CiA3 olf8e 0182 XL 85 2122iF 1615

2 9

¥ eidMe vad g o8 tza AL 2779 E Adsy @A 8tk U223 APRAA s
o e EFdgel AlgA d2a aFe dE P $HATN A IS FEL 2R, BEAY R A
o vlAle €49 429 HHES AHE $UTh AY Aol g2 Aoy Y AASE 99
T Ao vish v AFHT el i FF FRAZ0] FotATh A EH N A FHS AAE e A
GE E77)0] /& NEEg H F2 45 L /M BAth

Efficient Repair Algorithms using Disk Mirroring
Sungsoo Kim ' - Young-Jong Cho'

ABSTRACT

In this paper, we propose and analyze various repair methods for a disk subsystem using mirroring. We also
study the effects of the repair process that is invoked on disk faults on the mean response time of user disk
requests. Finally, we analyze the effects of two different access patterns (uniform and non-uniform) on the repair
process and performance. According to the results, average response times for non-uniform access pattern
compared with uniform access pattern become shorter as the system load increases. OQur simulation results show
that the proposed repair algorithm with a short delay gives a better performance than the previous algorithms.

1. Introduction

Performance of computer systems has improved
rapidly in recent years. However, this improvement
has not been even among all components of a computer
system; some components, such as CPU (as measured
by its clock speed) and memory size, have improved
faster (increasing by 40-100% per year) while other
components, such as I/O, have improved at a much

a&;} x‘fg:.‘fe 1996 % olFtj 8t |7u} XY 93te] A7
A&
133 WoFatE JRJVNG YL RAFEH IR
EEAF:19961 99 59, AAMER 1997 59 199

lower rate (e.g., the improvement in seek time has
been only 7% in the same time span) [1, 2]. Hence,
the 1/O subsystem has become more and more clearly
the bottleneck of a computer system.

Disk I/O performance has been improved by enha-
ncing the disk subsystems. Several studies have been
reported in this area. The concept of redundant arrays
of inexpensive disks (RAID) is one of the most popular
approaches for disk arrays [3, 4, 5]. RAID utilizes
models for different disk array algorithms, like mirroring,
striping, and striping with parity. These algorithms
provide an increase in either performance or reliability
(or both).

1616 SIRAIK2IAT =2X| M4R Kl 625(97.6)

The combined analysis of performance and reliability
(performability) has become one of the key issues in
modern disk subsystems. The higher reliability usually
causes a performance degradation in disk write requests
because the same data must be stored in multiple
locations. On the other hand, redundancy in the sys-
tem is essential for a disk subsystem to survive media
faults (i.e., problems in a disk unit to store or maintain
data due to, for example, a deterioration of the magnetic
media) 6, 7].

Generally, performance analysis of disk subsystems
has been performed under steady state conditions.
However, performance of a fault recovery method is
important, especially when the disk subsystem is used
in a real-time environment (where strict response time
requirements must be met). For example, the mean
response time is not sufficient to ensure that a disk
subsystem can continue its operations for storing or
retrieving data in a multimedia application such as
audio or video playback and recording. Usually, per-
formance is guaranteed only under either a steady or
a degraded mode, but not while the system is under
repair for a disk fault.

Generally, disk faults are permanent (not temporary)
because a disk fault is mainly caused by a major
problem with the disk. The disk repair process is
based on using a spare disk that is utilized by copying
the contents of an entire disk from the fault-free disk
to the spare disk. RAID-0 using disk striping with
0% redundancy, has the lowest cost of any RAID
organization. This approach has the best write perfo-
rmance, but it does not offer the best read performance.
As reported by Chen, et al. in [8), redundancy policy
like mirroring can give a better performance on reads
due to its adaptive scheduling capability for requests
on the disk with the shortest expected seek and
rotational delays.

In this paper, performance estimates of a mirrored
disk subsystem are made for different repair algorithms.
The main objective of this paper is to study the per-

formance of various repair scheduling algorithms dur-

ing a disk subsystem recovery process.

