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Calculation of Near and Far Acoustic Fields Due to a
Spinning Vortex Pair in Free Field
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Nomenclature

A, B = Jacobian matrices
ap = ambient speed of sound

b = vortex position in complex domain
= frequency

Héz) (kr)2" kind of Hankel function of order 2

z = imaginary number

E,F = flux vectors in the £ and y directions

k= wave number (2w/ag)

M, = rotating Mach number

P = hydrodynamic pressure

P = time-mean hydrodynamic pressure

¢ = acoustic pressure

Q = vector of conservative variables

rc = core radius of the Scully vortex model
ro = radius of rotation of vortex pair
S, 8; = source term in acoustic equation
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T = period of rotation (spinning vortex pair)
t = time
U vector of primitive variables

u,v = hydrodynamic velocity components
o/, v’ = acoustic velocity components

X, Y = eigen-vector matrix of A. and B
z,y = Cartesian coordinates

I' = Circulation (+: counterclockwise)
v = ratio of specific heat

At = time step

) = angular argument

A = wave length

A, M = diagonal matrix of A and B

po = ambient density

pt = hydrodynamic density correction
¢ = acoustic density

o¢ = weighting factor in time stepping
® = complex velocity potential

w = angular velocity
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1. Introduction

Studies on sound generation by unsteady
flowfields in the presence or in the absence of a
body are important to the understanding and
solving of many noise problems of practical in-
terest; for example, blade-vortex interaction,
edge tones, and jet noise. The motions of vor-
ticity are considered to be directly related to
the source of sound generated by vortical flows.
These phenomena have been studied both the-
oretically {1 — 6] and numerically (7 — 14] by
many researchers.

Hardin and Pope [11,12] proposed a com-
putational aeroacoustics technique, where they
split the Euler equations into hydrodynamic
terms and perturbed acoustic terms. The nov-
elty of their approach is found in the introduc-
tion of a new variable named ’hydrodynamic
density fluctuations’, which is the basic differ-
ence in the formulation of governing equations
from others [9, 10]. They applied the technique
to the problems of a pulsating and an oscillat-
ing sphere, which were acting as a monopole
or a dipole source with sound-generating body
surfaces. The main advantage of this method
is that one can use the inco,pressible flow solu-
tion to calculate the acoustic fields at low Mach
number flows.
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Fig. 1 Schematic diagram of flow configura-
tion.

In the present paper, we numerically stud-
ied the sound generation by purely quadrupole
sources. The acoustic field induced by a spin-
ning vortex pair is calculated. The spinning

vortex pair has analytic solutions and repre-
sents the basic acoustic field generated by tur-
bulent shear flows, jet flows, edge tones, etc.
The goals of this study are to verify the ap-
plicability of the CAA (Computational Aero-
Acoustics) technique to calculate the sound
generated by a purely unsteady vortical flow,
to study associated numerical problems such
as boundary conditions and vortex models,
and to investigate the basic physics of com-
pressible sound generation due to the incom-
pressible flow fluctuations. The hydrodynamic
terms are obtained from the analytic solutions
of the spinning vortex pair in this numerical
study. It is verified that the acoustic field cal-
culated numerically agrees well with the an-
alytical one obtained by matched asymptotic
expansion (MAE).

2. Descriptions of the Flow and
Acoustic Field

2.1 Flow Field

The flow field induced by a spinning vor-
tex pair can be assumed as inviscid and in-
compressible. As shown in Fig. 1, The two
point-vortices, separated by a distance of 2r,
with circulation intensity of I', has a period
T = 8x?r%/T, rotating speed w = I'/(4nr}),
wave length A = 7ag/w, and rotating Mach
number M, = I'/(4xroao).

Fig. 2 Analytic acoustic pressure contour for
T'/agro = 1.0, M, = 0.0796.
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2.2 Acoustic Field by MAE

Theoretical analysis by the method of
matched asymptotic expansions (MAE) for
spinning vortex pair was first performed by
Miiller and Obermeier 2] and is also discussed
in Obermeier {3]. In the method of MAE, the
solution of the equations for incompressible mo-
tion in the flow domain and a homogeneous
compressible wave equation in the acoustic field
are matched in an intermediate domain such a
way as to give an asymptotic valid solution.

