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1. Introduction of excessive computer storage and

.. . m| ional efforts, i i
Development of an efficient convection computational e S, especially in the complex

scheme which is simple to implement but is
free of false diffusion has been one of the
major tasks for the computational fluid
dynamicists over the last two decades. The
classical lower-order schemes such as the
upwind scheme, the hybrid central/upwind
scheme and the power-law schemell] are
unconditionally bounded and highly stable but
highly diffusive when the flow direction is
skewed relative to the grid lines. A simple
remedy to overcome the false diffusion is fo
use a fine enough grid. However, such a
practice is not practical due to the requirement
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three-dimensional flow calculations.

Considerable efforts have been made toward
the development of the improved differencing
schemes, mainly in two directions. One is
raising the order of the scheme and the other
is taking into account the multidimensional
nature of flow. The QUICK(Quadratic Upstream
Interpolation for Convective Kinematics) scheme[2]
and the second-order upwind scheme[3] belong
to the former approach and the skew-upwind
scheme[4] the latter. These schemes have
been successful in increasing the accuracy of
the solution, but all suffer from the
boundedness problem, resulting in an oscillatory
solution behaviour in regions of steep gradient
which can lead to the numerical instability.
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Recently, Gaskell and Lauf5] developed a
higher-order bounded scheme named SMART
(Sharp and Monotonic Algorithm for Realistic
Transport) employing a composite approach in
which the high resolution schemes are combined
with the lower-order bounded schemes.
Leonard[6] also proposed a similar bounded
scheme of third~order accuracy named
SHARP(Simple  High-Accuracy  Resolution
Program). These two schemes have resolved
the forementioned boundedness problem without
much deteriorating the accuracy of the higher-
order scheme. However, numerical experiments
{71 have shown that these schemes need an
under-relaxation treatment at each of the
control volume cell faces in order to overcome
the oscillatory convergence behaviors.  This
deficiency leads to the increase of the computer
storage requirement, which may pose a
practical constraint to their use in the complex
three-dimensional turbulent flow calculations.

Subsequent studies by Zhu and Rodi[8],
Zhuf9], Shin and Choil10] and Choi et al[11]
have proposed bounded convection schemes
which are free of oscillatory convergence
behaviors by choosing simple characteristics in
the normalized variable diagram, such as
piecewise-linear profile (SOUCUP: Second-
Order Upwind-Central differencing—first-order
UPwind), a parabolic profile(HLPA: Hybrid
Linear/Parabolic Approximation), a cubic profile
(SMARTER: SMART Efficiently Revised) and a
combination of piecewise linear profiles (COPLA:
COmbination Piecewise Linear Approximation).
These schemes are very simple to implement
and computationally cost effective.

The objective of the present study is a
systematic comparison of above three schemes,
SOUCUP, HLPA SMARTER and COPLA , in

the incompressible flow calculations under
highly convective conditions. All the schemes
are formulated on a non-  uniform,

non-orthogonal grid so that they can be
applicable to the practical engineering flow
calculations. The relative performances among
the schemes are examined through applications
to the several linear and non-linear test
problems. The computed results by the lower-
order HYBRID scheme and by the higher-order
QUICK scheme are also included for a better

comparison with the existing popular schemes.

2. Mathematical formulation
2.1 Governing equations

The conservation form of transport equation
for a general dependent variable ¢ in a
generalized coordinate system(£,7) can be
written as follows

4%@wH4L@W)
T
Pwas 57%] &
r
where
U=blu+ by, V==blu+bly 2

and
1_ 1 _ 2_
bi=y, by=—=x, bi=—y, H=x
1
Di=xi+y, Di=xi+%

D}=ni=

(3
—(xex,+yey,)

J=%eyy—x,9e

In these equations, p is the density of fluid,
Iy is the diffusion coefficient of the variable ¢,
(u,v) are the Cartesian velocity components in
(x, y) directions and S, denotes the source
term of the variable ¢.