The organization of this paper is as follows. Section
2 reviews briefly previous studies. In section 3, disk
fault models are introduced. Section 4 discusses alte-
rnative repair algorithms. The performance of the re-
pair processes is then analyzed in section 5. Finally,
conclusions are presented in section 6.

2. Review

Usually, the main interest for performance evalu-
ation has been concentrated on the steady state analy-
sis of disk arrays [2, 9, 10, 11, 12]. Normal operations
of disk arrays have been studied extensively. These
studies have been concentrated on fwo major areas:
reducing the response time {13, 14] and increasing the
throughput of the disk subsystem {2, 9, 15].

The repair processing time is usually considered to
be short compared with the normal operation time
(i.e., the mean time between failures, MTBF, is much
longer than the mean time to repair, MTTR) [16).
However, the effects of a repair process can be signifi-
cant when tight requirements in response time are im-
perative (e.g, in a real-time system or multimedia
storing/retrieving environments).

Two related studies on repair algorithms for disk
arrays have been reported in [16, 17]. In [17], the sys-
tem is modelled in three operational modes:normal,
repair, and degraded modes. The normal operation
mode describes the operations when all disk units are
operable. Whenever a disk fault occurs and the repair
process is not yet started, the system is said to be in a
degraded mode. When the system is being repaired
and some of the disks are not available, the system is
considered to be in a repair mode. In this model, only
a total disk failure is considered (i.e., sector or track
faults are not considered). Also, the study of [17] has
been restricted to a uniform access pattern. In [16], a
comprehensive study of reliability of disk arrays has
been made. This study has analyzed intensively the re-
liability of disk arrays as function of repair time.

However, it has not studied the implications of the re-
pair process on performance.

It has been shown that practical access patterns dif-
fer significantly from the uniform access pattern as
the access probability is usually concentrated in cer-
tain locations [18]. Besides, the probability to access
the same location (or nearby a previous disk request)

may be substantial as indicated in [19)].

3. Disk fault models

There are several disk array models of RAID [3, 4,
11, 12]. In this paper, only the mirrored disk system
(RAID-1) is studied. A model of a mirrored disk
subsystem is illustrated in Figure 1.

In this section, fault models of a disk subsystem are
discussed. Only disk faults are considered. Faults in
other parts of the computer system, such as disk con-
troller, disk bus, memory or CPU, are ignored.

A fault in a disk unit can occur at any time during
processing ; however, the fault is generally detected
only when the disk is used. Hence, a fault may be
recognized only after a latency time, i.e. when a disk
read or write request is made on the faulty area of the
disk and this may occur at a substantial amount of
time after the occurrence of the actual fault. A prob-
lem associated with fault latency is that it increases
the probability of data loss (e.g., after a disk fault of
one disk, the latent sector faults on the other disk re-
sult on data loss of those areas). Generally, it is
assumed that the fault probability of the media is in-
dependent of the disk usage (i.e., the action of either
reading or writing does not deteriorate the

media).

orocessor
bus

disk unk 1 disk unit 2

(Fig. 1) Model of a mirrored disk system

Cla3 02 0(8S 8 87 LN2F 1617

An intensive study of disk fault models has been
made in [6}. Disk faults can be divided into two main
categories : sector and complete disk faults. Several
subcategories can be used for defining a more detailed
and accurate fault modeling of the disk subsystem.
For simplicity, only disk faults are considered in this
paper. Transient faults are processed as if they were
permanent.

Different from a sector fault, a disk fault leads to a
complete inoperability of the disk unit and a iotal
data loss for the entire disk. Generally, disk faults are
permanent (not temporary) because a disk fault is
mainly caused by a major problem with the disk. The
problem can be in the electric circuits (controlling,
read/write, or interface logic) or mechanical components
(such as seek of rotation motors). Also, a disk can be
discarded due to an excessive sector fault rate or the
exhaustion of spare sectors. In practical systems, these
faults have been found to be permanent.

