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A note on the periodic solutions of the
nonlinear suspension bridge equation
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1. Introduction

Some of the suspension bridge equation can
be represented by a non-linearly supported
vibrating beam. Consider an.- one-dimensional
beam of length L suspended by cables. When
the cables are stretched, there is a restoring
force which is assumed to be proportional to the
amount of the stretching. But when the beam
moves in the opposite direction, -then there is no
restoring force exerted on it. If w(x,#) denotes
the displacement in the downward direction at
position x and time ¢ then a simplified model
is given by the equations

Uyt A\ U T Agu= WMx) +efx, D
w(x,0)=u(L, =0
uxx(O, t) = uxx(L, t) =0

« BTG FoUG BRFL} Xas
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in which Wx)
x, and flx, ) is an externally imposed periodic
function. These equations can be considered
under the assumption that

Wx) =

which allowed the partial differential equation.
It's well known that, if A, is large enough,

then large numbers of = highly
solutions could exist.

is the weight per unit length at

W sin 2%
L

oscillatory

2. Periodic Solutions

We begin this section investigating periodic
solutions of the problem (1.1) under the more
realistic assumption that the weight per unit
length is constant, ie. Wx)= W,,0<{x<{L. By
obvious change of variables, problem (1.1) can
be reduced to
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U+ Ut b =1+ efx, )

u(i—g—,t)=um(i—2’i,t)=o in (=%, 5)%xR.(21)

Without loss of generality,
Ax,D is even in x and 1, and periodic with
period 7z, and we shall look for the na-periodic

solutions of (1.2). Part of our analysis concerns
the steady-state case of (1.2). A positive force ¢

we can assume

produces a steady-state deflection v(x)
satisfying
iy i (K K
v+t =c, in ( 2,2)
KED)=0"(EF)=0 (2.2)

Physical intuition suggests that ¢ is positive, as
the beam deflects under the load, and one would
also expect that the externally imposed n-
periodic force &f(x,t) produces small oscillations
of the order of magnitude & around the
steady-state solution. It's easy to demonstrate
that for certain ranges of b additional highly
oscillatory  z-periodic solutions, which change
sign, also exist.
Let L be the differential operator

The eigenvalue problem for u= u(x,?), which

is even in x and { and z-periodic in |, is

— : _ X
Lu=Au in 2,2)><1’i’,

WG, )=ult 5, =0
wlx,D=u(—2x,0=ulx,— )= ulx, t+ 1)

which has infinitely many eigenvalues Amn

and corresponding eigenfunctions @,..(me, #=0)

given by

Amn= 20+ 1)*— 4m?
G mn = c0s2mt + cos (2n+1)x
(m,n=0,1,2,3, )

Investigating all eigenvalues to find out the
eigenvalues in the interval (-19,45), we can find
the eigenvalues easily

/120 = 15(/110'_—— X /‘0()’—— 1</141= 17.
The normalized eigenfunctions are denoted by

. ¢mn
Omn= T

||¢0n“ = 7%’

where n¢,,,,,||=§ for m»0,

Let & be the square in[—%,’%]x[——g,%],
and H be the Hilbert space defined by
H={ usL,(2):u is even in x and t}.
The set of functions { 8,,,} is an orthonormal

base in H.
The weak solution of the problem

Ut U= Fo, %, ) in (=5, XK,

WL D=u x5, 9=0

oo

uis even in x and | and a-periodic in

is of the form

u = Zcmnemn
with L= 2,2 ynComOmn< H,

Le. with u= Zc%m, 6., (oo which implies wue<H.
And f will be that
Au,x, )eH,

such us H implies

Lemma 2.1]
For -1<b<15, the problem
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Lu+but=0in H
has only trivial solution #=0.

Proof]

The space H;=span{ cosxcos2mtm=0} Iis

invariant under L and under the map w—>bu".
The spectrum o; of L restricted to H; contains
Ap=—3 and does not contain any other point

in the interval (-15,1). The spectrum oy of L

restricted to H,= Hj does not intersect the
interval (-15,1). So we conclude that any
solution of Lu+ bu™ =0 belongs to Hy, ie. it

is of the form y(#Hcosx where y satisfies
y' + byt +y=0.