2.2 Discretization of transport equations

In the finite volume approach, the general
transport equation, Eq.(1), is integrated over a
control volume shown in Figl.  The resulting
equation can be written as follows

F,—F,+F,—F,=8,4V+S} 4

where F represents the total flux of ¢ across
the cell face and S5 is the sum of the
non-orthogonal diffusion terms. The total flux
at the west face, for example, can be written
as follows with the diffusion term
approximated by the central differencing
scheme.
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Fo=Cupu—DSdp—dw (5) The details of implementation of the higher-
order bounded schemes will be outlined in the
where following chapter.
Cw"(pU)w, Dw=(!’}£D}) (6)

The evaluation of ¢, plays a key role in
determining the accuracy and the stability of
numerical solutions. For example, the ¢, is
evaluated as follows when one uses the
first-order upwind scheme

¢w=U:¢W+ U;¢F (7)

where U} and U, are the indicators of the
local velocity direction such that

Us=050+IU,I/U,),
Upy=1-U; (U,+0)

®

Incorporation of Eq.(7) and Eq.(5) and similar
expressions for the other cell faces leads to
following general difference equation

where

Aw=D,+C,U;

Ag=D.,—C.U,;

AS=D,-+ Csw (10)
AN= Dn_ CnV;
Ap=Ag+ Ayt Ay+As—Siav
by=S§AV+ S,

Y
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Fig. 1 A typical control volume

and S§ ,S; are the linearized source terms.

3. Higher-order bounded schemes

The current high-order bounded schemes are
based on the variable normalization by
Leonard[6] and the convection boundedness
criterion by Gaskell and Lau[5].  Consider,
without loss of generality, the west face of
control volume. We introduce a normalized
variable such that

$—-du

9= py—— an
where the subscripts U and D denote the
upstream and the downstream locations.

Eq.(11) can be rewritten in terms of nodal
point values

_ 8= dm 6= s
=ty U T B, Ue (12)

Using the above upwind biased normalized
variable, the following four schemes can be
written as follows:

Central difference scheme:

.= [(1-C) Byt CIUY (13)
+[C, $p+(1—Cz)]U;

First-order upwind scheme:

3= wli+ $rU, (14)
Second-order upwind scheme:

3,=(1+C) $yUs +(1+Cy) 3pU, (15
QUICK scheme:

3.= [1+C)1-C) 3w

C(1-Cy
+ 02(1“_ TG )]Uz (16)
+[C(1+C5) Bp+
_ GG
(1 Cz)(l 1—C2+Ca)]U;
where
C=—Xw o Ay
Y7 AX - AX gt T2 AXy+ AX, (1T
C AdXw
3

= AXp+ 4X
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are the geometric interpolation factors defined
in terms of the size of control volume cell.
For example, 4Xp is the size of control
volume around the calculation point P and is
defined as

4Xp="wP+ Pe (18)

The normalized diagrams for these well-known
schemes( U,>0) are shown in Fig.2.
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Fig. 2 The normalized variable diagram for
various well-known schemes

Gaskell and Lau[5] formulated following
convection boundedness criterion.  Define a
continuous increasing function or union of
piecewise continuous increasing function F
relating the modelled normalized face value
3. to the normalized upstream nodal value

Pw(U,>0), that is $,=F(3y). Then a

finite difference approximation to @, is
bounded if

(i) for 0< Pwy=<l, F is bounded below by

the function 9,= $w and above by unity
and passes through the points(0,0) and(1,1);

(ii) for Pw<0, Pw>l, Fis equal to By

The convection boundedness criterion is a
necessary and sufficient condition for achieving
_ computed boundedness if only three
neighbouring upstream nodal values are used to
approximate the face  values. The
diagrammatic representation of the convection

boundedness criterion is shown in Fig.3.

CH

1.0

CcBC

Fig. 3 Diagrammatic representation of the
convection boundedness criterion

According to Leonard[6], for any(in general
non-linear) characteristics in the normalized
variable diagram(Fig.2),

(1) passing through Q is necessary and
sufficient for second-order accuracy

(i) passing through Q with a slope of
0.75(for a uniform grid) is necessary and
sufficient for third-order accuracy.

