23

AYFEsT
HM73 3%
19974 128

A Simulated Distributed Database System
for Response Time Evaluation®

b
o
Sl

%

SHALHRIE AT FAolHH o)A AlEH o)A 4H

Although numerous models and solution aigorithms to design efficient distributed databases have been
developed, very few have been validated for their effectiveness. In this paper, we develop a simulation
system which can be used fo analyze and validate the average response fime of distibuted database
designs. Our simulation system models comprehensive query processing strategies such as semijoin as
well as a concurrency confrol mechanism. We analyze and vdiidafe an average response fime
distributed database design model using our simulafion system,

* This research was partially supported by SN.U. Research Fund, Seoul National University, Korea.
** College of Business Administration Seoul National University

Ol =22 1996 78 10¢ H#stod 1&F £ HAH 1997 1€ 28 AN =AFHCL

24

I. Introduction

Distributed database systems are becoming
more common in geographically distributed
organizations [Richter, 1994, The, 1994].
Properly designed, distributed databases can
yield significant performance and cost
advantages over centralized systems. However,
the design of a distributed database is an
extremely complex process. A distributed
database design must allocate data to nodes
(possibly with redundancy) so that retrieval
and update operations can be efficiently
carried out at run time.

Inappropriate placement of data or poor
choices of data access or processing strategies
can rtesult in poor system performance
[Edelstein, 1995a, 1995b, Ozsu and Valduriez,
1991].

Although numerous distributed database
design models and solution algorithms have
been developed to support the design process
(e.g, Apers [1988], Blankinship et al. [1991],
Cornell and Yu [1989], March and Rho [1995],
Ram and Narasimhan [1994], Rho [1995]),
relatively few response time models have
been developed (e.g., Cornell and Yu [1989],
Lee and Sheng [1992], Rho [1995]).

Furthermore, very few researchers have
validated the performance (i.e., response time)
of the solutions (ie, distributed database
designs) obtained using their models and
algorithms. Ideally, a commercial distributed
database system should be used to validate
the performance of distributed database
designs. However, experiments with a real
system would be too costly and/or too
difficult to control. Thus, simulation is the

only viable alternative to validate the
performance of distributed database design. In
this paper, we develop a simulation system
for distributed database design and validate
the response time model of Rho [1995] using
simulation.

The remainder of the paper is organized as
follows. The' next section discusses prior
research on the performance studies of
distributed database systems. The following
section describes our simulated distributed
database system. The following section
describes a simulation study and compares
the simulation results with the analytical
results. The final section discusses the
limitations of the current study and presents
directions for future research.

I. Prior Research

There have been many performance
modeling studies of distributed database
systems and database systems in general.

Agrawal et al. [1987] developed a
simulation system for a centralized database
system to study the performance of different
concurrency control mechanisms. Therefore
their simulation system does not model the
network components of distributed database
systems. Furthermore, it does not model
comprehensive query processing strategies.

Jenq et al. [1988] developed a queueing
network model to analyze the performance of
a distributed database testbed system. The
model includes a concurrency control
mechanism and a transaction recovery
mechanism. Ciciani et al. [1990] developed
an analytical model to analyze the effects of
replicating data in distributed database

systems under different concurrency control
mechanisms. However, both models ignore a
comprehensive query processing model.

Carey and Livny [1988] and Thanos et al.
[1988] analyzed the effect of concurrency
control mechanisms and that of replication
using simulation.

Huang et al. [1994] developed a simulation
system to analyze the performance of
concurrency control mechanisms in federated
database systems. These simulation systems
do not model comprehensive query processing
strategies, either.

Although there have been many
performance studies of distributed database
systems, most prior work investigates either
the performance of concurrency control
mechanisms or the effects of replication.
These performance models do not include
comprehensive query processing strategies
such as join site selection and semijoins.
Since our main objective is to understand the
performance of data allocation and query
processing strategies, the previous simulation
systems are not appropriate for the purposes
of our study. Therefore, we develop a

simulation system that models a
comprehensive query processing model which

includes join site selection and semijoins.

. A Simulated Distributed
Database System

We first describe the distributed database
system architecture on which our simulation
system is based. The following subsection
describes query processing (or transaction)
models of the system. The physical queueing

model underlying the system is described

25

next. Finally, the implementation of the
In the
following discussion the terms query and

simulation system is described.

transaction are used synonymously.

