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ON 5—FRAMES

Seung On Lee, Seok Jong Lee and Eun Ai Choi

ABSTRACT. In this paper, we introduce a new class of ^-frames and 
study its properties. To do so, we introduce f-filters, almost Lindelof 
frames and Lindelof frames. First, we show that a complete chain or a 
complete Boolean algebra is a(5-frame. Next, we show that a(5-frame 
L is almost Lindelof iff for any ^-filter F in L, V{x* : x G 2고} 羊 e. 
Last, we show that every regular Lindelof 5-frame is normal and a 
Lindelof 5-frame is preserved under a ^-isomorphism which is dense 
and codense.

1. Introduction

It is well known that the open set lattice Q(X) = {G : (7 is an 

open subset of X}, where X is a topological space, is a frame([7]). In 

Q(X), there is no point of X but open sets, so we call the frame Q(X) 

a pointfree topology. The purpose to write this paper is to introduce 

another class of frames, namely(5-frames, which is a special type of 

a frame, and study its basic properties. In section 2, 3, we deal with 

5-frames, as Lindelof spaces to compact spaces, instead of frames. We 

introduce a concept of(5-frames in which the distributivity holds for 

arbitrary joins and countable meets. In general, Q(X) is a frame but 

not a 5-frame. But a complete chain or a Boolean algebra is a <5- 

frame. In a frame L, cov{L} is a filter but need not be a 5-filter. But 

in a 5-frame L, cov(L) is a 5-filter. We define 5-homomorphism and 

^-isomorphism, and using these concepts, we show that a Lindelof 5- 

frame is preserved under a ^-isomorphism which is dense and codense.
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In this paper, a partially ordered set is also called a poset. The 

usual order relation < on the set R of real numbers is a partial order. 

It is the model of partial orders and thus it is customary to denote 

any partial order on any set by <. In this paper, > is defined by a > fe 

iff 6 < a ; < is defined by a < fe iff a < b and a b. If < is a partial 

order on L, the smallest (largest, resp.) element of L, if it exists, is 

the element 0 (e, resp.) such that 0 < x (x < resp.) for each x E L. 

Smallest (largest, resp.) elements are unique when they exist, by 

antisymmetry. We call 0 (e, resp.) as the bottom (top, resp.) element 

of L. Given a poset (L, <) and a subset A of L, A is called bounded 

above (bounded below, resp.) if the set {x E L i a < x for each a E A} 

of upper bounds of A (the set {x E L : x < a for each a e A} of lower 

bounds of resp.) is non-empty; the least upper bound of A (written 

lub(A) or VA) is the smallest element of the set of upper bounds of 

A, It may or may not belong to A. When it exists, it is unique. The 

greatest lower bound of A (written glb(A) or AA) is similarly defined. 

If A = {⑦, ?/}, then lub(A) is denoted by x\/ y and glb(A) is denoted 

by x/\y. If (L, <) has both the top element e and the bottom element 

0, then lubqb) = 0 and g『Z6(0) = e. From now on, we denote a poset 

(L, <) simply as L.

Definition 1.1.

(1) A poset L is called a lattice if every finite subset of L has a 

least upper bound and a greatest lower bound.

(2) A lattice L is called complete if every subset A of L has the 

least upper bound and the greatest lower bound.

Proposition 1.2. Let L be a lattice. Then the followings are 

equivalent:

(1) Every subset of L has the least upper bound.

(2) Every subset of L has the greatest lower bound.
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Proof. See reference [1],[2],[7]. □

Definition 1.3.

(1) A lattice L is called distributive if for any x,y,z E L,

x z) = (x /\ y) V (:r A 方),

or equivalently,

:r V Q/ A 之) = (⑦ V 以) A (:r V 之) .

(2) Let L be a lattice and x e L. li x\/ y = e and x Ay = 0, then 

y is called a complement of x.

(3) If L is a distributive lattice, then every element x of L has 

at most one complement. If x has the complement, then the 

complement of x is denoted by xr.

