JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 10, August 1997

ON δ -**FRAMES**

SEUNG ON LEE, SEOK JONG LEE AND EUN AI CHOI

ABSTRACT. In this paper, we introduce a new class of δ -frames and study its properties. To do so, we introduce δ -filters, almost Lindelöf frames and Lindelöf frames. First, we show that a complete chain or a complete Boolean algebra is a δ -frame. Next, we show that a δ -frame L is almost Lindelöf iff for any δ -filter F in L, $\vee \{x^* : x \in F\} \neq e$. Last, we show that every regular Lindelöf δ -frame is normal and a Lindelöf δ -frame is preserved under a δ -isomorphism which is dense and codense.

1. Introduction

It is well known that the open set lattice $\Omega(X) = \{G : G \text{ is an open subset of } X\}$, where X is a topological space, is a frame([7]). In $\Omega(X)$, there is no point of X but open sets, so we call the frame $\Omega(X)$ a pointfree topology. The purpose to write this paper is to introduce another class of frames, namely δ -frames, which is a special type of a frame, and study its basic properties. In section 2, 3, we deal with δ -frames, as Lindelöf spaces to compact spaces, instead of frames. We introduce a concept of δ -frames in which the distributivity holds for arbitrary joins and countable meets. In general, $\Omega(X)$ is a frame but not a δ -frame. But a complete chain or a Boolean algebra is a δ -frame. In a frame L, cov(L) is a filter but need not be a δ -filter. But in a δ -frame L, cov(L) is a δ -filter. We define δ -homomorphism and δ -isomorphism, and using these concepts, we show that a Lindelöf δ -frame is preserved under a δ -isomorphism which is dense and codense.

Received by the editors on June 27, 1997.

¹⁹⁹¹ Mathematics Subject Classifications: Primary 06D 54A99 54D99.

Key words and phrases: δ frame, δ filter, Boolian algebra.

SEUNG ON LEE, SEOK JONG LEE AND EUN AI CHOI

In this paper, a partially ordered set is also called a poset. The usual order relation \leq on the set R of real numbers is a partial order. It is the model of partial orders and thus it is customary to denote any partial order on any set by \leq . In this paper, \geq is defined by $a \geq b$ iff $b \le a$; < is defined by a < b iff $a \le b$ and $a \ne b$. If \le is a partial order on L, the smallest (largest, resp.) element of L, if it exists, is the element 0 (e, resp.) such that $0 \le x$ ($x \le e$, resp.) for each $x \in L$. Smallest (largest, resp.) elements are unique when they exist, by antisymmetry. We call 0 (e, resp.) as the bottom (top, resp.) element of L. Given a poset (L, \leq) and a subset A of L, A is called bounded above (bounded below, resp.) if the set $\{x \in L : a \leq x \text{ for each } a \in A\}$ of upper bounds of A (the set $\{x \in L : x \leq a \text{ for each } a \in A\}$ of lower bounds of A, resp.) is non-empty; the least upper bound of A (written lub(A) or $\lor A$) is the smallest element of the set of upper bounds of A. It may or may not belong to A. When it exists, it is unique. The greatest lower bound of A (written glb(A) or $\wedge A$) is similarly defined. If $A = \{x, y\}$, then lub(A) is denoted by $x \lor y$ and glb(A) is denoted by $x \wedge y$. If (L, \leq) has both the top element e and the bottom element 0, then $lub(\emptyset) = 0$ and $glb(\emptyset) = e$. From now on, we denote a poset (L, \leq) simply as L.

DEFINITION 1.1.

- (1) A poset L is called a *lattice* if every finite subset of L has a least upper bound and a greatest lower bound.
- (2) A lattice L is called *complete* if every subset A of L has the least upper bound and the greatest lower bound.

PROPOSITION 1.2. Let L be a lattice. Then the followings are equivalent:

- (1) Every subset of L has the least upper bound.
- (2) Every subset of L has the greatest lower bound.

Proof. See reference [1], [2], [7].

DEFINITION 1.3.

(1) A lattice L is called *distributive* if for any $x, y, z \in L$,

$$x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z),$$

or equivalently,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

- (2) Let L be a lattice and $x \in L$. If $x \lor y = e$ and $x \land y = 0$, then y is called a *complement* of x.
- (3) If L is a distributive lattice, then every element x of L has at most one complement. If x has the complement, then the complement of x is denoted by x'.
- (4) A distributive lattice is called a *Boolean algebra* if every element has a complement.

