ON δ-FRAMES

Seung On Lee, Seok Jong Lee and Eun Ai Choi

Abstract

In this paper, we introduce a new class of δ-frames and study its properties. To do so, we introduce δ-filters, almost Lindelöf frames and Lindelöf frames. First, we show that a complete chain or a complete Boolean algebra is a δ-frame. Next, we show that a δ-frame L is almost Lindelöf iff for any δ-filter F in $L, \vee\left\{x^{*}: x \in F\right\} \neq e$. Last, we show that every regular Lindelöf δ-frame is normal and a Lindelöf δ-frame is preserved under a δ-isomorphism which is dense and codense.

1. Introduction

It is well known that the open set lattice $\Omega(X)=\{G: G$ is an open subset of $X\}$, where X is a topological space, is a frame $([7])$. In $\Omega(X)$, there is no point of X but open sets, so we call the frame $\Omega(X)$ a pointfree topology. The purpose to write this paper is to introduce another class of frames, namely δ-frames, which is a special type of a frame, and study its basic properties. In section 2 , 3 , we deal with δ-frames, as Lindelöf spaces to compact spaces, instead of frames. We introduce a concept of δ-frames in which the distributivity holds for arbitrary joins and countable meets. In general, $\Omega(X)$ is a frame but not a δ-frame. But a complete chain or a Boolean algebra is a δ frame. In a frame $L, \operatorname{cov}(L)$ is a filter but need not be a δ-filter. But in a δ-frame $L, \operatorname{cov}(L)$ is a δ-filter. We define δ-homomorphism and δ-isomorphism, and using these concepts, we show that a Lindelöf δ frame is preserved under a δ-isomorphism which is dense and codense.

Received by the editors on June 27, 1997.
1991 Mathematics Subject Classifications: Primary 06D 54A99 54D99.
Key words and phrases: δ frame, δ filter, Boolian algebra.

In this paper, a partially ordered set is also called a poset. The usual order relation \leq on the set R of real numbers is a partial order. It is the model of partial orders and thus it is customary to denote any partial order on any set by \leq. In this paper, \geq is defined by $a \geq b$ iff $b \leq a ;<$ is defined by $a<b$ iff $a \leq b$ and $a \neq b$. If \leq is a partial order on L, the smallest (largest, resp.) element of L, if it exists, is the element 0 (e, resp.) such that $0 \leq x(x \leq e$, resp.) for each $x \in L$. Smallest (largest, resp.) elements are unique when they exist, by antisymmetry. We call 0 (e, resp.) as the bottom (top, resp.) element of L. Given a poset (L, \leq) and a subset A of L, A is called bounded above (bounded below, resp.) if the set $\{x \in L: a \leq x$ for each $a \in A\}$ of upper bounds of A (the set $\{x \in L: x \leq a$ for each $a \in A\}$ of lower bounds of A, resp.) is non-empty; the least upper bound of A (written $l u b(A)$ or $\vee A)$ is the smallest element of the set of upper bounds of A. It may or may not belong to A. When it exists, it is unique. The greatest lower bound of A (written $g l b(A)$ or $\wedge A)$ is similarly defined. If $A=\{x, y\}$, then $\operatorname{lub}(A)$ is denoted by $x \vee y$ and $g l b(A)$ is denoted by $x \wedge y$. If (L, \leq) has both the top element e and the bottom element 0 , then $\operatorname{lub}(\emptyset)=0$ and $g l b(\emptyset)=e$. From now on, we denote a poset (L, \leq) simply as L.

DEFINITION 1.1.

(1) A poset L is called a lattice if every finite subset of L has a least upper bound and a greatest lower bound.
(2) A lattice L is called complete if every subset A of L has the least upper bound and the greatest lower bound.

Proposition 1.2. Let L be a lattice. Then the followings are equivalent:
(1) Every subset of L has the least upper bound.
(2) Every subset of L has the greatest lower bound.

Proof. See reference [1],[2],[7].

Definition 1.3.

(1) A lattice L is called distributive if for any $x, y, z \in L$,

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

or equivalently,

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) .
$$

(2) Let L be a lattice and $x \in L$. If $x \vee y=e$ and $x \wedge y=0$, then y is called a complement of x.
(3) If L is a distributive lattice, then every element x of L has at most one complement. If x has the complement, then the complement of x is denoted by x^{\prime}.
(4) A distributive lattice is called a Boolean algebra if every element has a complement.

