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Discretization of Continuous-Valued Attributes for
Classification Learning

Chang-Hwan Lee'

ABSTRACT

Many classification algorithms require that training examples contain only discrete values. In order to use
these algorithms when some attributes have continuous numeric values, the numeric attributes must be cénverted
into discrete ones. This paper describes a new way of discretizing numeric values using information theory. Our
method is context-sensitive in the sense that it takes into account the value of the target attribute. The amount
of information each interval gives to the target attribute is measured using Hellinger divergence, and the interval
boundaries are decided so that each interval contains as equal amount of information as possible. In order to
compare our discretization method with some current discretization methods, several popular classification data
sets are selected for experiment. We use back propagation algorithm and ID3 as classification tools to compare
the accuracy of our discretization method with that of other methods.

1. introduction Discretization is a process which changes continu-
ous numeric values into discrete categorical values. It

divides the values of a numeric attribute into a number

t A8 QEIRGE ANEAGH AAPA of intervals, where each interval can be mapped to a
EEF4 11996 1149 5Y, A &8:19974 59 6 discrete categorical or nominal symbol. Most real-world



1542 SEHBXCIER =EX M4 K 6=(97.6)

applications of classification algorithm contains con-
tinuous numeric attributes. When the feature space of
data includes continuous attributes only or mixed
type of attributes(continuous type along with discrete
type), it makes the problem of classification vitally
difficult. For example, classification methods based
on similarity-based measures are generally difficult, if
not possible, to apply to such data because the simila-
rity measures defined on discrete values are usually
not compatible with similarity of continuous values.
Alternative methodologies such as probabilistic model-
ing, when applied to continuous data, require an ex-
tremely large amount of data.

Despite the importance of the discretization issue,
research in machine learning has not paid enough at-
tention to discretizing numeric attributes and few
algorithms perform discretization automatically.
However, poorly discretized attributes prevent classif-
ication systems from finding important inductive rules.
For example, if the ages between 15 and 25 mapped
into the same interval, it is impossible to generate the
rule about the legal age to start military service. In
addition, poor discretization makes it difficult to dis-
tinguish the non-predictive case from poor discretiza-
tion. In most cases, inaccurate classification caused by
poor discretization is likely to be considered as an er-
ror originated from the classification method itself. In
other words, if the numeric values are poorly discret-
ized, no matter how good our classification systems
are, we fail to find some important rules in databases.

In this paper, we describe a new way of discretizing
numeric attributes. We discretize the continuous
values using a minimum loss of information criterion.
Our discretization method takes into consideration
the class values of examples, and adopts information
theory as a tool to measure the amount of infor-
mation each interval confains. A couple of typical
machine learning data sets are selected for discretiza-
tion, and these are discretized by both traditional
discretization methods and our proposed method. To

compare the correctness of the discretization results,

we use the back propagation algorithm and ID3 as

the classification algorithms to read and classify data.
2. Previous Work

Although discretization influences significantly the
effectiveness of classification algorithms, few studies
have been done because it usually has been con-
sidered a peripheral issue. Among them, we describe
two discretizing methods in machine learning litera-
ture. A simple method, called equal distance method,
is to partition the range between the minimum and
maximum values into N intervals of equal width.
Thus, if L and H are the low and high values, respect-
ively, then each interval will have width W =(H~ L)/
N. However, when the outcomes are not evenly distri-
buted, a large amount of information may be lost after
discretization using this method. Another method,
called equal frequency method, chooses the intervals
so that each interval contains approximately the same
number of training examples; thus, if N= 10, each in-
terval would contain approximately 10% of the ex-
amples. These- algorithms are very simple, easy to im-
plement, and in some cases produce a reasonable
discretization of data. However, there are many cases
where they cause serious problems. For instance, sup-
pose we are to discretize attribute age, and reason
about the retirement age of a certain occupation. If
we use the equal distance method, ages between 50
and 70 may belong to one interval, which prevents us
from knowing what the legal retirement age is. Simi-
larly, if we use the equal frequency method to
discretize attribute weight, the weights greater than
180 pounds may belong to one interval, which pr-
events us to reason about the health problem of the
persons who are overweight. With both of these discr-
etizations it would be very difficult or almost imposs-
ible to learn certain concepts. The main reason for
this is that they ignore the class values of the examples,
making it very unlikely that the interval boundaries
will just happen to occur in the places which best fa-



cilities accurate classification.