DEFINITION 1.4. A complete lattice L is called a *frame* (or *complete Heyting algebra*) if for any $a \in L$ and $S \subseteq L$, $a \land (\lor S) = \lor \{ a \land s : s \in S \}$.

EXAMPLE 1.5. Let X be a set and $\Omega(X)$ is a topology on X, then $(\Omega(X), \leq)$ is a frame, where $A \leq B$ iff $A \subseteq B$ for $A, B \in \Omega(X)$.

DEFINITION 1.6. Let L be a frame.

- (1) For A, $B \subseteq L$, A refines B if for any $a \in A$, there is $b \in B$ with $a \leq b$, and denoted by $A \leq B$.
- (2) For a, b ∈ L, a is well inside b if there is c ∈ L with a ∧ c = 0 and c∨b = e, and denoted by a ≺ b. Equivalently, a ≺ b ⇔ a* ∨ b = e, where a* = ∨{x ∈ L : a ∧ x = 0} is the pseudo complement of a.

45

- (3) For $A \subseteq L$, A is called a *cover* of L if $\forall A = e$. For a frame L, the set of all covers of L is denoted by cov(L).
- (4) L is called *regular* if for any $x \in L, x = \lor \{a \in L : a \prec x\}$.
- (5) L is called *normal* if for $a \lor b = e$, there are $u, v \in L$ with $a \lor u = e = b \lor v$ and $u \land v = 0$.

REMARK 1.7. Let L be a frame and $a, b \in L$. Then we have:

- (1) $a \wedge a^* = 0$, but $a \vee a^* \neq e$ in general. In $\Omega(X) A^* = int(A^c)$ for any $A \in \Omega(X)$, where $int(A^c)$ is the interior of X - A. So $A \vee A^* = A \cup int(A^c) \neq X$ unless A is a clopen subset of X.
- (2) If $a \lor a^* = e$, then L is a Boolean Lattice. That is, $a^* = a'([3])$.
- (3) $a \le a^{**}$, because $a \land a^* = 0$.
- (4) $(a \lor b)^* = a^* \land b^*([3]).$
- (5) $(a \wedge b)^* \neq a^* \vee b^*$ in general. Consider the open set lattice

$$\Omega(X) = \{X, \{t, u\}, \{t\}, \{u\}, \emptyset\},\$$

where $X = \{t, u, v\}$. In this case,

$$(a \wedge b)^* = 0^* = e,$$

but

$$a^* \vee b^* = b \vee a = c,$$

where e = X, $a = \{t\}$, $b = \{u\}$, $c = \{t, u\}$, and $0 = \emptyset$.

(6) (cov(L), ≤) is a quasi-ordered set. And for A, B ∈ cov(L), the greatest lower bound of A and B is of the form {a ∧ b : a ∈ A, b ∈ B}. That is,

$$A \wedge B = \{a \wedge b : a \in A, b \in B\}.$$

DEFINITION 1.8. Let L and M be frames. A map $f: L \longrightarrow M$ is called a *frame homomorphism* if f preserves finite meets and arbitrary joins. That is,

- (1) $f(\lor S) = \lor f(S)$ for any $S \subseteq L$.
- (2) $f(\wedge F) = \wedge f(F)$ for any $F \in Fin(L)$, where $Fin(L) = \{A \subseteq L : A \text{ is a finite subset of } L\}.$

DEFINITION 1.9.([6]) Let L be a complete lattice and $F \subseteq L$. Then we say that F is a filter (δ -filter, resp.) on L if F satisfies the followings:

- (1) F does not contain 0.
- (2) $F = \uparrow F = \{x \in L : a \leq x \text{ for some } a \in F\}$. That is, $a \in F$ and $b \geq a$ implies $b \in F$.
- (3) For any finite (countable, resp.) subset K of $F, \land K \in F$.

Remark 1.10.

- (1) Let F be a filter on a complete lattice L, then $e \in F$ since $\wedge \emptyset = e$; and hence $F \neq \emptyset$.
- (2) Every δ-filter is a filter, but a filter need not be a δ-filter. In fact, on the open set lattice U(R) with the usual topology on R, the neighborhood system N_A = {M : M is an open neighborhood of A} is not a δ-filter but a filter on U(R), where A = {0}. Because int(∩{(-1/n, 1/n) : n ∈ N}) = Ø is not in N_A.
- (3) In a complete chain $\{1/n : n \in N\} \cup \{0\}, F = \{1/n : n \in N\}$ is a filter but not a δ -filter, because $\wedge \{1/n : n \in N\} = 0$ is not in F.
- (4) $F = \{x \in L : a \le x \text{ and } a \ne 0\}$ is a δ -filter on a complete lattice L, and denoted by F = [a] for some $a \in L$.