The horizontal and vertical coordinates of point
Q in the normalized variable diagram and the
scope of the characteristics at the point Q for
preserving the third order accuracy for a
non-uniform grid can be obtained by a simple
algebra using Eqs.(13)-(16).

G 1-G
Xo=+G Vet I=grG Ve
_ G(+C)
Yo=—¢tc, U (19)
(1-CX1+Gy)
t—1-¢,+c, Us

So=(1+C)(1— Uy + C(1+ CyU,

For a uniform grid, Xy=0.5, Y¢=0.75 and
S¢=0.75. Following the above criteria by
Gaskell and Lau[5] and by Leonard[6], one may
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choose several bounded characteristics in the
normalized variable diagram whose order of
accuracy is determined by the shape of the
characteristics. Followings are four simple
possibilities which ensure the second or
third-order accuracy.

The SOUCUP scheme

The SOUCUP scheme[8] employs union of
piecewise linear characteristics passing through
the points, O, Q and P in the normalized
variable diagram

aw = aw+bw aC 0< aCSXQ
= Cw+ dw aC XQg %csl (20)
= B¢ otherwise
where
a,=0 /
b,= Yol X
co=( PomXo(1- X0 @)
d,=(1-Y/(1~Xg
and
Be= PuUs+ 35U, (22)

Eq.(19) indicates that above constants vary
according to the flow direction at the same cell
face when the numerical grids are non-uniform.
The SOUCUP scheme is composite of
second-order upwind, central differencing and
first-order upwind scheme. We see that the
SOUCUP scheme 1is second-order accurate
according to the criteria by Leonard(6]. As
will be shown later, the way of implementation
of this scheme in the present study is slightly
different from that reported in Zhu and Rodi[8].

The HLPA scheme

In this scheme, the normalized face value is
approximated by a combination of linear and
parabolic characteristics passing through the
points, O, Q and P in the normalized variable
diagram

aw =aw+bw 3C+Cw /&CZ
= 3¢

0< 3=l
C(23)
otherwise

where

a,=0
b= (Yo— X9/ (Xo— X% 24)
co={(Xo— Yo/ (Xo— X%
Zhul9] developed this scheme on the
assumption of uniform grid(in this case,

aw=07 bw=27 sz_l)-
is further extended for use on the non-uniform

grid in the present study. This scheme is
second- order accurate.

The original scheme

The SMARTER scheme

The order of accuracy of the scheme may be
increased to the third order if one introduces a
characteristic curve in the normalized variable
diagram whose slope at the intersection point
Q is the same as that of the third-order
accurate QUICK scheme.
been developed by Shin and Choil[10] using
following characteristics in the normalized
variable diagram

3«, =aw+bw aC+Cw acz

+d, 3 0= Bc<l1

(25)
= 3¢ otherwise
where
a,=0
. Xo+So(Xo— XD+ Yo(2Xo—3X2)
’ (Xo— X3
o2 X5+ So(Xo— XD+ Yo(3X5—1)
w (XQ_X%))Z
d = X5+ So(X5—Xo)+ Yo(1—2 X o)
v (Xo—X3)*
(26)
COPLA scheme
Another possible way of devising a

third-order accurate scheme is to employ a
composite of piecewise linear characteristics in
which the QUICK scheme is employed in a
range of 0.5Xo< 9c<1.5Xy. This scheme
is similar to the SMART scheme[5], but is free
of convergence oscillation. Such a scheme was

Such a scheme has’
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proposed by Choi et al{11] employing following
characteristics in the normalized variable

aw = aw+ bw %C OS ac = O.SXQ
= c,td, 3¢  0.5Xo< $c<15X,
= ew+fw 3C I.SXQS ac Sl
= %c otherwise
27)
where
a,=0
b.,,=(2 YQ _SQXQ)/XQ
Cy=— YQ —SQXQ
G (28)

e,,,=(3XQ _ZYQ _SQXQ)/(3XQ —2)
fw=(2YQ +SQXQ '_2)/(3XQ _2)