Definition 1.4. A complete lattice L is called a frame (or complete Heyting algebra) if for any $a \in L$ and $S \subseteq L, a \wedge(\vee S)=\vee\{a \wedge s:$ $s \in S\}$.

Example 1.5. Let X be a set and $\Omega(X)$ is a topology on X, then $(\Omega(X), \leq)$ is a frame, where $A \leq B$ iff $A \subseteq B$ for $A, B \in \Omega(X)$.

Definition 1.6. Let L be a frame.
(1) For $A, B \subseteq L, A$ refines B if for any $a \in A$, there is $b \in B$ with $a \leq b$, and denoted by $A \leq B$.
(2) For $a, b \in L, a$ is well inside b if there is $c \in L$ with $a \wedge c=0$ and $c \vee b=e$, and denoted by $a \prec b$. Equivalently, $a \prec b \Longleftrightarrow$ $a^{*} \vee b=e$, where $a^{*}=\vee\{x \in L: a \wedge x=0\}$ is the pseudo complement of a.
(3) For $A \subseteq L, A$ is called a cover of L if $\vee A=e$. For a frame L, the set of all covers of L is denoted by $\operatorname{cov}(L)$.
(4) L is called regular if for any $x \in L, x=\vee\{a \in L: a \prec x\}$.
(5) L is called normal if for $a \vee b=e$, there are $u, v \in L$ with $a \vee u=e=b \vee v$ and $u \wedge v=0$.

Remark 1.7. Let L be a frame and $a, b \in L$. Then we have:
(1) $a \wedge a^{*}=0$, but $a \vee a^{*} \neq e$ in general. In $\Omega(X) A^{*}=\operatorname{int}\left(A^{c}\right)$ for any $A \in \Omega(X)$, where $\operatorname{int}\left(A^{c}\right)$ is the interior of $X-A$. So $A \vee A^{*}=A \cup \operatorname{int}\left(A^{c}\right) \neq X$ unless A is a clopen subset of X.
(2) If $a \vee a^{*}=e$, then L is a Boolean Lattice. That is, $a^{*}=a^{\prime}([3])$.
(3) $a \leq a^{* *}$, because $a \wedge a^{*}=0$.
(4) $(a \vee b)^{*}=a^{*} \wedge b^{*}([3])$.
(5) $(a \wedge b)^{*} \neq a^{*} \vee b^{*}$ in general. Consider the open set lattice

$$
\Omega(X)=\{X,\{t, u\},\{t\},\{u\}, \emptyset\},
$$

where $X=\{t, u, v\}$. In this case,

$$
(a \wedge b)^{*}=0^{*}=e,
$$

but

$$
a^{*} \vee b^{*}=b \vee a=c,
$$

where $e=X, a=\{t\}, b=\{u\}, c=\{t, u\}$, and $0=\emptyset$.
(6) $(\operatorname{cov}(L), \leq)$ is a quasi-ordered set. And for $A, B \in \operatorname{cov}(L)$, the greatest lower bound of A and B is of the form $\{a \wedge b$: $a \in A, b \in B\}$. That is,

$$
A \wedge B=\{a \wedge b: a \in A, b \in B\} .
$$

Definition 1.8. Let L and M be frames. A map $f: L \longrightarrow M$ is called a frame homomorphism if f preserves finite meets and arbitrary joins. That is,
(1) $f(\vee S)=\vee f(S)$ for any $S \subseteq L$.
(2) $f(\wedge F)=\wedge f(F)$ for any $F \in \operatorname{Fin}(L)$, where $\operatorname{Fin}(L)=\{A \subseteq$ $L: A$ is a finite subset of $L\}$.

Definition 1.9.([6]) Let L be a complete lattice and $F \subseteq L$. Then we say that F is a filter (δ-filter, resp.) on L if F satisfies the followings:
(1) F does not contain 0 .
(2) $F=\uparrow F=\{x \in L: a \leq x$ for some $a \in F\}$. That is, $a \in F$ and $b \geq a$ implies $b \in F$.
(3) For any finite (countable, resp.) subset K of $F, \wedge K \in F$.