DEFINITION 1.11.([5]) A filter F in a frame L is said to be *clustered* if for any cover S of L, $secF \cap S \neq \emptyset$, where $secF = \{a \in L :$ for any $a \in F, a \land x \neq 0\}$.

PROPOSITION 1.12. A filter F in a frame L is clustered if and only if $\forall \{x^* : x \in F\} \neq e$.

Proof. See reference [5].

2. δ -Frames

DEFINITION 2.1. A frame L is called a δ -frame if for any $a \in L$ and countable $K \subseteq L$,

$$a \lor (\land K) = \land \{ a \lor k : k \in K \}.$$

NOTATION 2.2. For a δ -frame L, we denote as follows:

$$Fcov(L) = \{A \in cov(L) : \text{there is a finite cover } B \}$$

with $B \leq A$,

 $Ccov(L) = \{A \in cov(L) : \text{there is a countable cover } B$

with $B \leq A$,

 $Count(L) = \{A \in L : A \text{ is a countable subset of } L\}.$

Remark 2.3

- (1) In a complete lattice $L, a \lor (\land K) \le \land \{a \lor k : k \in K\}$ holds for any $K \subseteq L$ and $a \in L$, because $a \le a \lor k$ for all $k \in K$ implies $\land K \le \land \{a \lor k : k \in K\}$, hence $a \lor (\land K) \le \land \{a \lor k : k \in K\}$.
- (2) Every complete chain L is a δ -frame, because for any $a \in L$ and $K \in Count(L)$,

(i) if $a \le k$ for all $k \in K$, then $a \le \wedge K$, hence $a \lor (\wedge K) = \wedge K = \wedge \{a \lor k : k \in K\}$

(ii) if there is $k_0 \in K$ with $k_0 \leq a$, then $\wedge K \leq k_0 \leq a$, hence $a \lor (\wedge K) = a = a \lor k_0 \geq \wedge \{a \lor k : k \in K\}$

Thus by i), ii) and (1), L is a δ -frame.

(3) Every complete Boolean algebra is a δ -frame; hence the frame of regular open subsets of R is a δ -frame. To show this, let L be a complete Boolean algebra. Then for $a \in L$ and $K = \{x_i : i \in I, I \text{ is a countable set}\} \in Count(L),$

$$egin{aligned} x_i &= 0 \lor x_i \ &= (a \land a') \lor x_i \ &= (a \lor x_i) \land (a' \lor x_i), \end{aligned}$$

hence

$$egin{array}{lll} \wedge K &= \wedge \{(a ee x_i) \wedge (a' ee x_i) : x_i \in K \} \ &= (\wedge \{a ee x_i : x_i \in K \}) \wedge (\wedge \{a' ee x_i : x_i \in K \}), \end{array}$$

and hence

$$egin{array}{l} aee(\wedge K)=&[aee(\wedge\{aee x_i:x_i\in K\})]\ &\wedge [aee(\wedge\{a'ee x_i:x_i\in K\})]\ &=&[aee(\wedge\{aee x_i:x_i\in K\})]\wedge e\ &\geq \wedge\,\{aee x_i:x_i\in K\}. \end{array}$$

REMARK 2.4. Every δ -frame is a frame, but a frame need not be a δ -frame. In fact, the open set lattice $C_f(N)$, where $C_f(N)$ is the cofinite topology on the set of natural numbers N, is not a δ -frame but a frame. Because for $K = \{N - \{m\} : m \text{ is a positive odd integer}\}$ and $a = N - \{2\}$,

$$a = a \lor (\land K) \neq \land \{a \lor k : k \in K\} = e,$$

where $\wedge K = int(\cap K)$ and $\forall K = \bigcup K$. But the open set lattice D(N) is a δ -frame, where D(N) is the discrete topology on N. If X is finite, then the open set lattice $\Omega(X)$ with any topology on X is a δ -frame.