A disk fault can be detected in two ways. First, the
fault can be detected when a disk stops responding to
requests. Second, the disk can be treated initially for
a sector fault but later it is recognized that actually
the entire disk (or a significant part of it) is inaccess-
ible and a sector faull is then diagnosed as a disk
fault. In the first case, the detection of the fault is fast
as the disk protocol detects missing disk units very
efficiently. The second case may last longer because it
is initially treated as a sector fault and some time is
spent for diagnosing and correcting this fault.

The disk repair process is based on using a spare
disk that is utilized by copying the contents of an
entire disk from the fault-free Jdisk to the spare disk.
For an uninterruptible operation, the system should
be provided with a hot standby disk.

The copying process can be simplified and expedited
because the entire disk can be read and written
sequentially. Hence, seck time can be minimized. The
same process would be also applicable to rotation
delays but, in this case, the main problem is that the

number of sectors per track decreases as the track

1618 SInIS 2SS =X M4 X 65(97.6)

number increases (disk tracks closer to the center
have fewer sectors per track) and the actual physical
disk structure is not generally known a priori. Usually,
SCSI disks are represented as a continuous set of
sectors and it is up to the implementation of the disk
to organize the sectors {i.e.,, number of tracks, number
of sectors per track, and number of disk surfaces).

One of the key issues in the repair of a disk system
is when the repair process should be started. There
are two major approaches for this problem:start the
repair process immediately after fault detection, or
delay the repair process until a more suitable time can
be found (e.g., when there is no other load in the sys-
tem).

In an immediate repair process, data is copied
sequentially from a fault-free disk to a spare disk with
no delay. A read request is issued to the fault-free
disk. When the read request is completed, the data is
written onto a spare disk. After the write request has
completed, a new read request is issued immediately.
This process is continued until all sectors are copied.

There are two major benefits from an immediate
repair. First, it minimizes the probability of data loss
(a fault on both disks in the same location at the
same time). Second, the system regains sooner its nor-
mal performance level.

The disadvantage of an immediate repair algorithm
is illusuated in Figure 2. A significant initial peak
may result for the mean response time if the repair
process starts immediately and the operations, which
were originally allocated to the faulty disk, are
redirected to the remaining (fault-free) disk. During
the transient phase, the response time may exceed the
limits imposed by system performance requirements.
The duration of the initial peak is usually short
because the number of requests waiting for disk
access is generally small.

In a delayed repair algorithm, the peak in perfo-
rmance degradation is lower than in the previous case
(as illustrated in Figure 2) because the extended user

requests and repair requests overlap only to a limited

amount. Hence, it is easier to maintain response time
requirements. By introducing a short delay between
repair requests, it is possible to limit the number of
repair read (or write) requests that any user disk re-
quest may need to wait.

However, there are two major disadvantages enco-
untered by using this approach. First, the probability
of losing data is higher as the time becomes longer,
because only one disk is operable. Second, a longer
Tpair time causes a longer time of degraded performance
prior to full availability for a normal performance
level.

The fault probability of the second disk (while the
first disk is under repair) is low because the repair
time is significantly shorter than the mean time
between failures, MTBF, of the disk [16]. Hence, the
reliability of the disk system is not significantly decreased
even if the repairing time is increased by a factor of

two to four.

immediate start of
""" 1e0Bir procaes

immediate repair
agoritvn
...... Defayed reoair
algorithm
..... Maémum allowed
. - fesponse time

delayed st of
repair process

Relative mean response time
- o

Time

(Fig. 2) Example of the effects of immediate and delayed
disk repair algorithms

4, Disk repair algorithms

Disk repair algorithms are divided into two major
categories depending on the size of the fault, ie.,
either individual sectors or the entire disk failure.
Here, the interest is focused on repairing disk faults
as sector faults can be repaired in a time that is in the
order of a normal disk request while repairing a com-
plete disk takes a significantly longer time.

The difference between disk repair algorithms is
minor when it is detected by either a read and a write
request. Only the beginning of the process is changed.