(4) A distributive lattice is called a Boolean algebra if every ele­

ment has a complement.

Definition 1.4. A complete lattice L is called a frame (or com­

plete Heyting algebra) if for any a e L and SQL, aA(VS) = V{ af\s : 

<S}.

Example 1.5. Let X be a set and Q(X) is a topology on X, then 

(Q(X), <) is a frame, where A < B iS A C B for B e Q(X).

Definition 1.6. Let L be a frame.

(1) For A, B C L, A refines B if for any a € A, there is b E B 

with a < 6, and denoted by A < B.

(2) For a,b E L, a is well inside b if there is c E L with a A c = 0 

and c V b = e, and denoted by a 느 b. Equivalently, a —< b 4== 

a* V & = e, where a* = \/{x G L : a A ⑦ = 0} is the pseudo 

complement of a.
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(3) For A C L, A is called a cover of L if V』4 = e. For a frame L, 

the set of all covers of L is denoted by cov(L).

(4) L is called regular if for any x e L^x = V{a E L : a x}.

(5) L is called normal if for a V b = e, there are u,v E L with 

a\/ u = e = b\J v and u /\ v = 0.

Remark 1.7. Let L be a frame and a,b e L. Then we have:

(1) a A a* = 0, but a V a* ：% e in general. In Q(X) A* = int(Ac) 

for any A e Q(X), where int(Ac) is the interior of X — A. So 

V』4* =』4 U int(Ac) 羊 X unless 4 is a clopen subset of X. 

If aVa* = e, then L is a Boolean Lattice. That is, a* = a'([3]). 

a < a**, because a A a* = 0.

(a vb)* = a* Ab*([3]).

(a A b)* 于 a* V 6* in general. Consider the open set lattice

Q(X) = {X, {Z, 따, {t}, {싸, 0},

where X = 幻}. In this case,

(aAb)* = 0*=e,

but

a* V 6* = b V a = c,

where e = X, a = {t}, b = {ti}, c = {Z, 싸, and 0 = 0.

(6) (cov(L), <) is a quasi-ordered set. And for A^B E cov(L)^ 

the greatest lower bound of A and B is of the form {a A b : 

a e A^b E B}. That is,

A B = {a b : a e A,b e」B}.
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Definition 1.8. Let L and M be frames. A map f : L——> M is 

called a frame homomorphism if f preserves finite meets and arbitrary 

joins. That is,

(1) /(VS) = V/(S) for any SQL.

(2) /(AF) = A/(F) for any F € Fin(L), where Fin(L) = {yl C 

L : A is a finite subset of Z}.

Definition 1.9.([6]) Let L be a complete lattice and F C L. 

Then we say that F is a filter (6-filter, resp.) on £ if F satisfies the 

followings:

(1) F does not contain 0.

(2) F =^[ F = {x e L : a < x for some a e F}. That is, a E F 

and b > a implies b E F.

(3) For any finite (countable, resp.) subset K of F, f\K e F.

Remark 1.10.

(1) Let F be a filter on a complete lattice L, then e e F since 

A0 = e; and hence F 子 0.

(2) Every 5-filter is a filter, but a filter need not be a(5-filter. In 

fact, on the open set lattice U(R) with the usual topology 

on R, the neighborhood system Na = {M : M is an open 

neighborhood of』4} is not a 5-filter but a filter on U(R), 

where A = {0}. Because mi(n{(—1/n, 1/n) : n e TV}) = 0 is 

not in Na-

(3) In a complete chain {1/n : n € N} U {0}, F = {1/n : n € N} 

is a filter but not a 5-filter, because A{l/n : n e N} = 0 is 

not in F.

(4) F = {xeL:a<x and a 尹 0} is a(5-filter on a complete 

lattice L, and denoted by F = [a] for some a E L.
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Definition 1.11.([5]) A filter F in a frame L is said to be clustered 

if for any cover S of L, secF n S 쿠 0, where secF = {a E L : 

for any a € F, a A ⑦ 7브0}.