The incompressible, inviscid flow, which can
also be considered as the inner solution of the
acoustic field, induced by a pair of vortices can
be expressed by a complex potential function
®(z,t). Let z = re¥, and b = ree*t. For
|z/b] >> 1, the approximated complex poten-
tial function can be approximated by

B(z,t) = %ln(z) - %(2)2 4y

The outer acoustic field, which is the pur-
turbed compressible flowfield, is governed by
the homogeneous wave equation

1 82%

Vzé—a—g—ﬁj

=0 (2)

With appropriate matching conditions and har-
monic assumptions, a matched asymptotic ex-
pansion solution of the complex potential rep-
resenting the leading quadrupole term is ob-
tained as
20 = B pPgneaew (g

where k = 2w/aq.
The far field solution for the acoustic pres-
sure can be obtained from Eq. (3) as

pol™
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A typical contour plot of above equation is a
double spiral pattern of a rotating quadrupole
as shown in Fig. 2.

2.3 Vortex Core Model

In the numerical analysis for the acoustic
field due to spinning vortices, a vortex-core
model is required to avoid the singularity at the
center of the vortex. Two different vortex-core
models are investigated in the present study:
the Rankine and the Scully models [16]. The
two models are described as follows:
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Fig. 3 Vortex velocity profiles around core.

Rankine model;
I'r <r<
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Scully model;
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where Vj is the tangential velocity, r is a ra-
dial distance from the vortex center, and r, is
the core radius. The tangential velocity dis-
tributions of the two models are compared in
Fig. 3. The Scully vortex model has smoother
velocity distribution than the Rankine vortex
model.

3. Governing Equations
To derive the two-dimensional acoustic equa-

tions from the compressible flow governing
equations, let us split the velocity, pressure and
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density terms into hydrodynamic terms and p + plu ]
fluctuation terms respectively as belows: ﬁ(u“: + UI'“) + puu+p

i—utu plod + v'u) + pvu

i=v+v

- 7

p=p+y ™ ol + o '

=po+p+p

where p/,v/,v’ and p’ are the perturbed com-
pressible acoustic density, velocities and pres-
sure respectively; and the variables of u, v, and
p are the incompressible hydrodynamic solu-
tions of time-dependent velocity components,
and pressure, respectively. The variable p; is
the key parameter, which relates the incom-
pressible hydrodynamic flow field as the sound
source to the compressible acoustic field. The
parameter p;, defined as the ’hydrodynamic
density’, is the density fluctuation induced by
the hydrodynamic pressure fluctuation in the
flow field. The quantity is defined by the isen-
tropic relation as [12]:

m=glg(p—ﬁ) ®)

1 T
-7 |, o

The hydrodynamic pressure p is obtained by
the unsteady Bernoulli equation as:

where

p=m-my —aml ) (9)

where py and pg are the constant quantities in
the flow field.

From the above relations, the perturbed
acoustic equations derived from the Euler equa-
tions for two-dimensional acoustic fields in-
duced by unsteady, inviscid flow can be ex-
pressed in a non-dimensional generahzed curvi-

linear coordinates form as:
6Q OE oF
Bt + — Bz Oy =-8 (10)
where
4
Q=| pv+pu
[ o + o ]

F=| p(w'+ v'v) + pw
A+ v'v) + pfov 4+ pf |

#(e1) + Z(orw) + £ (p1v)
S = % plu) + 5-% luu) + (%(Pluv)
%(orv) + Z(orow) + £ (orvv)

where p=1+p1 + p'.

The density, velocity and pressure variables
in Eq. (10) are non-dimensionalized by py,
ag and pyad, respectively [13,14]. The length
and time variables in Eq. (10) are non-
dimensionalized by 7o and r¢/ag respectively.
From the isentropic relation, the pressure fluc-
tuation can be represented as below:

p’=$(1+m+p’)7—p (11)

4. Numerical Procedure

We used the non-reflecting boundary condi-
tions based on the impedence condition on the
free field boundary to account for the oblique
wave on the free boundary. Thompson’s tech-
nique [15] for a Cartesian coordinates system is
used to obtain the density fluctuation.