With a read request, the request is directed to the
fault-free disk. A write request to the faulty disk is
s;mply ignored because the operating system or the
disk driver generates automatically a disk write re-
quest to both disks for a user write request.

The first disk repair algorithm is then given as

follows.
Algorithm 1

[Step 1] Set the start address of the next disk request
(denoted to as sa) to zero and set the request
size (denoted to as »s) to a given value.

[Step 2] While the repair process is active, direct all

read requests to the fault-free disk.
Direct a user write request to both disks
(fauit-free and spare) if the user is requesting
an address below sa, otherwise direct the
write request only to the fault-free disk.

[Step 3] Wait for a given interval (denoted to as w¥).

[Step 4] Issue a read request (with start address sa
and size 7s) to the fault-free disk.

[Step 5] When the read request is completed, issue a
write request to the spare disk.

Increment the start address sa by the size of
the requested block 7s.

[Step 6] Wait for the write request to complete.

[Step 7} If there are still more sectors to be copied, go
to step 2.

To maintain data integrity, two restrictions are
imposed to the execution of Algorithm 1. First, disk
requests should not be rearranged in the request
queue. Rearrangement of disk requests could cause
inconsistency in the disk storage. Second, step 5
should be completed as an atomic operation [20, 21].
If these conditions are not met, there is a possibility
(e.g., a user write request is processed in the middle of
step 5) that the spare disk is not updated properly
(either a user write request is not written into the

spare disk or the order of the write operations may be

CIAZ DiHEE 0188 R B8A0 87 2n2iE 1619

wrong). Another problem with Algorithm 1 is how to
handle those user disk write requests that have the
start and the end addresses at opposite sides of the
parameter sa. The proposed approach splits these
requests into two parts:the beginning (up to sa) is
directed to both disks while the end (from sa to the
end of the request) is directed only to the fault-free
disk.

Algorithm 1 has two parameters that can be used
for tuning up the repair process. First, the repair
intensity (i.e., how long Algorithm 1 waits after
completing the previous write to the spare disk before
issuing the next read request to the fault-free disk)
specifies the load of the repair process to the system.
By delaying the next disk read operation, the effect of
the repair process on user requests is reduced as the
probability of having a pending repair request G.e.,
when a user request enters the disk subsystem) is
lower. Hence, the performance degradation of user
disk requests is lower than when the repair process is
continuously generating new repair requests. However,
the slower repair process may cause the performance
degradation to last a longer time.

Especially, the delayed repair process causes the
fault-free disk to suffer from a heavier load because
all read requests are directed to that disk. This can be
reduced, provided read requests are divided similarly
to write requests. However, these requests cause a
longer processing time for repair requests in the spare
disk (because read requests to the spare disk causes
longer seek times for the repair writes). On the other
hand, the fault-free disk would have fewer requests
(especially those with longer seek times) and the load
of the fault-free disk would be lower. Hence, it can be
assumed that the response time of the entire disk
subsystem should be better with a higher system load.

The second parameter of Algorithm 1 is the size of
the request block. The larger the repair block is, the
more it affects user requests because repair requests
are then longer than conventional user requests.

However, smaller repair blocks cause an I/O ove-

1620 SinFEXeiED] =Z X M4 H 622(97.6)

rhead because seck and rotation delays become sig-
nificant (a significant part of the request processing is
spent for seek and rotation, while the disk data trans-
fer activity is low). A solution would be to access one
(or several) complete track(s) per time. Then, the ro-
tation and seek delays would be minimized. Unfo-
rtunately, there are two problems with this arrange-
ment. First, conventional disk units have a variable
number of sectors on a track (outer tracks have more
sectors than inner tracks). Second, the exact internal
structure of the disk is usually unknown.

A second disk repair algorithm is proposed; this
algorithm is very similar to Algorithm 1 except for

the handling of read requests.
Algorithm 2

[Step 1] Set the start address of the next disk request
(sa) to zero and set the request size (rs) to a

given value.