3.1 A Distributed
System Model

Database

A simplified distributed database system
architecture (adapted from Jenq et al. [1988))
is shown in <Figure 1>. It consists of two
levels of server processes: Transaction
Manager (TM) and Data Manager (DM). TMs
and DMs work cooperatively to service
transactions submitted to the system.

A user application process submits a
transaction to the system. A ftransaction
{query) consists of multiple subtransactions
(query steps), each of which must be sent to
and executed at a local database. A TM acts
as a transaction coordinator. It sends each
subtransaction to an appropriate DM and
synchronizes the execution of the transaction.
A request to a remote DM is routed through
a remote TM. A DM manages the execution
of subtransactions at a local database.

Transa‘ctions Transa(ilinns

Distributed
DBMS ™ [Comn. Link |- v
A
\i

Y

DM DM
Local Local
DB DB

<Figure 1> A Distributed Database System
Architecture

3.2 Transaction Models

There are two types of transactions:
retrieval (read only) and update. A retrieval
transaction consists of a set of query steps or

26

operations (e.g., message, select/project, join,
semijoin), some of which can be processed in
parallel and some of which must be
processed sequentially (See Yu and Chang
[1984] and Rho and March [1997] for detailed
description of distributed query processing).

3.2.1 Retrieval Transaction Model

We define 6 operation types for retrieval
queries: selection/projection, join, projection of
semijoin, join of semijoin, message, and
Consider a

fragment transmission.

three-relation, two-join SQL query as follow:
SELECT <attribute list>

FROM R1, R2, R3
WHERE R1.A0 = R2A0 AND R2.A1 = R3.Al

<Figure 2> a shows an example execution
schedule for the above query where each
relation is located at a remote node from the
query origination node. A rectangle represents
an operation, lines represent control or data
flow, and circles represent a synchronization
point. At a synchronization point, all the
previous operations must be finished before
the next operation(s) can begin.

<Figure 2> Transaction Models

The example query execution schedule
begins by sending a message from the query
origination node to each node containing a
relation. Upon receiving the message the
appropriate selection/ projection operations
are performed on each relation. The join
attribute is projected from relation Rl and
transmitted to the relation R2 node where a
semijoin is performed (reducing relation R2
by relation R1).

The reduced relation is transmitted to the
relation Rl node where it is joined with
relation R1. The result is transmitted to the
query origination node. Relation R3 is also
transmitted to the query origination node
where it is joined with the prior join result.
Note that join operations cannot begin until
all needed data is at the join node. For
example, the last join operation cannot begin
until both the result of the previous join
operation and relation R3 are transmitted to
the query origination node.

3.2.2 Update Transaction Model

We define 6 operation types for update
transactions: lock request message, lock
confirmation message, send update message,
update, update confirmation message, and
release lock message. <Figure 2> b shows the
execution schedule for a remote update
transaction based on distributed two phase
locking [Bernstein and Goodman. 1981] where
two copies of the affected relation are
allocated.

The example transaction execution schedule
begins by sending a lock request message
from the query origination node to each node
containing a copy of the relation.

Upon receiving the message, each copy is

locked and a lock confirmation message is
sent to the query origination node. When
both lock confirmation messages arrive at the
query origination node, a send update
message is sent to each node containing a
copy of the relation and update is performed
there. Once update is finished, an update
confirmation message is sent to the query
origination node. Finally, a release lock
message is sent and the lock on the relation
is released.

3.3 Physical Queueing Model

<Figure 3> shows the physical queueing
model of a node and its links to another
node underlying the simulation system.

We assume a node consists of a single
CPU and a single disk (See Agrawal et al.
[1987] for detail) and is connected to another
node via two communication links (one for
each direction). A synchronization wait center
(SW) is introduced to model the synchroni-
zation requirements of the transaction models
described in the previous subsection.

Transaction k\

- eI

>
(-

<Figure 3> Physical Queueing Model of a Node

A transaction of a particular type arrives at
a particular node based on its relative
frequency. We assume a Poisson transaction

27

arrival process (i.e, with negative exponential
transaction interarrival times). Once a
transaction (a set of operations with synchroni-
zation requirements) arrives, it enters the
synchronization wait center (SW).

