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A Methodology for Translation of Operating System Calls
in Legacy Real-time Software to Ada

Moon-kun Lee'

ABSTRACT

This paper describes a methodology for translation of concurrent software expressed in operating system (OS)
calls to Ada. Concurrency is expressed in some legacy software by OS calls that perform concurrent process/task
control. Examples considered in this paper are calls in programs in C to Unix and calls in programs in CMS-2
to the Executive Service Routines of ATES or SDEX-20. Other software re/reverse engineering research has fo-
cused on translating the OS calls in a legacy software to calls to another OS. In this approach, the understanding
of software has required knowledge of the underlying OS, which is usually very complicated and informally
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documented. The research in this paper has focused on translating the OS calls in a legacy software into the equ-

ivalent protocols using the Ada facilities. In translation to Ada, these calls are represented by Ada cquivalent

code that follow the scheme of a message-based kernel oriented architecture. To facilitate translation, it utilizes

templates placed in library for data structures, tasks, procedures, and messages. This methodology is a new ap-

proach to modeling OS in Ada in software re/reverse engineering. There is no need of knowledge of the underly-

ing OS for software understanding in this approach, since the dependency on the OS in the legacy software is re-

moved. It is portable and interoperable on Ada run-time environments. This approach can handle the OS calis in

different legacy software systems.

1. introduction

This paper describes the methodology for translation
of concurrent software expressed in operating system
calls to Ada.

Concurrency-related OS calls generally have been
informally documented. This has made understanding
and analysis of such concurrent programs extremely
difficult. The translation {o Ada simplifies understand-
ing of the role of concurrency. Further, the software
becomes independent of OS used with the hardware.

The immediate motivation for the work described
in this paper has been due to the need for automatic
translation of concurrent real-time U.S. Navy soft-
ware in CMS-2 [Nav90a, Nav90b} into Ada [DoD83].
Embedded in the CMS-2 code are concurrency-re-
lated calls to ATES [GEAS88] or SDEX-20 [Unisys,
Univac] OS. Such programs are widely used in U.S.
Navy mission-critical applications. The translation is
needed for modernization of these systems.

Still another motivation has been due to the relat-
ively new field of Software Reversc Reengineering,

possibly, supported by Software Reverse Engineering

[ChCr90]. Its objective is to process existing software
automatically, or semi-automatically, in order to obta-
in modern software, for the same or new application
for execution on a high speed distributed network.

The research reported in this paper is a part of the
overall reverse engineering processes in Software Re/
reverse-engineering Environment (SRE) [CCCC9%4,
Lee95, LPL95]. SRE involves code translation and
creation of a software model that is used to provide a
number of capabilities: software analysis, facilitation
of software understanding, documentation of the soft-
ware, reorganization and restructuring of the software
and interfacing with other software.

The translation of concurrency-related OS calls to
Ada is shown in Figure 1. First, the sequential part of
the legacy code is translated into Ada code. The OS
calls in the source code remain OS calls in the Ada
code. Next the concurrency, expressed in OS calls, is
translated into Ada. Finally, the generated Ada code
is being analyzed to facilitate software understanding.

The translation of OS call is only partly feasible in
some instances. To illustrate this point, the paper

shows an example of the translation of the Unix fork

Sequential Ada
Legacy code  |-—>| with source
code transiation OS calls

f—>

(Fig. 1) Overview
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call into Ada [LMKQ89, Ste90, Sun90, KePi84]. The
computational model of Unix differs greatly from the
computation model of Ada. For example, Unix tasks
are much larger granular objects than Ada tasks:a
Unix task has its own address space and maintains by
default information about open files, related tasks,
and signals [LMKQ89, Ste90, Sun90, KePi84];no
such information is available by default with Ada
tasks and in most implementations Ada tasks share
the same address space. More fundamentally, an OS
controls tasks switching and can make decisions when
dispatching a task from the Ready state to the Run-
ning state (example of such decisions are to suspend
or to terminate a task). No such fine grained control
is possible in Ada since no facilities are provided by
the language to control task switching (Ada 9X
[Ada91] will correct to an extent this problem);even
the drastic Abort statement does not take effect until
the aborted task, on its own, reaches a synchronizat-

ion point. One objective of the paper is to clarify and

bridge over such differences.

The outline of this paper is as follows. Section 2
surveys related research on this research topic. Section
3 states a technical problem. It establishes the require-
ments for the translation by defining the functional
equivalence of the source and target software. Section
4 presents the translation process. It consists of gener-
ating Ada tasks and procedures to implement concur-
rency-oriented OS calls. The translation replaces con-
currency-related OS calls with respective Ada tasks,
procedures and messages. It creates tasks for the
source program processes and for synchronizing these
processes. Section 5 describes the translation process
in greater detail. It uses an Ada template library for
synthesizing the concurrent aspects of the code. The
Ada library contains the code needed generally for
translating concurrency-related OS calls. Examples are
given of procedures for translating several Unix OS
calls. The methodology is applicable to other source
software languages and OS (e.g. CMS-2 with ATES
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(Fig. 2) Two approaches for translating 0S calls in legacy software



Legacy &IAIZ}

and SDEX-20). Section 6 presents a C/Unix example
for Producer-Consumer problem. The Section refers
to templates for Unix concurrency-related calls. Ex-
amples of seven of these calls are shown defined by
respective procedures. The implementation of proced-
ures for all of the Unix calls and their placement in
the Ada library is required for attaining the full trans-
fation of Unix into Ada. Finally, conclusion and fu-

ture research are presented in Section 7.