[Step 2] While the repair process is active, direct a
read request to a fault-free disk if the start
address is larger than (or equal to) sa or if
the start address of the user request is on the
second half of the disk. Otherwise, direct the
read request to the spare disk. Direct a user
write request to both disks (fault-free and
spare) if the user is requesting an address
below sa, otherwise direct the write request
only to the fault-free disk.

[Step 3] Wait for a given time (wt).

[Step 4] Issue a read request (with start address sa
and size 7s) to the fault-free disk.

[Step 5] When the read request is completed, issue a
write request to the spare disk.

Increment the start address sa by the size of
the requested block 7s.

[Step 6] Wait for the write request to complete.

[Step 7] If there are still more sectors to be copied, go
to step 2.

The same restrictions (i.e., no rearrangements u
requests and the atomic operation of step 5) as Algor-
ithm 1 must be maintained. The benefit of Algorithm
2 compared with Algorithm 1 is the reduced load on
the fault-free disk during the repair process. However,
the load on the spare disk is increased because read
requests tend to move the heads away from the next
repair write location. Yet, this increase is not significant
when there are also some write requests in the system
(write requests below sa move the read/write heads of
the spare disk away from the appropriate track of the

next repair write).
5. Effects of repair algorithms

Parameters used in the evaluation are based on the

model of [6}. These parameters are listed in Table 1.

{Table 1) Numeric values for the simulation program

Component [Value Unit Comments
rwr 50/50 %% Read/Write ratio
bsoek 12 ms End-to-end head movement time
(excluding acceleration and
deceleration time)
boce 6 ms | Acceleration and deceleration time
for disk head
b 1/60 $ Rotation time of the disk one
full round
Myyack 1024 tracks Number of tracks on a disk

Nisk 512 x 1024 | sector Modelled disk size is 256MB

A simulation program is used for studying the per-
formance of repairing an entire disk unit. Perfo-
rmance is studied by varying the user activity, and
measuring the mean response time and percentiles of
the distribution of user disk requests as well as the
length of the repair process. Two different access
patterns are used: uniform and non-uniform.

The simulation results indicate, that the response

time is quite similar for uniform and non-uniform

access patterns when the system load is moderate.
With higher load, the non-uniform access patiern
results in a better mean response time because the
disk utilization is significantly different (requests con-
centrate on certain locations).

In Figure 3, the mean response time of user disk
requests is presented as function of system load when
the uniform access pattern is used. These results are
compared also with the mean response time of a
single disk (this represents the scenario when one disk
is failed and repair has not yet started) and a mirrored
disk system (this represents the scenario when the re-
pair has been completed). With a moderate system
load, the mean response time of user disk requests is
slightly higher than the one with a single disk, but as
the activity of user requests increases, the difference
between them increases significantly, too. Especially
Algorithm 1 suffers significantly from longer response
times as it has a higher utilization of the fault-free
disk. On the other hand, Algorithm 2 performs
almost as well as a single disk (with no repair load)
when a longer wait time (wt =100 ms) is used. Algor-
ithm 2 can even perform slightly better than a single
disk because it can serve incoming user read requests
using either of the disks (the amount of requests that
the spare disk can handle depends on the current stat-
istics of the repair process;i.e., how much of the disk
is already copied). The single disk saturates earlier
with heavy system loads.

The average response time of user disk requests can

m—— Single disk system

P S R Double disk system
. - . Agorthm 1
® w T weoms
P
gg o . Mgotthm 1
ﬁ; 150 W50 ms
Agorkhm |
g% . TETT wei00ms
22 0
o B @ AgorRhm 2
@ w=0ms
8% « : .
e AgotRIM
2 we50ms

Y-
System load ceused by user reauests (%]

{Fig. 3) Mean response time of user requests as function
of system load in a system with uniform access
pattern

CIA3 012428 0188 R8N0 27 Y1215 1621

be significantly reduced (15-20%) by using a smali
delay in the repair process. The most significant
decrease in the response time is found in heavily
loaded systems as the repair process is spread over a
longer period of time, thus lowering the average sys-
tem load.