The normalized variable diagrams for the
higher-order bounded schemes considered in
the present study are given in Fig.4.
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Fig. 4 The normalized variable diagram
for bounded schemes

It is worthwhile mentioning here that the
present bounded schemes are very similar to
the shock capturing schemes based on the
Total Variational Diminishing flux limiters
(TVD), which are widely used in the
compressible flow calculations. The SQUCUP
scheme  is similar to the MINMOD(MINimum
MODulus) scheme of Roe[12] and the HLPA
scheme is similar to the CLAM(Curved Line
Advection Method) scheme of Van Leer[13].

The implementation of the higher-order
bounded schemes is quite simple. We note
that the forementioned four bounded schemes
employ very similar forms of characteristics in
the normalized variable diagram. They differ
only in the order of the characteristics and the
values of the constants. Therefore, it suffices
to present the implementation of one scheme
here, for example, the HLPA scheme. In the
present work, the higher-order schemes are
implemented in a deferred correction way
proposed by Khosla and Rubin[14].

Eq.(23) can be expressed in terms of the
unnormalized variable

$u= {Swt(dp—dm)|as +(b} 1)

(F= g cxf et o

+{ép+(dw—dp)|ai +(bs—1)
( $p— ¢E)+c;( $p— ¢E)2]]U;

Sw—dg bw— Pz
(29)
Given the switch factors
for UN0: ap=1 if l¢p—2 dw+ duml
{gp— dwwl
ab=0 otherwise
(30)
for U,€0: a,=1 if lpyp—2¢p+ gl
pw— oz
a,=0 otherwise
3D

the unnormalized form of Eq.(29) can be
rewritten as

$u=Usdwt U,dp+ 48, (32)
where
4¢,= Usai(dp— dmwwlat+ (65 ~1)

(5=om) < 5=dm)]

+ Upa,(dw—op)[ay + (b, —'21)
$p—Pn - $¢p— o
( ¢W—¢E)+°w( ¢w—¢E) }
After the évaluation of the additional term, the

implementation of this scheme is the same as
that of the first-order upwind scheme. In the
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SOUCUP and LAPPA schemes, the constants
are switched according to the value of B¢ at

the same cell face and for the same flow
direction.

4. Applications to test problems

All the higher-order bounded schemes
described in the previous chapter are
implemented in a general purpose computer
code designed to solve fluid flow and heat
transfer in complex geometries. The computer
code uses a non-staggered grid arrangement
and the SIMPLE[1] algorithm for pressure-
velocity coupling. The momentum interpolation
practice by Rhie and Chowl15] is employed for
calculating the cell-face mass fluxes to avoid
the pressure oscillation.

The test problems include: (1)pure convection
of a scalar variable in three different situations,
(2laminar flow in a lid-driven cavity with and
without inclination. The computed results are
compared with the analytic solutions, the
avaliable benchmark solutions and the results
by the lower-order HYBRID scheme and by
the higher-order unbounded QUICK scheme.

4.1 Pure convection of a scalar variable

In what follows, we present the results of
three  linear problems involving purely
convective transport of scalar tracers containing
discontinuities by prescribed velocity fields.
They are: (l)pure convection of a scalar step
by a uniform velocity field, (2)pure convection
of a scalar step by a rotational velocity field,
(3)pure convection of a box-shaped scalar step
by a uniform velocity field These simple yet
stringent test cases were extensively used in
the literature to examine the performance of
the convection schemes.