Some of its operations can be immediately
put into queues. However, others must wait
until other operations (ie, their previous
subtransactions) are completed before they can
be put into queues. An operation receives
services from CPUs, disk, and/or links
depending on its type. FEach operation has
CPU, disk [I/O,
requirements associated with it. They are

and/or transmission
calculated in the same way as presented in
Rho [1995]. The requests in CPU and disk
queues are serviced using a round robin
scheme with a time slice discipline. Those in
link queues are serviced using a
first-come-first-served (FCFS) discipline. The
current model ignores queueing delays due to
data contention (e.g,, waiting for lock release).

This wil be addressed in future research.

3.4 A Simulation System

The simulation system was developed using
CSIM [Schwetman, 1986, 1988, 1991] based on
the model described above. CSIM is a
process-oriented ~ discrete-event simulation
software for use with C or C++ programs.
The basic entity in CSIM is a process, which
is used to model active components of a
system (e.g, transactions in distributed
database system). A process uses one or more
facilities (e.g., disks) which are used to model
passive components of a system. Events are
used to implement synchronization require-

ments among processes (e.g, a join operation

28

cannot begin until both select operations are
completed). CSIM was chosen because it is
flexible

dependencies among operations in the

enough to model complex
transaction models. <Figure 4> shows the
architecture of the simulation system. The
architecture was designed to support
modularity so that changes made in one
component will not affect others. For example,
different types of networks can be modeled
by changing only Network Resource Manger.

Each component is briefly described below.

Workload Generator

A

Transaction Manager

A

Data Manager
A
v I
Network Manager

Local Resource |
Manager v

A

Network Resource
Manager

<Figure 4> Simulation System Architecture

Workload Generator: simulates the arrival of
transactions based on their relative
frequencies. In the current implementation, the
Poisson arrival process is assumed. Once a
query arrives, it launches one of the processes
in the Transaction Manager corresponding to
the query type. For example, when a
three-relation two-join query arrives, a
two_join_query process is launched.

Transaction Manager: models the execution

of transactions and ensures their synchroni-
zation based on the query processing
schedules obtained by the optimization
algorithm. Distributed two phase commit is
employed as a concurrency control mechanism.
It has the following processes:

no_join_query(query_id),
one_join_query(query_id),
two_join_query(query_id), and
update(query_id).

They implement the transaction models

discussed above and uses the processes (e.g,
restrict, semijoin, etc.) provided by the Data
Manager.
Data Manger: models local database
operations such as selection/projection and
join. It provides the following services to. the
Transaction Manager:

restrict (query_node, restrict_node, input_size,
output_size, fr, restrict_done),

semijoin (reducer node, reducee node, destina-
tion_node,

reducee_size, output_size, fr, semijoin_

input_size, reducer_ size,

done),
join (join_node, destination_node, inputl_size,
input2_size, output_size, fr, join_done),
get_lock (query_node frag node,lock_secured),
do_update (query_node,frag node, num_block,
‘ fr, updated), and release lock (query_
node, frag node, lock_released).

Each service combines a set of operations
in the transaction model <Figure 2> that must
be processed sequentially. For example,
restrict combines send message and select

operations. Each service utilizes the services
provided by the Network Manager and the
Local Resource Manager.

Network models network

transmission operations such as message and

Manager:

transmission. It

fragment provides the

following services:

transmit_data(from_node, to_node, size, fr)
transmit_msg(from_node, to_node)

It uses the services provided by the Local
Resource Manager and the Network Resource
Manager.

Local ~ Resource Manager: models CPU
processing and disk I/O of a node. It
provides CPU and I/O services to other
components. Requests in the CPU and disk
queues are serviced using a round robin
scheme with a time slice discipline. Together
with the Network Resource Manager, it

implements the physical queueing model
above.

Network Resource Manager: models the use
of communication links. A fully connected
point-to-point network is assumed in the
current implementation.

Requests in link queues are serviced using
a first-come-first-served (FCFS) discipline.

IV. A Simulation Study

In this section, we analyze and validate an
average response time model [Rho, 1995]
using simulation.