Figure 3 also depicts that a single disk provides a
slightly better response time than a mirrored disk
when the system load is moderate. In a mirrored disk,
a user write request suffers from longer rotation
delays and longer seck delays (as read requests tend
to move the read/write heads far from each other).
The additional delays are compensated only in
heavily loaded systems by the possibility to divide
read requests to either of the disks (thus reducing the
load of both disks).

The percentiles of the response time for a user re-
quest experience similar phenomena as the mean re-
sponse time. The 95th percentile of the response time
is illustrated in Flgure 4 as function of the system
load. The difference between Algorithm 1 and Algor-
ithm 2 is more significant with the percentiles than
with the mean response time. Also, the percentiles
show that results with no and short delays (wt =50
ms) give almost the same results (while the mean
gives a significant difference). With a longer wait time
(wt=100 ms), the percentiles can be reduced.
Besides, the single disk system results in higher
percentiles than Algorithm 2 for a heavy system load.

Single disk system

= Douwle disk system
- a - - Agorthm)
w=gms

oo -~ Ngorkthe
¥ weS0ms

-- - . Agorthm |
T w=100ms

95% percentile {ms)
~ceBBREEEEE

—m—— Ngorthm 2
we0ms

e Agonithm 2
- wm=S0ms

o o 0 0% | ——
*_ System lodd caused by user fequests (%]

o o

Ngorkhm 2
w100 me

(Fig. 4) 95th percentile of the response time of user disk
requests as function of system load in a system
with uniform access patterns

1622 SREEKEIER] =FX M4H M 6%(97.6)

In Figure 5, the mean response time of user disk
requests is presented as function of system load when
a non-uniform access pattern is used. Similar results
as with a uniform access pattern but somewhat
shorter response times are obtained. Also, the differ-
ence between Algorithm 1 and Algorithm 2 is smaller
than with a uniform access pattern. This can be
explained by the strong concentration of user disk
requests on certain locations of the disk space, hence
reducing the length of the average seek distance.

In Figure 6, the 95th percentile of the response time
of user disk requests (using a non-uniform access pat-
tern) is illusuated. By increasing the wait time (par-
ameter wt) of the repair algorithms, the increase of
the 95th percentile can be significantly reduced. A
similar effect can be noticed also for the 90th and
99th percentiles.

—— S0yl disk ysiem

= Double disk system

- - @ - - Mgoathm 1
we0ms

- -~ Ngorthm 1,
=50 ms

- A - - Algosithm 1
we100ms

e Agorkhm 2
w0 ms

Average response time for a
user request {ms]

e Agorithm 2
we50ms

Migorktin 2
.3 20% o eox o 100% | —a— MoOTNR 2

System losd caused by user requests (%)

(Fig. 5) Mean response time of user disk requests as
function of system load in a system with non-
uniform access pattern

Sinle disk system
<« = Double dBk sistem
.. Mgorkhm 1
Wa0ms
Higorthe 1
wa50ms

Agorithm 1
L

- Sigorthm 2
wa0ms

Ngorkhm 2
T wnSoms

95th percentite Ims}
-8 EEBREBEELE

Agorithm 2
20 o 0% o 1008 | i Mo0TOO 2
System load caused by user requests {%}

E

(Fig. 8) 95th percentile of the response time of user disk
requests as function of system load in a system
with non-uniform access pattern

The percentiles of the response time of user disk
requests are very close to the ones of a system with a
single disk (with no repair requests) when Algorithm
2 has a longer wait time (wf=100 ms). Hence, the
maximum response time of user disk requests can be
kept moderate even during the disk repair process.