REMARK 2.5. Let L be a δ -frame. For $A_n \subseteq L$ and any $n \in N$, let $B = \{a_1 \land \cdots \land a_n \land \cdots : a_n \in A_n \text{ for each } n \in N\}$. Then we have:

- (1) $\forall B = (\forall A_1) \land (\forall A_2) \land \cdots \land (\forall A_n) \land \cdots$.
- (2) For any A_n ∈ cov(L), B is the greatest lower bound of A_n for each n ∈ N in (cov(L), ≤). That is,

$$\wedge_{n\in N}A_n = \{a_1 \wedge \cdots \wedge a_n \wedge \cdots : a_n \in A_n \text{ for each } n \in N\}.$$

Proof. (1) Since L is a δ -frame, L is distributive under a countable meets and arbitrary joins, hence

$$egin{array}{ll} ⅇ \left\{a_1\wedge\cdots\wedge a_n\wedge\cdots\,:a_n\in A_n ext{ for each } n\in N
ight\} \ &=\wedge\{ee A_1,\cdots,ee A_n,\cdots
ight\} \ &=(ee A_1)\wedge\cdots\wedge(ee A_n)\wedge\cdots. \end{array}$$

(2) Note that B is a cover of L, because

$$\forall (B) = \forall \{a_1 \land \dots \land a_n \land \dots : a_n \in A_n, n \in N\}$$
$$= (\forall A_1) \land \dots \land (\forall A_n) \land \dots$$
$$= e.$$

Clearly $B \leq A_n$ for any $n \in N$. Suppose there is C with $C \leq A_n$ for any $n \in N$. Then there is $c \in C$ with $c \leq a_n$ for some $a_n \in A_n$ for each $n \in N$. Hence

 $c \leq a_1 \wedge \cdots \wedge a_n \wedge \cdots$ for some $a_n \in A_n, \ n \in N.$

Thus $C \leq B$.

PROPOSITION 2.6. Let L be a δ -frame. Then cov(L), Fcov(L), and Ccov(L) are δ -filters.

Proof. By the above Remark 2.5, it is trivial.

3. Almost Lindelöf δ -frames and Lindelöf δ -frames

Whenever C is a cover of L, $C - \{0\}$ is also a cover of L. So we will assume that C does not contain 0.

DEFINITION 3.1. Let L be a frame, then we say:

- (1) L is said to be almost Lindelöf if for any $C \in cov(L)$, there is $K \in Count(C)$ with $(\vee K)^* = 0$.
- (2) L is said to be Lindelöf if for any $C \in cov(L)$, there is $K \in Count(C)$ with $\forall K = e$.

REMARK 3.2. In a δ -frame L and for any $K \in Count(L)$, we have:

- (1) Every compact frame is Lindelöf. But the open set lattice $C_c(N)$ of the cofinite topology on N is a Lindelöf frame but not a compact frame.
- (2) $(\lor K)^* = \land \{a^* : a \in K\}$. Because

$$egin{array}{lll} (ee K)\wedge (\wedge \{a^*:a\in K\}) \ &= ee \{a\wedge (\wedge \{a^*:a\in K\}):a\in K\} \ &\leq ee \{a\wedge a^*:a\in K\} \ &= 0 \end{array}$$

and for $y \in L$ with $(\lor K) \land y = 0$,

$$(\lor K) \land y = \lor \{a \land y : a \in K\} = 0.$$

Then $a \wedge y = 0$ for all $a \in K$, and then $y \leq a^*$ for all $a \in K$, hence $y \leq \wedge \{a^* : a \in K\}$.

(3) $(\wedge K)^* \neq \vee \{a^* : a \in K\}$ in general, see Remark 1.7.(5).

In a frame L, L is almost compact if and only if for any filter F in $L, \forall \{x^* : x \in F\} \neq e$ ([4],[8]). In a δ -frame L, we get a similar result as following :

THEOREM 3.3. Let L be a δ -frame, then the followings are equivalent:

- (1) L is almost Lindelöf.
- (2) For any δ -filter F in L, $\forall \{x^* : x \in F\} \neq e$.