Any non trivial solution periodic solution of this
equation is periodic with period

I 4
7—b+1+1*”'

So there is no non trivial solution of

Lu+bu™=0in H N

Lemma 2.2]

Let h=H with |[|A|l=1 and a>0 be given.
There exists Ry= Ry(k,a)>0 such that for all
b with —1+a<b<15—a and for all
ee[—1,1] the solutions u of Lu+bu*=1+¢eh
in H satisfy |lull < Ry.

Proof]
Suppose ||#ll<{R, doesn’'t hold. Then there
exists sequence { b,, &, U, with

bela—1,15—2al, le,<n, |lu,ll— such that

w,=L Y1~ b,ul +e,h).

The functions vn=—||%’1—”- satisfy the equation
n

gl o+ &
0w =L~ bnn T T -
Since L7! is a compact operator, we may
assume that v,—v; and b,—be(—1,15). Since
Hol=1, it follows that |lygll=1 and

UQ=L—1(_b0'US-)

LZ)0+ bg’l)g-_—'o in H.

This contradicts to the result in the previous
Lemma. N

Lemma 2.3]
Under the same assumptions and with the
notations of Lemma 2.2]

deg ;s(u— L™ Y (1—bu™ +eh), Bg,0)=1

denotes the

for all R>=R; where deg;s

Leray-Schauder degree.

Proof]
If b=0, we have

deg ;s(u— L' (1+¢h), Bp,0)=1

since the map is simply a transition of the
identity and since {IL7'(1+eh)l|I<R, by the
previous Lemma. W

Lemma 2.4] »
The Green’s function for the boundary value
problem

4
is nonnegative if and only if —1<bsc0=%,

where k. is the smallest positive zero of the
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function tanx—tanhx. M

x=3.9266 and

It's easy to get the values

Cop =~ 9.7617

Lemma 2.5]
For all 4>—1, the unique solution v of

b = in (= E )

v(i-é’l):v"(tg):o

is positive in (—g—,%) and even in x and

satisfies v’(—%))O and v’(—g—)<0

Proof]
The eigenvalues of My= Ay, where M= D' with

the boundary conditions, are all greater or equal
1

1—c-

c<f,<l—¢ has a

solutions v are

to 1. Hence, for any <1, ||[(M—¢) Y=
So Mv=Rv,x,§ with

unique  solution,
characterized by

since

v=(M—0) " Av,x, D—cv]

where the right hand side is Lipschitz

continuous with a Lipschitz constant

<ATECCL m
Lemma 2.6]
Let K be a compact set in L,=L,(§), and let
$eL, Then
there continuity 6
depending only on K and ¢ such that]

be positive almost everywhere.

exists a modulus of

(7l — @) TNI<58(n)
for >0 and ¢=K.

Proof]
The function f,:K—R given by

L) =11(nlgl— &)l
(¢eKn=1,2,3, )

the {f,} is

decreasing such that f,(¢) converges pointwise

is continuous and sequence

for every ¢=K. This convergence is uniform

from the Dini’s theorem. Define function &(#)
by

6(v)=max”(|¢'l;7yﬁ)+” for gek.

Then &(7) is furthermore

6(%)—*0. So 6 is a modulus of continuity. WM

increasing in 7

Lemma 2.7]
Assume that 3<4<15. Then there exist >0,
&0>0 such that

deg ;s(u— L' (1—bu" +¢eh), B(v),0)=—1

for |el<e;,, where ¢ is the unique solution of

1.3)
3. Main Results

So far we proved some properties that can
be occurred when we invesgate how many
solutions can be found. The next two theorems
follow from these Lemmas.

Theorem 3.1]
Let - h=H with
60)0

[1Zl=1 and 3<b<¢15. Then

there exists such that if |el<gp the

equation
Lut+bu"=1+eh in H e, (3.1)

has at least two solutions.