First, to apply the boundary conditions, Eq.
(10) is linearized and recast in the following
form:

au du ou

Q4 +E1-+F—=-8
ot Oz 8y (12)
where
U =[¢,u, v']T
_6Q . _OE _ _ 6F
=3z FBi=zp Fi=3g
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or

ou ou 8u
6?+AEE_+BEE =-5 (13)

where
A=Q'E;, B=Q;'F;, $;=Qr'S

Matrices A and B can be diagonalized by the
similarity transformations.

XAX1=A YBY'l=M

where the diagonsal clements of A and M are
the eigen values of A and B and can easily be
obtained as:

A =diag(u — 1,u,u+1)

M = diag(v — 1,v,v+1)
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Fig. 4a Time history of acoustic pressure at
far field for I'/agro = 1.0, M, = 0.0796.
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Fig. 4b Comparison of acoustic pressure
distribution for I'/agro = 1.0,M, = 0.0796

with Scully vortex model.

Thompson’s boundary conditions [15], how-
ever, have the limitation of not reproducing
the outgoing acoustic signals except for planar
waves. To compensate for this limitation, ad-
ditional physical boundary conditions (BC) are
considered here. The basic concept is that the
acoustic wave radiating through the far bound-
ary is thought to be a cylindrical plane wave.
This physical condition with an isentropic as-
sumption gives the relations [14]:

P =tpga=7¢ (14)

In the above modified BC, only g/ is calculated
from Thompson’s non-reflecting boundary con-
dition, and the remaining two components are
evaluated from Eq. (14).

MacCormack’s predictor-corrector scheme
has gained wide use and acceptance for solv-
ing time-dependent problems in fluid dynamics
[17] and is used in the present study to inte-
grate both the interior and the boundary points
of Eq. (4). The time-step to meet the Courant-
Friedrichs-Lewy (CFL) criterion is determined
according to:

At = O't/Atc (15)
where
_ | el vl 1 1
Atc—[ +Ay+0:0 F‘F'Ey‘f

and o; is a positive constant less than 1. In this
study, we use o; = 0.9.

Fig. 5 Calculated acoustic pressure
contour with Rankine vortex model for
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T/agre = 1.0, M, = 0.0796.
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Fig. 6a Calculated acoustic pressure
contour with Scully vortex model for
I'/agro = 1.0, M, = 0.0796.
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Fig. 6b Three-dimensional graphical view of
acoustic field for I'/agrg = 1.0, M, = 0.0796
with Scully vortex model.

5. Results and Discussions

Numerical studies are carried out for various
calculation intensities I' and spinning radii rg
of the vortex pair over a square domain of di-
mension L x L with an equidistance rectan-
gular grid system. All of the calculations be-
gin with the initial fluctuation quantities set to
zero. The vortices are assumed to start spin-
ning abruptly at time ¢ = 0. Analytical solu-
tions to the hydrodynamic flow field are evalu-
ated at each time step over the computational
domain and are used as the source term in Eq.
(10).

5.1. Effect of Boundary Conditions

The acoustic signal propagated to a given
far-field point of z/rq = 100, y/ro = 0 is plotted
in Fig. 4a. No noticeable signal is observed un-
til the nondimensional time tag/re =~ 100, and
steady harmonic wave propagation is achieved
after tag/ro ~ 400 for the case shown in Fig.
4a. The intensity of circulation I'/aprp = 1,
the rotating Mach number is M, = 0.0796, the
period is Tag/rg = 79.05, and the quadrupole
frequency is frg/ap = 0.0253. The result us-
ing Thompson’s boundary conditions is almost
identical to the one using modified boundary
conditions until nondimensional time tag/rg =~
1000, which correspondings to about 12 peri-
ods of rotation. As time marches, the solu-
tion using the original Thompson’s boundary
conditions begins to deteriorate because of the
reflected noise. However, the solutions using
the presented modified boundary conditions re-
main stable. A comparison of the acoustic pres-
sure profiles with the theoretical result is shown
in Fig. 4b along a radial line from the cen-
ter to the lower-right corner of the domain. It
is thought that the Scully vortex model shows
more realistic features of the flow, and it is
adopted in all of the other results.