Remark 1.10.

(1) Let F be a filter on a complete lattice L, then $e \in F$ since $\wedge \emptyset=e ;$ and hence $F \neq \emptyset$.
(2) Every δ-filter is a filter, but a filter need not be a δ-filter. In fact, on the open set lattice $U(R)$ with the usual topology on R, the neighborhood system $N_{A}=\{M: M$ is an open neighborhood of $A\}$ is not a δ-filter but a filter on $U(R)$, where $A=\{0\}$. Because $\operatorname{int}(\cap\{(-1 / n, 1 / n): n \in N\})=\emptyset$ is not in N_{A}.
(3) In a complete chain $\{1 / n: n \in N\} \cup\{0\}, F=\{1 / n: n \in N\}$ is a filter but not a δ-filter, because $\wedge\{1 / n: n \in N\}=0$ is not in F.
(4) $F=\{x \in L: a \leq x$ and $a \neq 0\}$ is a δ-filter on a complete lattice L, and denoted by $F=[a]$ for some $a \in L$.

Definition 1.11.([5]) A filter F in a frame L is said to be clustered if for any cover S of L, sec $F \cap S \neq \emptyset$, where $\sec F=\{a \in L$: for any $a \in F, a \wedge x \neq 0\}$.

Proposition 1.12. A filter F in a frame L is clustered if and only if $\vee\left\{x^{*}: x \in F\right\} \neq e$.

Proof. See reference [5].

2. δ-Frames

Definition 2.1. A frame L is called a δ-frame if for any $a \in L$ and countable $K \subseteq L$,

$$
a \vee(\wedge K)=\wedge\{a \vee k: k \in K\}
$$

Notation 2.2. For a δ-frame L, we denote as follows:
$F \operatorname{cov}(L)=\{A \in \operatorname{cov}(L):$ there is a finite cover B with $B \leq A\}$,
$C \operatorname{cov}(L)=\{A \in \operatorname{cov}(L):$ there is a countable cover B

$$
\text { with } B \leq A\}
$$

$\operatorname{Count}(L)=\{A \in L: A$ is a countable subset of $L\}$.

REMARK 2.3
(1) In a complete lattice $L, a \vee(\wedge K) \leq \wedge\{a \vee k: k \in K\}$ holds for any $K \subseteq L$ and $a \in L$, because $a \leq a \vee k$ for all $k \in K$ implies $\wedge K \leq \wedge\{a \vee k: k \in K\}$, hence $a \vee(\wedge K) \leq \wedge\{a \vee k: k \in K\}$.
(2) Every complete chain L is a δ-frame, because for any $a \in L$ and $K \in \operatorname{Count}(L)$,
(i) if $a \leq k$ for all $k \in K$, then $a \leq \wedge K$, hence

$$
a \vee(\wedge K)=\wedge K=\wedge\{a \vee k: k \in K\}
$$

(ii) if there is $k_{0} \in K$ with $k_{0} \leq a$, then $\wedge K \leq k_{0} \leq a$, hence

$$
a \vee(\wedge K)=a=a \vee k_{0} \geq \wedge\{a \vee k: k \in K\}
$$

Thus by i), ii) and (1), L is a δ-frame.
(3) Every complete Boolean algebra is a δ-frame; hence the frame of regular open subsets of R is a δ-frame. To show this, let L be a complete Boolean algebra. Then for $a \in L$ and $K=\left\{x_{i}: i \in I, I\right.$ is a countable set $\} \in \operatorname{Count}(L)$,

$$
\begin{aligned}
x_{i} & =0 \vee x_{i} \\
& =\left(a \wedge a^{\prime}\right) \vee x_{i} \\
& =\left(a \vee x_{i}\right) \wedge\left(a^{\prime} \vee x_{i}\right),
\end{aligned}
$$

hence

$$
\begin{aligned}
\wedge K & =\wedge\left\{\left(a \vee x_{i}\right) \wedge\left(a^{\prime} \vee x_{i}\right): x_{i} \in K\right\} \\
& =\left(\wedge\left\{a \vee x_{i}: x_{i} \in K\right\}\right) \wedge\left(\wedge\left\{a^{\prime} \vee x_{i}: x_{i} \in K\right\}\right),
\end{aligned}
$$

and hence

$$
\begin{aligned}
a \vee(\wedge K)= & {\left[a \vee\left(\wedge\left\{a \vee x_{i}: x_{i} \in K\right\}\right)\right] } \\
& \wedge\left[a \vee\left(\wedge\left\{a^{\prime} \vee x_{i}: x_{i} \in K\right\}\right)\right] \\
= & {\left[a \vee\left(\wedge\left\{a \vee x_{i}: x_{i} \in K\right\}\right)\right] \wedge e } \\
\geq & \wedge\left\{a \vee x_{i}: x_{i} \in K\right\} .
\end{aligned}
$$