The flow configuration for Case 1 is shown
in Fig5. Calculations are performed for two
different flow angles, 6=45" and 6=266",
employing 22X22 uniform grids. Fig.6 shows
the predicted profiles along the centerline by
different convection scheres. It can be seen
that the HYBRID scheme results in a very
diffusive profiles at both angles. Both

accuracy and boundedness are achieved by the
bounded schemes. The sharp gradient is fairly
well resolved without introducing the spurious
overshoots and undershoots. We can observe
that the SOUCUP scheme is relatively more
diffusive than the other three bounded schemes.
The overall solution behaviors are not much
influenced by the flow angle. The QUICK
scheme also fairly well resolves the steep
gradient, but exhibits oscillatory behaviors.
This oscillatory solution behaviour is not
reduced with the grid refinement and is a little
sensitive to the orientation of the flow field.
The magnitude of undershoot is more
pronounced at a smaller flow angle(8=26.6" ).

In the second test case(Case 2) shown in
Fig.7, a scalar profile with a discontinuity at
x=~0.5 is convected counter-clockwise from the
inlet plane(x<0, y=0) to the outlet plane(x>0,
y=0) by a rotational velocity field given by

u=—2y(1-20, v=2x(1—-3% (34)

Calculations are performed with 42X22 and 82
X 42 uniform grids. Fig.8 shows the computed
profiles along the horizontal exit plane
(0<z<1, y=0) for each grid. The general
performances of each convection scheme in this
case are nearly the same as those in the
previous case, except the QUICK scheme
exhibits relatively large overshoots in this case.

As a third test problem of pure convection
(Case 3), we consider a box-shaped profile
shown in Fig.9 which is generated by imposing
a step profile along the bottom and left-hand
walls of the square solution domain.
Calculations are performed with two different
meshes, 22X22 and 42X42. The predicted
profiles along the  vertical centerline
(x=0.5, 0<£y<1) are shown in Fig.10. We
can observe that the solutions by the HYBRID
scheme are very diffusive, even the grids are
increased by a factor of two. The QUICK
scheme results in severe overshoots when the
grid is coarse(22X22), but shows relatively low
undershoots. The bounded schemes fairly well
resolve the steep gradient on either side of the
peaked profile. The SOUCUP scheme is more
diffusive than the other bounded schemes
again, but is much better than the HYBRID
scheme.
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Fig. 5 Case 1. Pure convection of a scalar
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42. Laminar flow in a lid-driven cavity
with and without inclination

Laminar flow in a lid-driven square cavity,
schematically shown in Fig.11, is considered as
an example of non-linear problems which are
of practical interest. Two cases with different
inclinations( 8=90" , B=45" ) are considered to
examine the grid non-orthogonality effect on
the solution behaviors. At present reliable
benchmark solutions are available for both
cases. Calculations are performed for Reynolds
number of 1000 employing 42X 42 uniform grid.
The computed results are compared with the
benchmark solutions by Ghia et al,[16]( 8=90" )
and by Demirdzic et al[17}(8=45" ).

The computed U-velocity profiles along the
vertical centerline for both cases are presented
in Fig.12. For these recirculating type flow
calculations, the QUICK scheme results in the
most accurate solution. The results by the
HYBRID scheme are far from the benchmark
solution. The HLPA, SMARTER and COPLA
schemes work similarly, but are slightly less
accurate than the QUICK scheme. The
SOUCUP scheme is again more diffusive than
the other three bounded schemes. The general
solution behaviors among the different
convection schemes are not altered with the
change of the grid non-orthogonality.

5. Conclusions

A comparison has been made of four
recently developed higher-order bounded
schemes SOUCUP, HLPA, SMARTER and
COPLA together with HYBRID and QUICK
schemes. The following are some findings
from the numerical experiments conducted in
the present study.

(1) All the bounded schemes resolve the
boundedness problem retaining the accuracy of
the higher-order scheme.

(2) The bounded schemes are simple to
implement and computationally cost effective.

(3) The SOUCUP scheme is relatively more
diffusive than the HLPA, SMARTER and
COPLA chemes, but shows a better
convergence rate.

81
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11 Larminar flow in a lid-driven cavity
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(4) The HLPA, SMARTER and COPLA
schemes show nearly the same solution
behaviors both in accuracy and in convergence.
The implementation of SMARTER and COPLA
schemes is slightly more complicated than that
of the HLPA or SOUCUP schemes.
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