The average response time model developed

29

in Rho [1995] includes queueing delays in
local database operations as well as those in
network communication. They assume M/M/1
queueing models and do not explicitly model
the synchronization and possible parallel
processing of query steps. We examine the
effects of these limitations using simulation
[Kobayashi, 1978, Law and Kelton, 1991,
Sauver and MacNair, 1983]. Our goal is to
gain a preliminary understanding of the
accuracy of their analytical model.

4.1 Simulation Problems

We simulated a set of solutions for the
problems developed in Rho [1995].

The Problems have 17 fragments and 54
query types (37 retrievals and 17 updates) in
a fully-connected 5-node network.

To assess the simulation system in a
variety of environments, we varied the
characteristic of the above problems along
two dimensions: query mix and query
selectivity. Query mix is the relative execution
frequency of retrieval compared to update
queries. Three classes of query mix are
Retrieval ~Intensive, Balanced,
Update Intensive. Query selectivity is the
proportion of records selected by a query.

considered:

Two environments are considered: Low
Selectivity and High Selectivity.

4.2 Simulation Results

The simulation results are reported in
Appendix 1 and summarized in <Figure 5>.
In <Figure 5>, simulated average response
times are plotted against estimated average

30

response time using the analytical response
time model developed in Rho [1995] and
summarized in Appendix 2. The analytical
avrage response time model estimated the
simulated
reasonable accuracy (R = 9684, p = .0000).
The analytical model tended to slightly
underestimate the simulated time as the
analytical average response time increased.
This is
ignoring parallelism should result in

average rtesponse time with

somewhat unexpected because

overestimation.

16.00

14.00 -
12.00
10.00 T
8.00 T

6.00 + add
B

Simulated Average Response Time

4.00 T

2.00

0.00 + + +
0.00 2.00 4,00 6.00 8.00 10.00 12,00 14.00 16.00
Estimated Average Response Time

<Figure 5> Analytical vs.
Response Time

Simulated Average

A closer examination revealed, however,
that assuming an M/M/1 queueing model in
estimating the average delay in the queue
should result in underestimation. The average
queueing delay for an M/G/1 queue
increases as the variability of the service time
increases even though the mean service time
stays -the same [Law and Kelton, 1991].
Intuitively, this is because a highly variable
service time random variable will have a
greater chance of taking on a large value,

which means the server will be tied up for a
long time, causing the queue to build up. It
is likely that the variability of the actual
service time distribution in the sample
problem is larger than that of an exponential
service time distribution with the same mean
(recall that the problem has two types of
transactions: retrieval, which requires a large
amount of processing time, and update,
which requires a very small amount of
processing time). A larger variability should
result in the underestimation of average
response time, especially for transactions with
very small processing time requirements (i.e.,
update transactions).

In fact, further analysis of the
underestimation cases revealed that the
underestimation was mostly due to the
underestimation of update transaction response
time. Although limited in scope, the results
demonstrate that Rho’s [1995] analytical
response time model is reasonably accurate.

V. Summary and Future
Research

In this paper, we presented a simulation
system for distributed database design. This is
the first simulation system that models
complex query processing strategies of
distributed database systems. We analyzed
and validated Rho’s [1995] average response
time model using simulation. The simulation
results demonstrate that Rho's average
response time model is reasonably accurate.
However, the results must be interpreted with
caution since simulated response time is
another estimate of the true system response

time,

There are several directions for future
research,

First, the simulation system will be
enhanced to model more general cases of
distributed Different
networks (e.g, bus general

database systems.

topology,
topology) and computer systems (eg.,
multi-disk systems) can be modeled. The
simulation system can be enhanced to include

data contention as well as resource

31

contention.

Secondly, the simulation system will be
more tightly integrated into optimization
algorithms, resulting in a decision support
system for distributed database design.

Finally, more
response time models including Rho's [1995]

rigorous validation of
will be performed. Response time models will
be validated using a wide variety of
problems. Such validation will result in more
realistic distributed database design models.

(REFERENCES)

Agrawal, R, Carey, M. J. and Livny, M,
"Concurrency Control Modeling: Alternatives
and Implications," ACM Transactions on
Database Systems, Vol.12No.4, December 1987,
pp. 609-654.

