University press, 1970.
- 7. N. T. Varopoulos, BMO functions and the $\bar{\partial}$ equation, Pacific J. Math. **71** (1977), 221–273.

YOUNG-CHAE NAH
DEPARTMENT OF MATHEMATICS
MOKWON UNIVERSITY
TAEJON 301-729, KOREA

E-mail: ycnah@mwus.mokwon.ac.kr