2. Related Research

The research problem in this paper is how to trans-
late the OS calls in legacy software to the functionally
equivalent protocols in the Ada language as shown in
Figures 2.a and 2.b. Legacy software utilize underlying
OS services for real-time operations involved in con-
currency, communication, a/synchronization, and timing.
The legacy software programming languages usually
do not have facilities for such real-time applications.
The requests to the OS services embedded in the leg-
acy software need to be translated to the equivalent
services in other OS. The translation requires the fun-
ctionally equivalent behavior of the software.

There are two approaches. The first approach is to
translate the source OS calls in the legacy software to
the target OS calls which a more modern software
can utilize [Sam95] as shown in Figure 2.a. For exam-
ple, the calls to the Executive Service Routines (ESR)
of ATES or SDEX-20 in the CMS-2 [Nav90a, Nav90b]
legacy software to the calls to Unix OS services in the
modern Ada software. In this approach, there is no
guarantee of one-to-one translation of the calls to the
source OS service in the legacy software to the calls
to the target OS services in the modern software. The
dependency on OS in the legacy software still remains
in the new software. The new software is executable
only in the target OS. There is no transportability or
interoperability of the software. The understanding of
the software requires knowledge of the underlying
OS. which is usually very complicated and informally
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documented.

The second approach is to translate calls to OS
services in the legacy software into the equivalent pro-
tocols using the Ada facilities for concurrency, com-
munication, a/synchronization, and timing as shown
in Figure 2.b. This approach is presented in the paper.
The translation replaces the OS calls with equivalent
Ada code based on a message-based kernel oriented ar-
chitecture. The translation utilizes code templates for
data structures, tasks, procedures, and messages.
Translation of each OS call requires templates of
procedures that execute the respective protocol of the
call. In this approach, the dependency on the OS in
the legacy software is removed in the modern Ada
software. The Ada software is transportable and inter-
operable through Ada supporting environments. The
Ada software can be geographically distributed. Un-
derstanding of the modern Ada software requires only

knowledge of Ada. Knowledge of OS is not required.

3. Functional Equivaience of Translation
Requirements

The basic translation requirement is to produce
Ada target software which is functionally equivalent to
the source software. The functional equivalence require-
ments are defined as follows.

Assume first that a software specification exists
that defines legal input sequences and respective out-
puts of the software, as well as additional timing
requirements. Functional equivalence of the source
and target software of the translation means that they
both conform to the software specification. They both
consume legal input sequences and produce respective
legal outputs within timing requirements.

In practice, a software specification may not be re-
liable or even available. Instead, it is proposed to use
the source software as its own specification. The
source software is input to the tramslation. It is
assumed to be well-tested, extensively used and highly

reliable representation of the software specification,
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though it may be incomplete in some of the cases de-
scribed below. (If the source software is modified
prior to the translation, then it is required that it be
tested or shown to conform to the specified compu-

tation.) We distinguish the following cases.

1) Sequential software:In this case the source soft-
ware is a complete representation of the specification
(assuming no timing requirements). The software
defines all the precedences and operations needed to
process legal input sequences and produce respective
legal outputs. The target Ada software is then func-
tionally equivalent to the source software as it ad-
heres to the latter’s precedences and operations.

2)Concurrent software:In this case there are the

issue of logical correctness and time.

i ) Logical correctness:

a)Source software where the logical correctness
is independent of the hardware speeds and OS:
In this case the source software also defines
all the concurrent execution threads and the
synchronizations needed for accepting legal
inputs and producing legal outputs, as defined
in the software specification. For given inputs
the execution of the target Ada software may
produce different outputs from those produced
by processing the source software, but still the
target Ada software is functionally equivalent
to the source software as the outputs still
comply with the software specification. For
example, the source and target software may
execute a same sequence of inputs, the former
may produce sequence of different outputs
than the latter, but they both conform with
the software specification.

b) Source software where the logical correctness
is dependent on the hardware speeds and OS:
The source software programmer may have
relied on delays, due to relative speeds of the

hardware in executing portions of the soft-

ware, and has omitted entering in the code
the respective synchronizations that will make
up a condition independent of hardware
speed. In this case the source software is lack-
ing some synchronization statements to retain
the logical correctness independent of the
hardware and OS used. These synchronization
statements must be added in order comply

always with the software specification.

ii ) Timing: The timing requirements are docum-
ented in the software specification, but typically
not in the source software. The needed capacity
of the network’s processors and communications
must be determined for executing the Ada target
software while guaranteeing the timing require-

ments.