Proof. (1) \Rightarrow (2) Suppose on the contrary that there is a δ -filter F in L with $\vee \{x^* : x \in F\} = e$. So there is $K \in Count(F)$ with $(\vee \{y^* : y \in K\})^* = 0$. Note that $(\vee K)^* = \wedge \{x^* : x \in K\}$ by the above Remark 3.2.(2). So

$$(arphi\{y^*:y\in K\})^* = \wedge\{y^{**}:y\in K\} = 0.$$

Note that $x \wedge x^* = 0$ implies $x \leq x^{**}$. Then

 $\wedge \{y: y \in K\} \le \wedge \{y^{**}: y \in K\} = 0 \text{ implies } \wedge \{y: y \in K\} = 0,$

which contradicts to the fact that δ -filter F does not contain 0. (2) \Rightarrow (1) Suppose on the contrary that there is $C \subseteq L$ such that $\forall C = e$, but for any countable $K \subseteq C$,

$$(\lor K)^* = \land \{x^* : x \in K\} \neq 0.$$

Let $U = \{y \in L : \text{there is a countable } K \text{ in } C \text{ with } \land \{x^* : x \in K\} \le y\}$. Then we have the followings:

- (i) If $0 \in U$, then there is a $K \in Count(C)$ with $\wedge \{x^* : x \in K\} \leq 0$. Hence $\wedge \{x^* : x \in K\} = 0$, which is a contradiction.
- (ii) Let $y \in U$ and $z \ge y$, then there is a $K \in Count(C)$ with $\wedge \{x^* : x \in K\} \le y \le z$ and then there is a $K \in Count(C)$ with $\wedge \{x^* : x \in K\} \le z$. Thus $z \in U$; hence $U = \uparrow U$.
- (iii) Let $P = \{y_n : n \in N\} \in Count(U)$, then there is a $K_n \in Count(C)$ with $\wedge \{x^* : x \in K_n\} \leq y_n$ for each $n \in N$.

Let $K = \bigcup \{K_n : n \in N\}$, then $K \in Count(C)$ and

$$\wedge \{x^*: x \in K\} \leq \wedge \{x^*: x \in K_n\} \leq y_n$$

for each $n \in N$. Thus

$$\wedge \{x^*: x \in K_n\} \leq \wedge \{y_n: n \in N\} = \wedge P,$$

hence $\wedge P \in U$. By (i), (ii) and (iii) U is a δ -filter in L, hence

$$\vee \{y^* : y \in U\} \neq e.$$

Since $\{x^*: x \in C\} \subseteq U$, we have

$$e = \lor C \le \lor \{x^{**} : x \in C\} \le \lor \{y^* : y \in U\}.$$

Thus $\forall \{y^* : y \in U\} = e$, which is again a contradiction.

THEOREM 3.4. Every regular Lindelöf δ -frame is normal.

Proof. Let L be a regular Lindelöf δ -frame and $a \vee b = e$. Then

$$a = orall \{x \in L : x \prec a\},$$

 $b = orall \{y \in L : y \prec b\}$

and then

$$e = a \lor b = (\lor \{x \in L : x \prec a\}) \lor (\lor \{y \in L : y \prec b\}).$$

Since L is Lindelöf δ - frame, there are countable cover $\{x_i : i \in I\}$ and countable cover $\{y_k : k \in I\}$ such that $x_i \prec a$ for any $i \in I$, $y_k \prec b$ for any $k \in I$, and $(\lor \{x_i : i \in I\}) \lor (\{y_k : k \in I\}) = e$. Then $x_i^* \lor a = e$ for any $i \in I$ and $y_k^* \lor b = e$ for any $k \in I$. Hence

$$(\wedge \{x_i^*: i \in I\}) \lor a = \wedge \{x_i^* \lor a: i \in I\} = e, \ (\wedge \{y_k^*: k \in I\}) \lor b = \wedge \{y_k^* \lor b: k \in I\} = e.$$

Moreover,

$$(\wedge \{x_i^* : i \in I\}) \wedge (\wedge \{y_k^* : k \in I\}) = (\vee \{x_i : i \in I\})^* \wedge (\vee \{y_k : k \in I\})^* = [(\vee \{x_i : i \in I\}) \vee (\{y_k : k \in I\})]^* = e^* = 0.$$

Thus L is normal.

PROPOSITION 3.7. A δ -filter F in a frame L is clustered if and only if $\forall \{x^* : x \in F\} \neq e$.

Proof. By Proposition 1.12, it is trivial.

COROLLARY 3.8. For a δ -frame L, the followings are equivalent:

- (1) L is almost Lindelöf.
- (2) Every δ -filter in L is clustered.

DEFINITION 3.9. Let L and M be δ -frames and $f: L \to M$ a map.

- (1) f is called a δ -homomorphism if f preserve arbitrary joins and countable meets.
- (2) A δ -homomorphism f is called *dense* if f(x) = 0 implies x = 0.
- (3) A δ -homomorphism f is called *codense* if f(x) = e implies x = e.
- (4) A δ -homomorphism f is called a δ -isomorphism if f is a bijection.