Remark 2.4. Every δ-frame is a frame, but a frame need not be a δ-frame. In fact, the open set lattice $C_{f}(N)$, where $C_{f}(N)$ is the cofinite topology on the set of natural numbers N, is not a δ-frame but a frame. Because for $K=\{N-\{m\}: m$ is a positive odd integer $\}$ and $a=N-\{2\}$,

$$
a=a \vee(\wedge K) \neq \wedge\{a \vee k: k \in K\}=e,
$$

where $\wedge K=\operatorname{int}(\cap K)$ and $\vee K=\cup K$. But the open set lattice $D(N)$ is a δ-frame, where $D(N)$ is the discrete topology on N. If X is finite, then the open set lattice $\Omega(X)$ with any topology on X is a δ-frame.

REmARK 2.5. Let L be a δ-frame. For $A_{n} \subseteq L$ and any $n \in N$, let $B=\left\{a_{1} \wedge \cdots \wedge a_{n} \wedge \cdots: a_{n} \in A_{n}\right.$ for each $\left.n \in N\right\}$. Then we have:
(1) $\vee B=\left(\vee A_{1}\right) \wedge\left(\vee A_{2}\right) \wedge \cdots \wedge\left(\vee A_{n}\right) \wedge \cdots$.
(2) For any $A_{n} \in \operatorname{cov}(L), B$ is the greatest lower bound of A_{n} for each $n \in N$ in $(\operatorname{cov}(L), \leq)$. That is,

$$
\wedge_{n \in N} A_{n}=\left\{a_{1} \wedge \cdots \wedge a_{n} \wedge \cdots: a_{n} \in A_{n} \text { for each } n \in N\right\}
$$

Proof. (1) Since L is a δ-frame, L is distributive under a countable meets and arbitrary joins, hence

$$
\begin{aligned}
& \vee\left\{a_{1} \wedge \cdots \wedge a_{n} \wedge \cdots: a_{n} \in A_{n} \text { for each } n \in N\right\} \\
& =\wedge\left\{\vee A_{1}, \cdots, \vee A_{n}, \cdots\right\} \\
& =\left(\vee A_{1}\right) \wedge \cdots \wedge\left(\vee A_{n}\right) \wedge \cdots
\end{aligned}
$$

(2) Note that B is a cover of L, because

$$
\begin{aligned}
\vee(B) & =\vee\left\{a_{1} \wedge \cdots \wedge a_{n} \wedge \cdots: a_{n} \in A_{n}, n \in N\right\} \\
& =\left(\vee A_{1}\right) \wedge \cdots \wedge\left(\vee A_{n}\right) \wedge \cdots \\
& =e
\end{aligned}
$$

Clearly $B \leq A_{n}$ for any $n \in N$. Suppose there is C with $C \leq A_{n}$ for any $n \in N$. Then there is $c \in C$ with $c \leq a_{n}$ for some $a_{n} \in$ A_{n} for each $n \in N$. Hence

$$
c \leq a_{1} \wedge \cdots \wedge a_{n} \wedge \cdots \text { for some } a_{n} \in A_{n}, n \in N
$$

Thus $C \leq B$.

Proposition 2.6. Let L be a δ-frame. Then $\operatorname{cov}(L), F \operatorname{cov}(L)$, and $C \operatorname{cov}(L)$ are δ-filters.

Proof. By the above Remark 2.5, it is trivial.

3. Almost Lindelöf δ-frames and Lindelöf δ-frames

Whenever C is a cover of $L, C-\{0\}$ is also a cover of L. So we will assume that C does not contain 0 .