Apers, P. M. G, "Data Allocation in
Distributed ~ Database = Systems," ACM
Transactions on Database Systems, Vol.13, No.3,
September 1988, pp. 263-304.

Bernstein, P. A. and Goodman, N,
"Concurrency Control in Distributed Database
Systems," ACM Computing Surveys, Vol.13,
No.2, June 1981, pp. 185-222.

Blankinship, R.,, Hevner, A. R. and Yao, S. B,
"An lterative Method for Distributed Database
Design," Proceedings of the 17th International
Conference on Very Large Data Bases, Barcelona,
Spain, September 1991, pp. 389-400.

Carey, M. J. and Livny, M, "Distributed
Concurrency Control Performance: A study of

Algorithms, Distribution, and Replication,"
Proceedings of 14th International Conference on
Very Large Data Bases, Los Angeles, CA,
August 1988, pp. 13-25.

Ciciani, B, Dias, D. M. and Yu P. S,
"Analysis of Replication in Distributed
Database Systems," IEEE Transactions on
Knowledge and Data Engineering, Vol2, No.2,
June 1990, pp. 247-261.

Cornell, D. W. and Yu, P. S, "On
Optimal Site Assignment for Relations in
the Distributed Database Environment,"
IEEE Transactions on Software Engineering,
Vol15, No.8, August 1989, pp.
1004-1009.

Edelstein, H., "The Challenge of Replication,"
DBMS, March 1995a, pp. 4649, 52.

Edelstein, H., "The Challenge of
Replication, Part 2," DBMS, April 1995b,
pp. 62-70, 103.

32

Huang,], Hwang, S.-Y. and Srivastava,],
Concurrency ~ Control in Federated Database
Systems: A Performance Study, Technical Report
TR93-15, Department of Computer Science,
University of Minnesota, February 1993.

Jeng, B. C, Kohler, W. H. and Towsley, D.,
"A° Queueing Network Model for a
Distributed Database Testbed System," I[EEE
Transactions ‘on Software Engineering, Vol.14,
No.7, July 1988, pp. 908-921.

Kobayashi, H., Modeling and Analysis: An
Introduction to System Performance Evaluation
Methodology, Addison Wesly Publishing,
1978.

Law, A. M. and Kelton, W. D, Simulation
Modeling and Analysis, McGraw-Hill, 1991.

Lee, H. and Sheng, O. R L, "A Multiple
Criteria Model for the location of Data Files
in a Distributed Information Systems,"
Computers and Operations Research, Vol.21, 1992,
pp. 21-33.

March, S. T. and Rho, S, "Allocating Data
and Operations to Nodes in Distributed
Database Design,"
Knowledge and Data Engineering, Vol.7, No.2,
April 1995, pp. 305-317.

IEEE Transactions on

Ozsu, M. and Valduriez, P, Principles of
Distributed Database Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1991.

Ram, S. and Narasimhan, S, ‘"Database
Allocation in a Distributed Environment:
Control

Incorporating a Concurrency

Mechanism and Queuing Costs," Management
Science, Vol40, No.8, August 1994, pp.
969-983.

Rho, S.,, Distributed Database
Allocation of Data and Operations to Nodes in
Distributed Database Systems, Unpublished
Ph.D. thesis, University of Minnesota, May
1995.

Design:

Rho, S. and March, S. T, "Designing
Distributed Database Systems for Efficient
Operation," Proceedings of the 16th International
Conference on Information Systems, December
1995. pp. 237-253

Rho, S. and March, S. T, "Optimizing
Distributed join Queries: A Genetic Algorithm
Approach," Annals of Operations Research,
Vol.71, 1997, pp. 199-228.

Richter,]., "Distributing Data," Byte, June 1994,
pp. 139-148.

Sauer, C. H. and MacNair, E. A., Simulation of
Computer Communication Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1983.

Schwetman, H., "CSIM: A C-Based,
Process-Oriented Simulation Language,"
Proceedings of the 1986 Winter Simulation
Conference, 1986, pp. 387-3%.

Schwetman, H. "Using CSIM to Model
Complex Systems," Proceedings of the 1988
Winter ~ Simulation ~ Conference, 1988, pp.
246-253.