Some classification algorithms such as C4 (8],
CART [2], and PVM [12] take into account the class
information when constructing intervals. For example,
in C4, a member of the 1D3 [9] family of decision tree
algorithms, an entropy measure is used to select the
best attribute to branch on at each node of the de-
cision tree. And that measure is used to determine the
best cut point for splitting a numeric attribute into
two intervals. A threshold value, T, for the continu-
ous numeric aftribute A is determined, and the test
A<T is assigned to the left branch while A>T is
assigned to the right branch. This cut point is decided
by exhaustively checking all possible binary splits of
the current interval and choosing the splitting value
that maximizes the entropy measure. CART, devel-
oped by [2], takes into account the class information
as well but it just splits the range into two intervals.
It selects the interval boundary which makes the in-
formation gain gap between the two intervals maxi-
mum. This process is carried out as part of selecting
the most discriminating attribute. Fayyad [5] has ex-
tended the method of binary discretization in CART
and C4, and introduced multi-interval discretization
using minimal description length technique. However,
these algorithms differ in that discretization is per-
formed dynamically as the algorithm runs, not as a
preprocessing step. It is not obvious how such techn-
iques should be used to perform static(non-dynamic)
discretization when more than two intervals per attri-
bute are desired. Some classification algorithm can be
easily extended to discretize dynamically, but many
can not.

Even for algorithms that could use a dynamic
method, it might still be preferable to use static discr-
etization, Using static discretization as a preprocessing
step, we can see significant speed up for classification
algorithm with little or no loss of accuracy [3]. The
increase in efficiency is because the dynamic C4/
CART algorithm must re-discretize all numeric attri-

butes at every node in the decision tree while in static

discretization all numeric attributes are discretized
only once before the classification algorithm runs.
One of the major problems in dynamic discretization
is that it is expensive. Although it is polynomial in
complexity, it must be evaluated N—1 times for each
attribute where N means the number of distinct
values. Since classification programs are designed to
work with large sets of training sets, N is typically
very large. Therefore, algorithms like ID3 runs very
slowly when continuous attributes are present. In ad-
dition, the real performance of binary discretization is
not proven when there are more than two classes in
the problem. As the algorithm attempts to minimize
the weighted average entropy of the two sets in the
candidate binary partition, the cut point may separate
examples of one class in an attempt to minimize the

average entropy.

3. Information-Theoretic Discretization

With the traditional discretization methods, it is
seldom possible to feel confident that a given discret-
ization is reasonable because these methods do not
provide any justifications for their discretizations. A
classification algorithm can hardly distinguish a non-
predictive case from a poorly discretized attribute and
the user cannot do so without examining the raw
data. In general, it is seldom possible to know what
the correct or optimal discretization is unless the
users are familiar with the problem domain. Another
problem which complicates evaluation is that discret-
ization quality depends on the classification algorithms
that will use the discretization. Even though it is not
possible to have an optimal discretization with which
to compare results, some notion of quality is needed
in order to design and evaluate a discretization algor-
ithm. The primary purpose of discretization, besides
eliminating numeric values from the training data, is
to produce a concise summarization of a numeric at-
tribute. An interval is essentially a summary of the re-

lative frequency of classes within that interval. There-
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fore, in an accurate discretization, the relative class
frequencies should be fairly consistent within an inter-
val(otherwise the interval should be split to express
this difference) but two adjacent intervals should not
have similar relative class frequencies(otherwise the in-
tervals should be combined to make the discretization
more concise). Thus, the defining characteristic of a
high quality discretization can be summarized as:
maximizing intra-interval uniformity and minimizing
inter-interval uniformity. Our method achieves this
notion of quality by using an entropy function. The
difference between the class frequencies of the target
attribute and the class frequencies of a given interval
is defined as the amount of information that the in-
terval gives to the target attribute. The more different
these two class frequencies are, the more information
the interval is defined to give to the target attribute.
Therefore, defining an entropy function which can
measure the degree of divergence between two class
frequencies is crucial in our method and will be ex-

plained in the following.