Definition 3.1. Let L be a frame, then we say:
(1) L is said to be almost Lindelöf if for any $C \in \operatorname{cov}(L)$, there is $K \in \operatorname{Count}(C)$ with $(\vee K)^{*}=0$.
(2) L is said to be Lindelöf if for any $C \in \operatorname{cov}(L)$, there is $K \in \operatorname{Count}(C)$ with $\vee K=e$.

Remark 3.2. In a δ-frame L and for any $K \in \operatorname{Count}(L)$, we have:
(1) Every compact frame is Lindelöf. But the open set lattice $C_{c}(N)$ of the cofinite topology on N is a Lindelöf frame but not a compact frame.
(2) $(\vee K)^{*}=\wedge\left\{a^{*}: a \in K\right\}$. Because

$$
\begin{aligned}
&(\vee K) \wedge\left(\wedge\left\{a^{*}: a \in K\right\}\right) \\
&=\vee\left\{a \wedge\left(\wedge\left\{a^{*}: a \in K\right\}\right): a \in K\right\} \\
& \leq \vee\left\{a \wedge a^{*}: a \in K\right\} \\
&=0
\end{aligned}
$$

and for $y \in L$ with $(\vee K) \wedge y=0$,

$$
(\vee K) \wedge y=\vee\{a \wedge y: a \in K\}=0
$$

Then $a \wedge y=0$ for all $a \in K$, and then $y \leq a^{*}$ for all $a \in K$, hence $y \leq \wedge\left\{a^{*}: a \in K\right\}$.
(3) $(\wedge K)^{*} \neq \vee\left\{a^{*}: a \in K\right\}$ in general, see Remark 1.7.(5).

In a frame L, L is almost compact if and only if for any filter F in $L, \vee\left\{x^{*}: x \in F\right\} \neq e([4],[8])$. In a δ-frame L, we get a similar result as following :

Theorem 3.3. Let L be a δ-frame, then the followings are equivalent:
(1) L is almost Lindelöf.
(2) For any δ-filter F in $L, \vee\left\{x^{*}: x \in F\right\} \neq e$.

Proof. (1) \Rightarrow (2) Suppose on the contrary that there is a δ-filter F in L with $\vee\left\{x^{*}: x \in F\right\}=e$. So there is $K \in \operatorname{Count}(F)$ with $\left(\vee\left\{y^{*}: y \in K\right\}\right)^{*}=0$. Note that $(\vee K)^{*}=\wedge\left\{x^{*}: x \in K\right\}$ by the above Remark 3.2.(2). So

$$
\left(\vee\left\{y^{*}: y \in K\right\}\right)^{*}=\wedge\left\{y^{* *}: y \in K\right\}=0 .
$$

Note that $x \wedge x^{*}=0$ implies $x \leq x^{* *}$. Then

$$
\wedge\{y: y \in K\} \leq \wedge\left\{y^{* *}: y \in K\right\}=0 \text { implies } \wedge\{y: y \in K\}=0
$$

which contradicts to the fact that δ-filter F does not contain 0 .
(2) \Rightarrow (1) Suppose on the contrary that there is $C \subseteq L$ such that $\vee C=e$, but for any countable $K \subseteq C$,

$$
(\vee K)^{*}=\wedge\left\{x^{*}: x \in K\right\} \neq 0
$$

Let $U=\left\{y \in L\right.$: there is a countable K in C with $\wedge\left\{x^{*}: x \in K\right\} \leq$ $y\}$. Then we have the followings:
(i) If $0 \in U$, then there is a $K \in \operatorname{Count}(C)$ with $\wedge\left\{x^{*}: x \in\right.$ $K\} \leq 0$. Hence $\wedge\left\{x^{*}: x \in K\right\}=0$, which is a contradiction.
(ii) Let $y \in U$ and $z \geq y$, then there is a $K \in \operatorname{Count}(C)$ with $\wedge\left\{x^{*}: x \in K\right\} \leq y \leq z$ and then there is a $K \in \operatorname{Count}(C)$ with $\wedge\left\{x^{*}: x \in K\right\} \leq z$. Thus $z \in U$; hence $U=\uparrow U$.
(iii) Let $P=\left\{y_{n}: n \in N\right\} \in \operatorname{Count}(U)$, then there is a $K_{n} \in$ $\operatorname{Count}(C)$ with $\wedge\left\{x^{*}: x \in K_{n}\right\} \leq y_{n}$ for each $n \in N$.