5.2. Acoustic Fields

As noticed previously, a typical acoustic
pressure contour obtained by the method of
matched asymptotic expansion is shown in Fig.
2 for the case of the vortex pair of circulation
I'/agro = 1 and the rotating Mach number is
M, = 0.0796. Contour lines are plotted for
a range of —0.0003 < p'/ppad < 0.0003 with
a step increment of 0.0004. The application
of the modified boundary conditions provided
highly stable solutions as illustrated in Fig. 4a,
but the contour lines still have some irregu-
larities over the domain as shown in Fig. 5.
The reason for the irregularities is thought to
be the discontinuity of vorticity in the Rank-
ine vortex core model. The Rankine model has
a discontinuity in vorticity at r = r. (core ra-
dius), whereas the Scully model has a smoothly
varying vorticity distribution around the vor-
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tex core. The discontinuity of vorticity in space
also generates the discontinuity in time for the
source terms in the near field. Figures 6a-6c
show the results with the Scully vortex-core
model for the same case shown in Fig. 2 and
5. A contour plot for the acoustic pressure is
shown in Fig. 6a. Fig. 6b shows a three-
dimensional graphical view of the acoustic pres-
sure exaggerated 200 times.
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Fig. T7a Comparison of acoustic pressure
distribution for T'/agry = 0.6, M, = 0.0477
with Scully vortex model.
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Fig. 7b Three-dimensional graphical view of
acoustic field for I'/agro — 0.6, M, = 0.0477
with Scully vortex model.

A case for a lower rotational frequency is
shown in Figs. 7a and 7b, where the inten-
sity of circulation I'/agry is 0.6, the frequency
is 0.0152, and the rotating Mach number is
0.0477. In Fig. 7a, the acoustic pressure
profile at an instant along a radial line from
the center to the lower-right corner of the do-
main is compared with the result given by
MAE, showing good agreement. Fig. 7b is the

three-dimensional graphical view of the acous-
tic field, where the z-axis represents 1000 times
the acoustic pressure. Fig. 8a and 8b show a
case for a stronger sound source, i.e., higher ro-
tating Mach number, where the intensity of the
circulationI'/agro = 1.6, the frequency fro/ao
is 0.0405, and M, = 0.1273. The analytic
and numerical acoustic pressure profiles is com-
pared in Fig. 8a, and the three-dimensional
graphical view of the acoustic field is shown in
Fig. 8b. The scaling factor of the z axis in Fig.
8b is 50.
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Fig. 8a Comparison of acoustic pressure
distribution for I'/agrg = 1.6, M, = 0.1273
with Scully vortex model.
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Fig. 8b Three-dimensional graphical view of
acoustic field for I'/agrg = 1.6, M, = 0.1273
with Scully vortex model.

It is noticed that the intensity of the sound
source is directly related to the rotating Mach
number. As theorretically obtained by Miiller
and Obermeier (2], the intensity of the sound
from spinning vortices is proportional to M, in
the compact limit. According to Yates [4], the
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compact limit is asymptotically valid for the ro-
tating Mach number M, less than 0.1. Figures
6b and 7a, which represent the cases within the
compact limit, show good agreements in phase
and amplitude compared with the MAE solu-
tions. But, Fig. 8a for M, = 0.1273 shows
some discrepancy. However, such figures of
acoustic pressure profiles do not provide suf-
ficient information to discuss the compactness.

6. Conclusion

A computational aeroacoustic technique,
which splits Euler equations into hydrodynamic
terms and perturbed acoustic terms, is applied
to the case of a spinning vortex pair near a
flat wall. It is found that the sound generated
by the quadrupole source of unsteady vortical
flows in the absence of sound-generating body
surface (monopole and dipole source) can be
calculated by using the source terms due to
the hydrodynamic pressure fluctuations. Ap-
propriate modelling of the vortex core is nec-
essary to avoid oscillations of the solutions to
the problems considered. The Scully vortex-

core model shows better results than Rankine -

model. Nonreflecting boundary conditions are
developed to obtain highly stable solutions.
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