Calculating information Content of Intervals

The basic principle of our discretization method is
to discretize numeric values so that the information
content of each interval is as equal as possible. There-
fore, the critical part of our method is to select or de-
fine an appropriate measure of the amount of infor-
mation each interval gives to the target attribute. In
our approach, the interpretation of the amount of in-
formation is defined in the following. For a given in-
terval, its class frequency distribution is likely to dif-
fer than that of the target attribute. The amount of
information an interval provides is defined as the dis-
similarity(divergence) between these two class frequ-
encies. We employ an entropy function in order to
measure the degree of divergence between these two
class frequencies. Some entropy functions have been
used in this direction in machine learning literature.
However, the purpose of these functions are different
from that of ours. They are designed to decide the

most discriminating attributes [9] or generate inductive
rules from examples [4]. Suppose X is the target attri-
bute and it has k discrete values, denoted as x4, xz, ...,
%x. Let p(7) denote the probability of x;. Assume that
we are going to discretize an attribute 4 with respect
to the target attribute X. Suppose A=a; and A=¢a;+
are boundaries of an interval, and this interval is map-
ped into a discrete value . Then the probability dis-
tribution of X under the condition that ;< A<a;+:
is different from a priori distribution of X. We will
introduce several studies for measuring divergence
from the information theory literature.

In information theory literature, several studies are
done about divergence measure. Kullback [7] derived
a divergence measure, called I-measure, defined as

Hxila)
2; Hx;la) log )
This measure is the average mutual information be-
tween the attributes X and A4 with the expectation
taken with respect to the a posteriori probability dis-
tribution of X. This measure appears in the infor-
mation theoretic literature under varieus guises. It
can be viewed as a special case of the cross-entropy
or the discrimination, a measure which defines the in-
formation theoretic similarity between two probability
distributions. Another group of divergence widely used
in information theory literature are Bhattacharyya di-
vergence [1] and Renyi divergence [10], and these are
defined, respectively, in the following.

—log L. Vpx) plxila) and 1
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log L plxi)plxila) ~=

where a>0. In Renyi divergence, the range of func-
tion can be changed depending on the value a. These
measures including Kullback divergence become zero
if and only if p(x;) p(x;la) for all 7, and have been
used in some statistical classification problems. How-
ever, since these measures are originally defined on



continuous variables, there are some problems when
these are applied to discrete values. These measures
are not applicable in case one or more than one of
the p(x;)s are zero. Suppose that one class frequency
of a priori distribution is unity and the rest are all
zero. Similarly, one value of a posteriori distribution
is unity and the rest are all zero. Then Kullback di-
vergence, Renyi divergence and Bhattacharyya diver-
gence are not defined in this case, and we cannot ap-
ply thes;: directly without approximating the original
values. Therefore, in this paper, we adopt a new en-
tropy function, called Hellinger divergence [6], which
is defined as

| T V) —v/plxila))? |72

Unlike other divergence measures, this measure is
applicable to any case of probability distribution. In
other words, Hellinger measure is continuous on
every possible combination of a priori and a poster-
iori values. It can be interpreted as a distance measure
where distance corresponds to the amount of diver-
gence between a priori distribution and a posteriori
distribution. It becomes zero if and only if both a
priori and a posteriori distributions are identical, and
ranges from 0 to /2. Therefore, we employ Hellinger

divergence as a measure of divergence, which will be
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end
/+ Entropy of each cutpoint */
for i=1 to N-| do
B(p) = BUY - EXFyn1):
end
repeal N-K times do
MERGE-=cutpoint with least value of {E);
merge (wo intervals of MERGE;
end
return INTVL;

(Figure 1) Discretization Algorithm

used as the information amount of intervals. The en-
tropy of an interval described above, say /, is defined

in the following.