Let $K=\cup\left\{K_{n}: n \in N\right\}$, then $K \in \operatorname{Count}(C)$ and

$$
\wedge\left\{x^{*}: x \in K\right\} \leq \wedge\left\{x^{*}: x \in K_{n}\right\} \leq y_{n}
$$

for each $n \in N$. Thus

$$
\wedge\left\{x^{*}: x \in K_{n}\right\} \leq \wedge\left\{y_{n}: n \in N\right\}=\wedge P,
$$

hence $\wedge P \in U$. By (i), (ii) and (iii) U is a δ-filter in L, hence

$$
\vee\left\{y^{*}: y \in U\right\} \neq e
$$

Since $\left\{x^{*}: x \in C\right\} \subseteq U$, we have

$$
e=\vee C \leq \vee\left\{x^{* *}: x \in C\right\} \leq \vee\left\{y^{*}: y \in U\right\}
$$

Thus $\vee\left\{y^{*}: y \in U\right\}=e$, which is again a contradiction.
Theorem 3.4. Every regular Lindelöf δ-frame is normal.
Proof. Let L be a regular Lindelöf δ-frame and $a \vee b=e$. Then

$$
\begin{aligned}
a & =\vee\{x \in L: x \prec a\}, \\
b & =\vee\{y \in L: y \prec b\}
\end{aligned}
$$

and then

$$
e=a \vee b=(\vee\{x \in L: x \prec a\}) \vee(\vee\{y \in L: y \prec b\}) .
$$

Since L is Lindelöf δ - frame, there are countable cover $\left\{x_{i}: i \in I\right\}$ and countable cover $\left\{y_{k}: k \in I\right\}$ such that $x_{i} \prec a$ for any $i \in I, y_{k} \prec b$ for any $k \in I$, and $\left(\vee\left\{x_{i}: i \in I\right\}\right) \vee\left(\left\{y_{k}: k \in I\right\}\right)=e$. Then $x_{i}^{*} \vee a=e$ for any $i \in I$ and $y_{k}^{*} \vee b=e$ for any $k \in I$. Hence

$$
\begin{aligned}
& \left(\wedge\left\{x_{i}^{*}: i \in I\right\}\right) \vee a=\wedge\left\{x_{i}^{*} \vee a: i \in I\right\}=e, \\
& \left(\wedge\left\{y_{k}^{*}: k \in I\right\}\right) \vee b=\wedge\left\{y_{k}^{*} \vee b: k \in I\right\}=e .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left(\wedge\left\{x_{i}^{*}: i \in I\right\}\right) \wedge & \left(\wedge\left\{y_{k}^{*}: k \in I\right\}\right. \\
& =\left(\vee\left\{x_{i}: i \in I\right\}\right)^{*} \wedge\left(\vee\left\{y_{k}: k \in I\right\}\right)^{*} \\
& =\left[\left(\vee\left\{x_{i}: i \in I\right\}\right) \vee\left(\left\{y_{k}: k \in I\right\}\right)\right]^{*} \\
& =e^{*}=0
\end{aligned}
$$

Thus L is normal.
Proposition 3.7. $A \delta$-filter F in a frame L is clustered if and only if $\vee\left\{x^{*}: x \in F\right\} \neq e$.

Proof. By Proposition 1.12, it is trivial.
Corollary 3.8. For a δ-frame L, the followings are equivalent:
(1) L is almost Lindelöf.
(2) Every δ-filter in L is clustered.

Definition 3.9. Let L and M be δ-frames and $f: L \rightarrow M$ a map.
(1) f is called a δ-homomorphism if f preserve arbitrary joins and countable meets.
(2) A δ-homomorphism f is called dense if $f(x)=0$ implies $x=$ 0.
(3) A δ-homomorphism f is called codense if $f(x)=e$ implies $x=e$.
(4) A δ-homomorphism f is called a δ-isomorphism if f is a bijection.

Proposition 3.10. Let L and M be δ-frames and $f: L \rightarrow M$ a δ-homomorphism, then we have:
(1) $f(0)=0$.
(2) $f(e)=e$.
(3) If f is dense, then $f(a)^{*} \geq f\left(a^{*}\right)$ for all $a \in L$.