The cost for a smaller increase of the system re-
sponse time consists of having a longer repair time.
As illustrated in Figure 7, the repair time is significantly
longer when a long wait time (wt =100 ms) is used.
When the system load is moderate or low and the
uniform access pattern is used, the long wait time (w?
=100 ms) results in a total repair time 2.5 times
longer than when zero wait time is used with both
Algorithm 1 and Algorithm 2. With a non-uniform
access pattern, the repair time is, respectively, up to
2.6 times longer. The repair process spends appro-
ximately 8(15) minutes of the total repair time in just
waiting when the wait time is 50(100) ms while the
actual repair takes about 9 minutes. The repair time
is significantly shorter in Algorithm 2 with a heavy
system load as it shares the load among the fault-free
and spare disks more evenly than Algorithm 1.

- - @ - - Ngorithm 1
w=0ms

- - & -~ Ngorthm 1
w=50ms

oo o - - Mgorittm 1
*T e 100ms

e Agorkthm 2

- Tatal repair time [min)

e Agoikthm 2
T we50ms

JE— Y
we 100 ms

Systemn l0ad caused by user requests [%)

(Fig- 7) Disk repair time as function of average user
activity in a system with uniform access pattern

The longer repair time doesn’t significantly reduce
the system reliability. The repair time is still moderate
even with long wait times (the repair time is less than
40 minutes when the system load is 80% and the wait
time is 100ms). Hence, the reliability of the disk
subsystem is not decreased much due to the longer

wait time as the MTBF of conventional disks is sig-
nificantly longer (in order of tens of thousands of
hours) [16]. At the same time, the effect on the re-
sponse time of user disk requests is significant. Thus,
the delayed repair can be used successfully in systems
that have both high reliability and strict response time

requirements.
6. Conclusions

In this paper, the performance effects of different
repair algorithms for a mirrored disk subsystem
(RAID-1) have been studied. A disk fault is handled
using a spare disk to which data is copied from the
fault-free disk. Two alternative repair algorithms have
been studied. The difference of these algorithms is in
the way they handle user read requests during the re-
pair process. The simulation results indicate that it is
more beneficial to share read requests among the
fault-free and spare disks during the repair process
than to let the fault-free disk to handle all user read
requests. Especially, with higher system load, the dif-
ference between the results of the propgsed algo-
rithms is significant. .

In the repair algorithms, a short delay between re-
pair requests is introduced and studied. By having
this short delay, it is possible to reduce significantly
the performance degradation of user disk requests as
measured by the mean response time and its
percentiles. This delay increases the total repair time
of the disk subsystem. However, its effect is very
small as the repair time is still much shorter than the
MTBF of the disks.

References

[t] P.M. Chen, G.A. Gibson, R.H. Katz and D.A.
Patterson, “An Evaluation of Redundant Arrays
of Disks using Amhdahl 5890,” in Proc. of ACM
Conference on Measurement & Modeling of

Computer Systems, Vol. 18, No. 1, pp. 74-85,

CIA3 01242 08 S 8Xe 27 2025 1623

1990.

[2] P.M. Chen and D.A. Patterson, “Maximizing
Performance in a Striped Disk Array,” in 17th
Symp. Comp. Arch., pp. 322-331, May 1990.

[3] V. Catania, A. Puliafito, S. Riccobene and L.
Vita, “Design and Performance Analysis of a
Disk Array System,” IEEE Trans. on Comp.,
Vol. 44, No. 10, pp. 1236-1247, Oct. 1995.

[4] A. Merchant and P.S. Yu, “Analytic Modeling
and Comparisons of Striping Strategies for
Replicated Disk Arrays,” IEEE Trans. on Comp.,
Vol. 44, No. 3, pp. 419-433, Mar. 1995.

(5] M. Schulze, G. Gibson, R. Katz and D. Patterson,
“How Reliable is a RAID?,” in Proc. IEEE
Spring Comp. Conf., San Francisco, Feb. 1989.

{6} H.H. Kari, H. Saikkonen and F. Lombardi,
“Detection of Defective Media in Disks,” in
Proc. IEEE Int. Workshop on Defect and Fault
Tolerance in VLSI Systems, pp. 49-55, 1993.

{71 S. Kim, et al., “Repair Algorithms for Mirrored
Disk Systems,” in Proc. IEEE Int. Workshop on
Defect and Fault Tolerance in VLSI Systems,
Lafayette, LA, pp. 216-224, Nov. 1995.