B =L (Vpx) =V il @) '

4. Discretizing Algorithm

The algorithm consists of an initialization step and
a bottom up combining process. The training exam-
ples are sorted according to their values for the attri-
bute being discretized and then each example becomes
its own interval. In combining process, the amount of
information that each interval gives to the target
attribute is calculated using Hellinger divergence. For
each pair of two adjacent intervals, the system com-
putes the informational difference between them. The
least value of difference will be selected and its cor-
responding pair of intervals will be merged. Merging
process continues until the system reaches the maxi-
mum number of intervals usually given by users. The
value of K, maximum number intervals, is determined
by selecting a desired precision level the user wants.
The standard recommended value of X is to set the
value between 5 to 10 depending on the domain to
prevent an excessive number of intervals from being
created. Figure \ref{abstract-algorithm} shows the ab-
stract algorithm of the discretization method.

As part of the initialization step, the numeric values
are first sorted by increasing order, and the midpoint
between each successive pair of values in the sorted
sequence is called potential cutpoint. Each cutpoint as-
sociates two adjacent intervals(or point values). If the
class frequency of these two intervals are exactly the
same, the cutpoint is called in-class cutpoint, and if
not, the cutpoint is called boundary cutpoint. In other
words, if two adjacent point values or intervals have
different class frequencies, their midpoint(cutpoint) is
defined as boundary cutpoint. Figure 2 shows the ex-
ample of cutpoints and boundary cutpoints of petal
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(Figure 2) In-class cutpoints and boundary cutpoints

length attribute in iris data set. Intuitively, discretiza-
tion at in-class cutpoints are not desirable because it
separates examples of one class. Therefore, boundary
cutpoint must have high priority to be selected for
discretization. We have the following theorem which

shows the correctness of our discretization algorithm.

Theorem 1 The in-class cutpoints are not to be selected
Jor discretization unless all boundary cutpoints are ex-

hausted for discretization.

Proof is omitted due to space limitation. This theorem
implies that in our algorithm discretization keeps oc-
curring only at boundary cutpoint unless it exhausts
all boundary cutpoints. By doing so, it prevents the
in-class cutpoints from being selected for discretiza-
tion.

Another advantage of our method is that our disc-
retization method has very low computational com-
plexity. Its computational complexity is given as O(»),
where 7 is the number of examples. Therefore, sup-
pose a training database has / numeric features, our
discretization method will take O(I») time complexity

to discretize the features.
5. Experimental Results

The behavior of the algorithm will be demonstrated
using an example. To show the validity of our
discretization algorithm, we selected iris data as a test
data. This well-known data set has been used for many
previous classification algorithms. Fisher’s paper is a

classic in the field and is referenced frequently to this
day. Each of the iris data consists of four integer-
valued variables plus a known assignment of the ex-
ample to a particular species of iris. The data covers
three different species:setosa, versicolor, and virgin-
ica. The four variables measured are sepal length,
sepal width, petélllength, and petal width. The ranges
of these variables are 43-79, 20-44, 10-69, and 1-24, re-
spectively. For the purpose of test, we discretized the
values of petal length into seven intervals using equal
distance method, equal frequency method and our
context-sensitive discretization method, respectively.
The discretization results are shown in Figure 3. It is
not easy to completely assess the correctness of discr-
etized intervals because its real validity does not show
up until the discretized intervals are used by a class-
ification algorithm. However, we can notice that all
plants with petal length less or equal to 19 belong to
setosa while all plants greater than 51 belong to
virginica. If both 19 and 30 belong to the same inter-
val or both 51 and 52 belong to the same interval, we
cannot derive such possibly important rules as

If petal-length < 30, then species = setosa.
If petal-length > 51, then species = virginica

Figure 3 also shows the resuits of discretization car-
ried out by equal distance method and equal fre-
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(Figure 3) Petal iength data for iris



quency method for the purpose of comparison. We
can see that these methods do not guarantee to cut at
both between (19 and 30) and (51 and 52).