PROPOSITION 1.12. A filter F in a frame L is clustered if and only 

if V{父* : x € F} 羊 e.

Proof. See reference [5]. □

2. ^-Frames

Definition 2.1. A frame L is called a d-frame if for any a e L 

and countable K 으 L,

aV(AK) = A{aVfc : k e K }.

Notation 2.2. For a 5-frame L, we denote as follows:

Fcov(L) ={A e cov{L) : there is a finite cover B

with B < A},

Ccov(L) ={A E cov(L) : there is a countable cover B 

with B < A},

Count(L) ={A € L : A is a countable subset of L}.

Remark 2.3

(1) In a complete lattice L, aV(A2C) < A{aVfc : k E K} holds for 

any K 으 L and a € L, because a < a\/k for all A; € K implies 

/\K < A{a y k : k E 2C}, hence a V (AK) < A{a \/ k : k E 2C}.

(2) Every complete chain L is a 5-frame, because for any a e L 

and K E Count(L),

(i) if a < A: fbr all k E then a < AJC, hence

a V(A」FC) = /\K = A{a V k : k E」FC}
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(ii) if there is fco € K with ko < a, then /\K < k()< hence 

a V (AK) = a = a\/ k()> /\{a V e K}

Thus by i), ii) and (1), L is a 5-frame.

(3) Every complete Boolean algebra is a 5-frame; hence the frame 

of regular open subsets of J? is a 5-frame. To show this, 

let L be a complete Boolean algebra. Then for a E L and 

K = {xi : i e I, I is a countable set} e Count(L),

쩌 = 0 V 쩌

= (a A a') V Xi

= (a V Xi) A (a' V 호J,

hence

f\K = A{(a V Xi) A (a' V Xi) : Xi e K}

=(A{a \/ Xi : Xi e K}) A(A{a' V 쭈 : 짜 € Jf}),

and hence

a V (AJC) =[a V(A{a \/ Xi : Xi e K})]

A [a V(A{a' V :成 : :成 e K})] 

늬a V(A{a \/ Xi : Xi e 2C})] A e

> A {a V Xi : Xi e K}.

Remark 2.4. Every 5-frame is a frame, but a frame need not be 

a 5-frame. In fact, the open set lattice Cy(A『), where Cf(N) is the 

cofinite topology on the set of natural numbers TV, is not a 5-frame 

but a frame. Because for K = {N — {m} : m is a positive odd integer 

} and a = N — {2},

a = a\/ (AjFC) 三h A{a V fc : fc € K} = e, 
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where /\K = mi(AK) and VK = UK. But the open set lattice D(N) 

is a(5-frame, where D(N) is the discrete topology on N. If X is finite, 

then the open set lattice Q(X) with any topology on X is a 5-frame.

Remark 2.5. Let L be a 5-frame. For An C L and any n e N, let 

B = {ai A • • • A an A • • • : an € An for each n e N}. Then we have:

(1) VB = (VAi) A (VA2) A • • • A (VAn) A • • •.

(2) For any An e cov(L), B is the greatest lower bound of An for 

each n e N in (cov(L), <). That is,

AneN^n = {ai A • • • A(zn A • • • : an € An for each n e N}.

Proof. (1) Since L is a 5-frame, L is distributive under a countable 

meets and arbitrary joins, hence

V {ai A • • • A(zn A • • • : an e An for each n e N}

= A{Wh,… ,以슈, … }

= (VAi) 八 … A(VAn) A … .

(2) Note that B is a cover of L, because

V(B) = V{(Zi A • • • A dn A • • • : dn G An, ti E N}

= (VAi) A • • • A (VAn) A …

= e.

Clearly B < An for any n E N. Suppose there is C with C < An 

for any n E N. Then there is c e C with c < an for some an € 

An for each n E N. Hence

c < ai A • • • A A • • - for some an E n E N.