Thanos, C., Bertino, C. and Carlesi, C., "The

Effects of Two-Phase Locking on the
Performance of a Distributed Database
Management System," Performance Evaluation,
Vol.8, 1988, pp. 129-157.

The, L., "Distribute Data Without Choking the

Appendix 1. Simulation Results

33

Net," Datamation, Vol40, January 7, 1994, pp.
35-36.

Yu, C T. and Chang, C. C, "Distributed
Query Processing,” ACM Computing Surveys,
Vol.16, No4, December 1984, pp. 399-433.

Average Response Time
Solution
Analytic Simulation
1 8.118 8.900
2 7.987 7.426
3 7.726 6.934
4 6.605 7.652
5 6.708 7.083
6 6.024 5.390
7 7.317 7.191
8 6.948 6.834
9 6.983 6.126
10 6.482 6.216
11 6.681 6.138
12 5.581 5.054
13 12.114 13.677
14 12.725 13.742
15 11.956 12.290
16 12.013 13.511
17 11.643 12.977
18 11.501 13.975
19 10.850 10.160
20 10.321 11.446
21 11.028 10.580
22 10.168 10.194
23 11.259 12.092
24 9.812 9.318

Appendix 2. Average Response
Time Model (Rho, 1995]

Min RT =

Zf(k) (Reom k) + Rygk) + Repy (k)
k

> tk)
k

where RCOM(k), RIO(k), and RCPU(k) are
the times spent by query k in communication,
disk I/O, and
response time compo- nents are summarized
below.

CPU, respectively. These

RCOM(K) =

XYY

t pom

,P)IL(t, p)N(k, m, t,p) +H(k,m,t,P)
(UL n) -UL, T,) UL(tp)

where UL(tp) is the capacity of the
communication link from node t to node p

TLEp) =
Z 00Xk m,tp), W(t.p)= gf(k)%Nt(k)m tp)’
and N(kmit,p) is 1 if Hkm,t,p) > 0 and it is
0 otherwise. H(km,tp) is defined as follows:

Wi(tp) =

For message steps of retrievals,
H(kmgtp) =
if t = node(k) and p = node(a(k,my))
Hkmtp) =0

(bytes per unit time),

otherwise

where LM is the size of a message, node(k)
is the origination node of query k, node(i) is
the node at which file fragment i is located.

For join steps,

H{km,t,p) = La(km) + Lb(k,m)

if t = node(a(km)) = node(b(km)) and p =
node(k,m)

H(km,t,p) = La(km)

if t = node(a(km)) and t = node
(b(km)) and p = node(k, m)

H(km,t,p) = Lb(k,m)

if t * node(a(km)) and t
(b(km)) and p = node(k, m)

Hkmtp) =0

otherwise.

= node

where Li is the size of file fragment i (in
characters), a(km) and b(km) are the file
fragment referenced by step m of query k
and node(km) is the node at which step m
of query k is processed.

For a final step,
Hikmytp) = La(km)
if t = node(a(km)) and p = node(k)
Hkmt,p) =0
otherwise.

For send-message steps of updates,

H(kmtp) = LM
if t = node(k) and copy(a(km), p) = 1

H(kmyt,p) = 0

otherwise

where copy(i,t) is 1 if fragment I is stored
at node t, and 0 otherwise.

For receive-message steps of updates,

Hkmtp) = LM
if copy(a(km), t) =1 and p = node(k)

Hkmtp) = 0
otherwise.

RIO(k) =

1
230k m.) Fro0)y — TIKE)

where UIO(t) is the disk I/O capacity at
node t (number of disk I/O’ s per unit time)
and TIO(t) ZF(k)Z O(k,m,t) is the total

number of disk I/O’ s at node t. Okmyt) is
defined as follows:

For selection and projection steps,
O(kmyt) = Dkmt
if t = node(a(k,m))
O(kmyt) = 0

otherwise

where Dkmt is the number of disk I/Os
required to process step m of query k at
node t.