Comparison

Because our discretization method is not itself a
classification algorithm it cannot be tested directly for
classification accuracy, but must be evaluated in-
directly in the context of a lassification algorithm.
Therefore, our discretization method, the equal-dis-
tance intervals and equal-frequency intervals will be
used to create intervals for two well-known classifica-
tion systems:back propagation neural network clas-
sifier [11] and ID3 [9). These system are chosen be-
cause they are widely known, thus requiring no fur-
ther description.

For the test data set, we have chosen two data sets:
iris flower data and Indian diabetes. (Obtained from

(Table 1) Classification results using back propagation al-

gorithm
Database Equal distance | Equal frequency | Context-sensitive
Iris flower 68.6+53% | 89.1+6.4% 95.5 +3.4%
Indian diabetes | 69.5+6.4% | 669+ 58% | 77.3+4.7%
{Table 2) Classification results using ID3
Database Equal distance | Equal frequency | Context-sensitive
Es flower 87.8 £ 4.1 86.6 £ 6.2 91.2+68
Indian diabetes | 67.1 + 3.1 688 +23 Nn1+£29
100
90 1 /"“‘*‘——\\\
Accuracy 27 A
70
60
® 3 1 & 7 35 3 w

Number of intervals

(Figure 4) Classification accuracy versus number of in-
tervals

the University of California-Irvine machine learning
database repository :ics.uci.edu.) These are chosen be-
cause all attributes of these data sets are numeric and
these data sets have been used by a number of other
classification algorithms. Iris flower = database is
already described above. Indian diabetes data is a
data set about whether patients show signs of dia-
betes according to World Health Organization cri-
teria. All patients in this data set are selected from
the females at least 21 years old of Indian heritage.
For the sake of simplicity; all attributes are discret-
ized into seven intervals. For each data set, the 2/3 of
data set is selected randomly and used as training
data and the rest 1/3 is used as test data for classifica-
tion. For back propagation algorithm, the neural net-
work has one hidden layer with 6 hidden units, and
the initial weights and biases are decided randomly
between —0.5 and 0.5. Also each data set is read 500
times(epoches) for learning. Table 1 shows the classif-
ication results of each discretization method. As we
can see, our context-sensitive discretization shows bet-
ter results for both data sets. For iris flower data,
equal frequency discretization shows better perfor-
mance than equal distance discretization, while equal
distance discretization is a little better than equal fre-
quency discretization in Indian diabetes data. How-
ever, in both cases, our discretization is superior to
other methods. The same data set is used for ID3 al-
gorithm for classification. Table 2 shows the results of
classification for each data set using ID3, and we can
casily see that our discretization method shows the
better classification accuracy than other methods.
Determining the right value of maximum number
of interval significantly effects the correctness of discr-
etization. Too small number of interval prevents im-
portant cutpoints from being discretized while too
many cuts produce unnecessary intervals. In order to
see the effect of the number of intervals, we applied
back propagation algorithm to iris data set with dif-
ferent number of intervals, and the results are shown

in Figure 4. For iris data set, when the attribute is
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discretized into 3-5 intervals, its classification result
shows best accuracies while the number of interval is
greater than 8 or less than 3, the classification accu-

racy drops significantly.
6. Conclusion

In this paper, we proposed a new way of discretiz-
ing numeric attributes, considering class values when
discretizing numeric values. Using our discretization
method, the user can be fairly confident that the
method will seldom miss important intervals or
choose an interval boundary when there is obviously
a better choice because discretization is carried out
based on the information content of each interval
about the target attribute. In contrast, the equal-dis-
tance interval and equal-frequency interval methods
can produce extremely poor discretization. Our algor-
ithm is easy to apply because all it requires for users
to do is to provide the maximum number of intervals.
Our method can be applied virtually to any domain.
It is applicable to multi-class learning(i.e. domains
with more than two classes-not just positive and
negative examples). Another benefit of our method is
that it provides a concise summarization of numeric
attributes, an aid.to increasing human understanding
of the relationship between numeric features and the
class attributes.

One problem of our method is the lack of ability to
distinguish between true correlations and coincidence.
In general, it is probably not very harmful to have a
few unnecessary interval boundaries;the penalty for
excluding an interval is usually worse, because the
classification algorithm has no way of making a dis-

tinction that is not in the data presented to it.
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