[8] P. M. Chen, et al., “RAID:High-Performance,
Reliable Secondary Storage,” ACM Computing
Surveys, Vol. 26, No. 2, pp. 145-185, 1994.

[9] S. Stewart, “High Performance QIC Drives
Increase Capacity and Data Rate,” Computer
Technology Review, pp. 57-62, May 1992.

(10] S.W. Ng, “Improving Disk Performance Via
Latency Reduction,” IEEE Trans. on Comp.,
Vol. 40, No. 1, pp. 22-30, Jan. 1991.

[11] D.A. Patterson, G. Gibson and R.H. Katz, “A
Case for Redundant Arrays of Inexpensive Disks
(RAID),” in ACM SIGMOD Conf., Chicago, pp.
109-116, May 1988.

[12] D.A. Patterson, G. Gibson and R.H. Katz,
“Introduction to Redundant Arrays of Inexpen-
sive Disks (RAID),” in IEEE Proc. COMPCON,
Spring 1989.

[13] T.M. Olson, “Disk Array Performance in a Ran-

1624 StnBEHXC|SS =2 X B4 K 65(97.6)

dom 10 Environment,” Computer Architecture
News, pp. 71-77, Aug. 1989.

{14] M.Y. Kim, “Synchronized Disk Interleaving,”
IEEE Trans. on Comp., Vol. C-35, No.’ 11, pp.
978-988, Nov. 1986.

{15] A.L.N. Reddy and P. Banejee, “A Study of Par-

allel Disk Organizations,” Computer Architecture .

News, pp. 4047, Aug. 1989.

[16] G.A. Gibson, “Redundant Disk Arrays: Reliable,
Parallel Secondary Storage,” University of California
TR UCB/CSD 90/615, Berkeley, Ph. D. Disser-
tation, Mar. 1991.

[17} J. Menon and D. Mattson, “Performance of Disk
Arrays in Transaction Processing Environments,”
IBM Rescarch Report RJ 8230(75424), p. 49,
July 1991.

[18] J. Stockard, “I/O Workloads,” in VII Data
Storage Interface and Technology Conf., Techno-
logy Forunis, pp. 20, Mar. 1991.

[19] M.Y. Kim and A.N. Tantawi, “Asynchronous
Disk Interleaving: Approximating Access Delays,”
IEEE Trans. on Comp., Vol. 40, No. 7, pp.
801-810, July 1991.

[20] C.J. Date, ‘A guide to the SQL Standard’,
Addison-Wesley, New York, 1989.

[21] J. Gray, ‘The Benchmark Handbook for Database
and Transaction Processing Systems’, Morgan

Kaufmann Publishers Inc., San Mateo, 1991.

2 8 %
19829 AN SE AAF &}
(F&1D
1984 AMAoista dAz-g st
(%44
19953 Texas A&M University,
A2 epaHE g
19831 ~19861 A4 ARHF) &
HAF4L: FFEHAFAEIETY)
198611~1996d A4FER7 ¢4 #4174
19913 3~1992'd Texas Transportation Institute Q-7+
19931:1~1995\1 Texas A&M University, A48},
T.A.
19963~ ot FRFANY AU F
HENE 234
1997d~AA §F FuAets), #3 Pussy
=82 #3994
T Eop:AY 34, FE Nt AAH, o]lF AF
¥, VLSI, 459471 %

= 9 =
1983 M-&idtw AAF 83
(F8Hh
19853 #3849 Ag
AAFFIH(F AN
1989 =89 ArY
) AR -Z 8 (F 5utAD
i 19853 ~1988d FAANATL
HEHIAATFAGEYIATY)
198913 ~19951 LGHREA FY4AT4L ATM &
FATFAEYATY)
1991'd AT&T Bell Lab #tA 4129
196 3~8A oFFUYE FRLAFEIEYE 2us
FARF FAREUEYZ, 22LFAY, FAFA
o BHATM, A9t 5