For join steps,

O(kmyt) = Fa(kmjt

if t *= node(k, m) and t = node(a(km))
and t ¥ node(b(km))

O(km,t) = Fbkm)t

if t = node(k, m) and t = node(a(k,m))
and t = node(b(k,m})

O(k,m,t) = Fa(km)t + Fb(kmjt

if t *= node(k, m) and t = node(a(km))
and t = node(b(k,m))

O(km,t) = Dkmt

if t = node(km) = node(akm)) =
node(b(k,m))

O(k,m,t) = Dkmt + Ea(km)t

If t = node(km) = node(b(km)) and t
node(a(k,m})

O(km,t) = Dkmt + Eb(km)t

if t = node(k, m) = node(a(km)) and t
node(b(k,m))

O(km,t) = Dkmt + Ea(km)t + Eb(km)t

if t = node(km) and t node(atkm)) and t
node(b(k,m))

35

Okmyt) = 0
otherwise

where Fa(km)t is the number of additional
disk accesses needed at node t in order to
send akm) from node t to another node
after having retrieved it and Ea(km)t is the
number of disk access required to receive and
store a(k,m) at node t (typically a file write
and the creation of needed indexes).

For final steps,
O(k,m,t) = Ea(kmjt
if t = node(a(km)) and t = node(k)
O(km,t) = Fa(kmjt
if t = node(a(km)) and t node(k)
Okmt) =0
otherwise.
For update requests,
O(kmt) = Dkmt
if copy(atkm), t) =1
Okmt) =0

otherwise
RCPU(k) =

ZZU(k,m,t) !
- UCPU(t) =TCPU(t)

t

where UCPU(t) is the CPU capacity at
node t (number of instructions per unit time)
and TCPU(t) ;}F(k)ZO(k m,t) is the total

number instructions at node t. U(kmt) is

defined as follows:

For message steps,
Ulkmt) = St
if t = node(k) and t node(a(km))
Ukmt) = Rt

if t node(k) and t = node(a(kmy))
Ulkmt) =0

where St and Rt are the expected CPU
units required to send and receive a message.

For ' selection and projection steps,
Utkmt) = Wkmt
if t = node{a(k,m))
Ulkmt) = 0
otherwise

where Wkt is the number of CPU units
required to process step m of query k at
node t

For join steps,

Ukmt) = F a(kmjt

if t+= node(k, m) and t = node(a(km))
and t node(b(km))

Ulkmt) = F b(km)t

if t * nodelk, m} and t nodefa(k,m))
and t = node(b(k,m))

Ukmt) = F a(km)t + F b(km)t

if t * node(k, m) and t = node(a(k,m))
and t = node(b(k,m))

U(km,t) = Wkmt

if t = nodek, m) = nodeakm)) =
node(b(k,m))

U(kmt) = Wkmt + E’ a(km)t

if t = node(k, m) = node(b(km)) and t
node(a(k,m))

Ukm,t) = Wkmt + E' b(km)t

if t = node(k, m) = node(a(km)) and t
node(b(k,m))

Ukmt) = Wkmt + E' a(km)t + E' b(k,mjt

if + = node(k, m} and t nodefa(km))
and t node(b(k,m))

Ukmt) =0
otherwise

where Fa(km)t and Eakmjt are the
number of CPU operations required to send
and receive: a(km) from and to node t,
respectively.

For final steps,
Ukmt) = E a(km)t
if t node(a(km)) and t = nodek)
Ukmt) = F a(kmjt
if t = node(a(km)) and t node(k)
Ulkmt) = 0
otherwise.

For send-message steps of updates,
Ulkmt) = 35 copy(a(km), p) St
if t = node(k)

Ukmt) = Rt

if t node(k) and copy(a(km), t) =1
Ukmt) =0

otherwise

For receive-message steps of updates,
Ukmy) = 3, copy(aim), p) Rt
if t-= node(k)

Ulkm,t) = St

if t node(k) and copy(a(km), t) =1
Ulkmt) = 0

otherwise

For update steps,
Ukmt) = Wkmt
if copy(a(km), t) =1
Ulkmt) =0
otherwise

37

L JUSVNEAY/ I

= 4} 7t (Rho, Sangkyu)
MERIL FReHE EHskR PlE wlREr el BFe 4AF R AL
g9 Assgon A Nedishr Al AAFolth Fo ATEok
e FAF djolelmjo] Alaw), ARG AL A, dolE vield Fo] 9

2