PROPOSITION 3.10. Let L and M be δ -frames and $f: L \to M$ a δ -homomorphism, then we have:

- (1) f(0) = 0.
- (2) f(e) = e.
- (3) If f is dense, then $f(a)^* \ge f(a^*)$ for all $a \in L$.

54

In particular, $f(a)^* = f(a^*)$ if f is onto dense.

Proof. (1) $f(0) = f(\lor \emptyset) = \lor f(\emptyset) = \lor \emptyset = 0.$ (2) $f(e) = f(\land \emptyset) = \land f(\emptyset) = \land \emptyset = e.$

(3) If f is dense, then

$$egin{aligned} f(a)^* &= ee \{m \in M: m \wedge f(a) = 0\} \ &\geq ee \{f(b) \in M: f(b) \wedge f(a) = 0\} \cdots (*) \ &= ee \{f(b) \in M: f(b \wedge a) = 0\} \ &= ee \{f(b) \in M: b \wedge a = 0\}, ext{ since } f ext{ is dense} \ &= f(ee \{b \in L: b \wedge a = 0\} \ &= f(a^*). \end{aligned}$$

If f is onto, then the inequality (*) becomes equality.

THEOREM 3.11. Let L and M be δ -frames and $f: L \to M$ is a dense δ -homomorphism.

- (1) If M is almost Lindelöf, then so is L.
- (2) If f is onto and codense, then M is almost Lindelöf if L is almost Lindelöf.

Proof. (1) Take any $S \in cov(L)$, then $\forall S = e$, hence

$$f(e)=e=f(\vee S)=\vee f(S)=\vee \{f(s):s\in S\}$$

and since M is almost Lindelöf, $f(S) \in cov(M)$ implies there is a $K \in Count(S)$ with $(\lor f(K))^* = 0$. Then

$$egin{aligned} (ee \{f(s):s\in K\})^* &= \wedge \{f(s)^*:s\in K\} \ &\geq \wedge \{f(s^*):s\in K\} \ &= f(\wedge \{s^*:s\in K\}) \ &= 0, \end{aligned}$$

hence $\wedge \{s^* : s \in K\} = 0$, since f is dense. Thus $(\vee K)^* = \wedge \{s^* : s \in K\} = 0$, hence L is almost Lindelöf.

(2) Take any $T \in cov(M)$, then there is an $S \subseteq L$ with f(S) = T since f is onto, hence $e = \lor T = \lor f(S) = f(\lor S)$ implies $\lor S = e$, since f is codense. So, there is $K \in Count(S)$ with $(\lor K)^* = 0$. Consider $(\lor K)^* = \land \{k^* : k \in K\}$ and $f(K) \in Count(T)$, let W = f(K), then

$$(\lor W)^* = (\lor f(K))^* = \land \{f(k)^* : k \in K\}$$

= $f(\land \{k^* : k \in K\})$
= $f(0) = 0.$

COROLLARY 3.12. Let L and M be δ -frames and let $f : L \to M$ be a δ -isomorphism which is dense and codense. Then L is Lindelöf if and only if M is Lindelöf.

References

- 1. R. Balbes and Ph. Dwinger, *Distributive Lattices*, University of Missouri Press, Columbia, 1974.
- 2. G. Birkhoff, *Lattice Theory*, Amer. Math. Soc. Colloq. Publ. 3rd ed., 1967 Providence.
- 3. A. Heyting, *Die formalen Regeln der intuitionistischen Logik*, Sitzungsberichte der Preussichen Akademie der Wissenschaften, phys. Mathem. Klasse (1930), 42-56.
- S. S. Hong, Simple extensions of frames, Proc. Recent Devel. of Gen. Top. and its Appl., Math. Research, Akademia Verlag, Berlin 67 (1992), 156-159.
- 5. S. S. Hong, Convergence in Frames, Kyungpook Math. J. 35 (1995), 85-91.
- 6. B. S. In, A study on σ -ideals and σ -frames, Doctorate thesis, Korea University (1987), 22-24.
- 7. P. T. Johnstone, Stone Space, Cambridge University Press, Cambridge, 1982.
- J. Paseka and B. Smarda, T₂-frames and almost compact frames, Czech. Math. J. 42 (1992), 385-402.

DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU 361-763, KOREA