Thus C<B. □
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Proposition 2.6. Let L be a S-frame. Then cov(L), Fcov(L), and 

Ccov(Jj) are 6-filters.

Proof. By the above Remark 2.5, it is trivial. □

3. Almost Lindelof(5-frames and Lindelof 5-frames

Whenever C is a cover of L, C — {0} is also a cover of L, So we 

will assume that C does not contain 0.

Definition 3.1. Let L be a frame, then we say:

(1) L is said to be almost Lindelof if for any C E cov(L), there 

is JC e Count(C) with (\AfC)* = 0.

(2) L is said to be Lindelof if for any C € aw(L), there is 

K E Count(C) with MK = e.

Remark 3.2. In a 5-frame L and for any K € Count(L), we have:

(1) Every compact frame is Lindelof. But the open set lattice 

Cc(N) of the cofinite topology on TV is a Lindelof frame but 

not a compact frame.

(2) (yK)* = A{a* : a € K}. Because

(V7f) A(A{a* : a e K})

= V{a A(A{a* : a E K}) : a e K}

< V{a A a* : ae K}

= 0

and for y E L with(VK) A 沙 = 0,

(V2C) l\y = V{a/\y : a e K} = 0.

Then a A 以 = 0 for all a € K, and then y < a* for all c< K, 

hence y < A{a* : a € K}.

(3) (AjFC)* 羊 V{a* : a E K} in general, see Remark 1.7.(5).
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In a frame L, L is almost compact if and only if for any filter F in 

L, V{a;* : x e F} e ([4],[8]). In a(5-frame L, we get a similar result 

as following :

Theorem 3.3. Let L be a S-frame, then the followings are equiv­

alent:

(1) L is almost Lindeldf.

(2) For any 6-filter F in I」, \/{x* : x e F} e.

Proof. (1) = (2) Suppose on the contrary that there is a(5-filter 

F in L with V{:r* : x E F} = e. So there is K e Count(F) with 

(y{y* : y E 2C})* = 0. Note that (VK)* = A{:r* : x € K} by the 

above Remark 3.2.(2). So

(V{이* : y e 쪼})* = A{沙** : yeK} = Q.

Note that x /\ x* = Q implies x < x**. Then

/\{y : y e K} < A{沙** : y e K} = 0 implies A {y : y G K} = 0, 

which contradicts to the fact that 5-filter F does not contain 0.

(2) = (1) Suppose on the contrary that there is C C L such that 

VC = e, but for any countable K 으 C,

(VK)* = A{:r* : xeK}^Q.

Let U = {y E L : there is a countable K in C with /\{x* : x e K} < 

y}. Then we have the followings:

(i) If 0 € (7, then there is a K € Count(C) with /\{x* : x E

K} < 0. Hence /\{x* : x e K} = 0, which is a contradiction.

(ii) Let y E U and z > then there is a K e Count(C) with 

A{a?* : x e K} < y < z and then there is a JFC e Count(C) 

with /\{x* : x € K} < z. Thus z eU; hence U =f U.

(iii) Let P = {yn : n e N} e Count(U), then there is a Kn € 

Count(C) with A{x* : x € Kn} < yn for each n E N.
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Let K = U{Kn : n e N}, then K e Count(C) and

/\{:r* : X e K} < /\{x* : X e Kn} < yn

for each n E N. Thus

/\{x* : x E Kn} < /\{yn : n e N} = AF,

hence AF e U. By (i), (ii) and (iii) [Z is a(5-filter in」L, hence

V{沙* : y eU}^e.

Since {x* : ⑦ € C} 으 L『, we have

e = VC < V{x** : x e C} < V{이* : y e U}.

Thus V{이* : 히 €〔7} = e, which is again a contradiction. □

Theorem 3.4. Every regular Lindelof 6-frame is normal.

Proof. Let L be a regular Lindelof 5-frame and a V b = e. Then

a = \/{x e L : x a}, 

b = V{아 e L :y -<b}

and then

e = a V & =(V{a? €」L : x -< a}) V (y{y e L : y &}).