Proof]
The equation (3.1) can be written in the form

Tu=u—L "0 —bu+eh)=0
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Let B, be a large ball of radius a. Then the
Leray-Schauder degree of Bpg for large R R,

is +1 by Lemma 26]. From Lemma 2.7], the
degree on the ball B.,( p) is -1. So

drs(Tu, Be( 1B (v)€,0)=2.

So Lu+bu"=1+¢eh has the solution one is in
Bg, and one is in Bp[\B,(»)°. So we can reach

to the conclusion that (3.1) has at least two
solutions. ]

Theorem 3.2] »

Suppose that the eigenvalue A,y is simple.
Suppose that A; is the nearest left eigenvalue
of A, and Ay is the nearest right eigenvalue of

Am. Then the equation
Lu+bu"=1+¢h in H

has at least two solutions for b in (A1, A,g) or
in (/1,,,0,/12)

Proof]

The proof of this theorem is almost same as the
proof of Theorem 3.1}, Lemma 2.1] and Lemma
22]. Suppose that A,<A<A;. Then we can
appply the Lemma 2.7] in each of the interval
(A1, Am) and (A,4,4y). The degree is +1 in
one of these intervals and -1 in the other
interval. Since b must be one of these intervals,
we can apply Theorem 2.1]. So we can reach
the conclusion that the problem has at least two
solutions for b in (A;,4,9) or in (1,4,4,). B

4. Nonlinear suspension bridge
equation with a variable coefficient.

In this section we investigate what will
happen if the coefficient b= &(x).

Uyt U+ bt =1+ efx, D) in H ..(41)

We denote the set { 8,,}/ is an orthonormal

base in H.
Consider the problem

Lut+ 80)u™ =0 in H oo, 4.2)

Let H,=span{ 0y} and H,=Hj. Let F
denote the orthogonal projection on Hj.

Theorem 4.1] C
Let b(x) be even and 1.65¢H(x)<3.35 in
[—%—g-] Then the equation (4.2) has only the
trivial solution.

Proof]
Let ¢=1.65. Then

L+ = Th

-1 1
||(L+C) “Hg— 2.65

Rewrite (4.2) as
(L+Qu+(b(x)—dut+cu =0

Let g(x)=&(x)u”+cu~ for all
we have

u= H. ‘Then

0<(b(x) — o)l Ul <g(x)<1.7| 2

and Nell<1.7]]ell.
g=v+w,v=Pg, w=(I— P)g.
exists &(0<6<1) such that

Decompose 2 as

Then there

Holl2=1.72 62| ul|?
Hwll*<1.7%(1 — )% ||2d)?

Since v=qacos2tcosx for some ae=R and

+”2=

hence |lv —%—Hv”z. Thus we get
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lli?= [gv=[&v*~ [0

+ o 1.
<1.7 [lulo* < g ladllol] ... (44)
from which
2. 172 ne
<L e 45)

2

Then we get OS(?ZS—%-. And

L+ ¢) ()<l
Thus the equation

ut(L+0) 'g(x)=0 in H

has a unique solution, which is the trivial

solution.

The proof of next lemmas are almost same
as the proof in section 2 and section 3.

Lemma 4.1]
There exists Ry>0 such that for all d(x) with

1.65¢86(x)<3.35 the solution # of (4.1) satisfy
|12d| < Ry

Lemma 4.2]
Under the same same assumptions in Lemma
4.1]

dis(u— L' (1~ b(x)ut), Br,0)=1

for large enough R> R,

Lemma 4.3]
Let b(x) be even and 3<#(x)<3.35. Then there
exists >0 such that

dis(u— L' (1~ b(x)u"), BLw),0)=—1

where w# is the positive solution of the equation
(4.1).

Theorem 4.2]
Let 3<4(x)<3.35 be even, then the equation (4.1)
has at least 2 solutions.

5. Conclusion

In this paper, we investigate the number of
solutions in the suspension bridge equation
which is represented by a non-linearly supported
vibrating beam. The case of an externally
imposed period function is given and the
coefficients are constant, we investigate how
many solutions can be found in some range. To
find the number of the solutions we used
Leray-Schauder degree. And we investigate how
many solution can be found when the equation
contains variable coefficient.
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