In particular, $f(a)^{*}=f\left(a^{*}\right)$ if f is onto dense.
Proof. (1) $f(0)=f(\vee \emptyset)=\vee f(\emptyset)=\vee \emptyset=0$.
(2) $f(e)=f(\wedge \emptyset)=\wedge f(\emptyset)=\wedge \emptyset=e$.
(3) If f is dense, then

$$
\begin{aligned}
f(a)^{*} & =\vee\{m \in M: m \wedge f(a)=0\} \\
& \geq \vee\{f(b) \in M: f(b) \wedge f(a)=0\} \cdots(*) \\
& =\vee\{f(b) \in M: f(b \wedge a)=0\} \\
& =\vee\{f(b) \in M: b \wedge a=0\}, \text { since } f \text { is dense } \\
& =f(\vee\{b \in L: b \wedge a=0\} \\
& =f\left(a^{*}\right) .
\end{aligned}
$$

If f is onto, then the inequality (*) becomes equality.
Theorem 3.11. Let L and M be δ-frames and $f: L \rightarrow M$ is a dense δ-homomorphism.
(1) If M is almost Lindelöf, then so is L.
(2) If f is onto and codense, then M is almost Lindelöf if L is almost Lindelöf.

Proof. (1) Take any $S \in \operatorname{cov}(L)$, then $\vee S=e$, hence

$$
f(e)=e=f(\vee S)=\vee f(S)=\vee\{f(s): s \in S\}
$$

and since M is almost Lindelöf, $f(S) \in \operatorname{cov}(M)$ implies there is a $K \in \operatorname{Count}(S)$ with $(\vee f(K))^{*}=0$. Then

$$
\begin{aligned}
(\vee\{f(s): s \in K\})^{*} & =\wedge\left\{f(s)^{*}: s \in K\right\} \\
& \geq \wedge\left\{f\left(s^{*}\right): s \in K\right\} \\
& =f\left(\wedge\left\{s^{*}: s \in K\right\}\right) \\
& =0
\end{aligned}
$$

hence $\wedge\left\{s^{*}: s \in K\right\}=0$, since f is dense. Thus $(\vee K)^{*}=\wedge\left\{s^{*}: s \in\right.$ $K\}=0$, hence L is almost Lindelöf.
(2) Take any $T \in \operatorname{cov}(M)$, then there is an $S \subseteq L$ with $f(S)=T$ since f is onto, hence $e=\vee T=\vee f(S)=f(\vee S)$ implies $\vee S=e$, since f is codense. So, there is $K \in \operatorname{Count}(S)$ with $(\vee K)^{*}=0$. Consider $(\vee K)^{*}=\wedge\left\{k^{*}: k \in K\right\}$ and $f(K) \in \operatorname{Count}(T)$, let $W=f(K)$, then

$$
\begin{aligned}
(\vee W)^{*}=(\vee f(K))^{*} & =\wedge\left\{f(k)^{*}: k \in K\right\} \\
& =f\left(\wedge\left\{k^{*}: k \in K\right\}\right) \\
& =f(0)=0
\end{aligned}
$$

Corollary 3.12. Let L and M be δ-frames and let $f: L \rightarrow M$ be a δ-isomorphism which is dense and codense. Then L is Lindelöf if and only if M is Lindelöf.

References

1. R. Balbes and Ph. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, 1974.
2. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 3rd ed., 1967 Providence.
3. A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussichen Akademie der Wissenschaften, phys. Mathem. Klasse (1930), 42-56.
4. S. S. Hong, Simple extensions of frames, Proc. Recent Devel. of Gen. Top. and its Appl., Math. Research, Akademia Verlag, Berlin 67 (1992), 156-159.
5. S. S. Hong, Convergence in Frames, Kyungpook Math. J. 35 (1995), 85-91.
6. B. S. In, A study on σ-ideals and σ-frames, Doctorate thesis, Korea University (1987), 22-24.
7. P. T. Johnstone, Stone Space, Cambridge University Press, Cambridge, 1982.
8. J. Paseka and B. \check{S} marda, T_{2}-frames and almost compact frames, Czech. Math. J. 42 (1992), 385-402.