Since I」is Lindelof 5- frame, there are countable cover {a互 : i E l} and 

countable cover {yk : k e 1} such that:成 一〈 a for any i E I> yk 乂 b for 

any k e I, and(V{^ : i e I}) V ({此 : k e I}) = e. Then xQ V a = e 

for any i E I and 以； V & = e for any k e I. Hence

(A{x* : i e I}) V a = A{a;* V a : i e 1} = e, 

(A{이; : k e I}) V & = A{이후 \/ b : k e 1} = e.
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Moreover,

(A{處 : i e I})A(A{애 :kel}

= (v{쩌 : i e 1})* a (v{故 : k e I})*

= [(V{@ : i e I}) V ({yk : k e I})]* 

= e* = 0.

Thus L is normal. □

Proposition 3.7. A 6-filter F in a frame L is clustered if and 

only if V{銘* : x e F} e.

Proof. By Proposition 1.12, it is trivial. □

COROLLARY 3.8. For a S-frame L, the followings are equivalent:

(1) L is almost Lindeldf.

(2) Every 3-filter in L is clustered.

Definition 3.9. Let L and M be 5-frames and / : L —> M a map.

(1) f is called a 6-homomorphism if f preserve arbitrary joins 

and countable meets.

(2) A 5-homomorphism f is called dense if f(x) = 0 implies x = 

0.

(3) A 5-homomorphism f is called codense if f(x) = e implies 

x — e,

(4) A 5-homomorphism f is called a 6-isomorphism if / is a bi­

jection.

Proposition 3.10. Let L and M be S-frames and f : L — M a 

6-homomorphism, then we have:

(1) /(0) = 0.

(2) f(e) = 以
(3) If f is dense, then /(a)* > /(a*) for all a e L.
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In particular, f(a)* = /(a*) if f is onto dense.

Proof. (1) /(0) = /(V0) = V/(0) = V0 = 0.

(2) /(e) = /(A0) = A/(0) = A0 = e.

(3) If f is dense, then

/(a)* = V{m G M : m A /(a) = 0}

스 V{/(6) € M :/(b) A/(a) = 아 … (*)

= V{/(6) e M : f(b A a) = 0}

= V{/(b) e M : 6 A a = 0}, since f is dense

= /(V{6eL:b/\a = 0}

= /(«*)•

If f is onto, then the inequality (*) becomes equality. □

Theorem 3.11. Let L and M be 6-frames and f : L — M is a 

dense 3-homomorphism,

(1) If M is almost Lindelof, then so is L.

(2) If f is onto and codense, then M is almost Lindelof if L is 

almost Lindelof.

Proof, (1) Take any S G cov(L), then VS = e, hence

/(e) = e = /(VS) = V/(S) = V{/(s) : s e S}

and since M is almost Lindelof, f(S) E cov(M) implies there is a 

K € Count(S) with (V/(ZC))* = 0. Then

(V{/(s) : s € K}y = A{/(s)* :seK}

> A{/(s*) : seK}

= /(A{s* = eJf})

= 0, 
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hence A{s* : s e K} = 0, since f is dense. Thus (VK)* = A{s* : s € 

K} = 0, hence L is almost Lindelof.

(2) Take any T e cov(M), then there is an S C L with /(S) = T since 

f is onto, hence e = VT = V/(S) = jf(VS) implies VS = e, since f 

is codense. So, there is K E Count(S) with (VK)* = 0. Consider 

(Vjq* = A{fc* : keK} and f(K) e Count(T), let W = f(K), then

(VW)* = (V/(K))* = A{/(fc)* ：keK}

= /(A{fe* :keK})

= f(0) = 0.

□

Corollary 3.12. Let L and M be 3-frames and let f : L — M 

be a 6-isomorphism which is dense and codense. Then L is Lindelof 

if and only if M is Lindelof.
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