To achieve functional equivalence, the translation is
based first on very close adherence to the memory
and manipulation in the source software. Close adher-
ence to the source software means that all the entities,
operations, and the precedences of the source software
are represented in the graphic software model using

Ada semantics. They are as follows:

1) Declarations of same named variables as declared
in source software, using the same memory layout,
and same scope (same shared memory).

2)An Ada task and communications to perform the
functions of the OS calls used in source software.

3)Ada tasks to represent each of the concurrent
processes in the source software.

4)Ada procedures and functions to represent resp-
ective procedures and functions in the source software.

5)Ada I/O to represent I/O devices in the source
software.

6)Ada transformation statements (executable stat-
ements) for each data or control transformation state-
ment in the source software. They perform the same
operations in Ada in the same sequential order.
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(Fig. 3) Ada’s tasks, procedures, and messages to implement OS calls

Next, the output of such a translation needs then 4. Strategy for Translating Concurrency-
to be analyzed or tested to determine whether correct- Related OS Calls to Ada
ness is independent of hardware speeds.

Finally the needed capacity of the hardware to This section defines the Ada entities that are syn-
meet timing requirements must be determined. These thesized to accomplish the protocols of OS calls.

capabilities are discussed in detail in [Lee95]. The translation replaces processes in the source
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software with Ada tasks call functional tasks. Ad-
ditional tasks are created for a controller to execute
OS calls and for buffering of communication between
other tasks. Procedures are added for each OS call
They are illustrated in Figure 3 and discussed below.
Large rectangles in the figure denote Ada tasks;cir-
cles denote task entries;communication paths denote
flow of messages (showing direction of the call and
direction of the message);columns of rectangles (in-
side tasks) denote procedures for executing OS calls.

The source software OS calls are performed by gen-
erating in each processor an Ada task called control-
ler. 1t is shown at the top of the Figure 3. It only
performs the concurrency related OS calls that are ac-
tually used in the source software. (OS error proces-
sing and I/O are not considered.) The controller task
plays the role traditionally played by the kernel in OS.
That is, it provides the basic mechanisms for support-
ing task creation, interaction, and termination, and
for communication with the program’s environment.

The OS also performs dispatching of processes and
uses a variety of underlying systems. However, these
services are provided by the Ada compiler when gen-
erating object code by inserting into the code OS calls
tailored for each vendor’s OS, hardware and com-
munications. These capabilities therefore are not in-
cluded in the translation. The scheduling by the
source OS may differ from that of the target Ada
Program but should not affect the correctness of the
software, although it may affect the timing. If the
source OS supports priority assignments for processes,
then corresponding priorities are also generated for
respective Ada tasks. If the source language or OS
supports priorities for messages, then they are in-
cluded in the operations of the mailbox task, as de-
scribed below:

1)The messages exchanged between tasks are of

two kinds:

i )Control messages for interpreting OS calls; these

messages are exchanged between the controller
tasks and the functional tasks.

ii) Data messages for communicating variables
among processes as specified in the source pro-
gram ; these messages are sent or received by the
functional tasks that represent source software

processes.

2)The controller task contains in its body a main
loop that:

i )Receives a control message from other tasks
(via the controller’s mailbox task) to perform
the equivalent of an OS call.

ii )Calls a procedure that executes the protocol of
the OS call. The protocol may involve sending
control messages to tasks and receiving acknow-

ledgements of protocol steps.

Thus, the Controller task is implemented as a
nonolithic kernel in the sense that it can execute the
protocol of a single OS call at a time. Most of the
work of the call is done outside the Controller which
only routes messages and updates task control infor-
mation. If it will prove necessary, the design of the
Controller will be reconsidered to become an inter-
acting family of tasks, each with a different priority,
corresponding to the priority of the callers and to
specific segments in the execution of the call. The dec-
laration of a controller task is inserted at the begin-
ning of the target Ada concurrent software. The con-
troller is dynamically provided with data on each task
being created. This data is similar to a Process Con-
trol Block of an OS [LMKQ89, Ste90, Sun90]. It is
called Task Control Block (TCB).

Processes created by OS calls in the source program
are translated into declaration of respective Ada
tasks, the functional tasks. They are illustrated in the
middle of Figure 3. The declarations of functional
tasks are inserted in the places where there are calls

to the OS in the source software to create the respect-
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ive processes. Each functional task contains a main
procedure that corresponds to the sequential execution
code of the respective process in the source program.
In Ada, the sequential execution code is contained in
the body of the functional task. The functional task
body may contain calls to procedures that send con-
trol messages to the controller task, thus causing ex-
ecution of the protocol of the respective OS call. A
functional task may be assigned a priority, as indic-
ated, by a respective source software OS call. The
inserted declarations of functional tasks create the
tasks dynamically and their creation is reported to the
controller task.

An originating task may call the controller task to
execute an OS call on a destination task. Each func-
tional task must check periodically if it has a waiting
command from the controller. If one exists, then the
functional task must execute the command. An exam-
ple of such a command is a call in one functional task
for suspending or terminating another functional task.
When the destination functional task receives the
command, it suspends or terminates itself normally.
The checks for existence of a waiting message add
overhead to the execution of these commands. The
required response time to these commands determines
the frequency of checking for such messages. It must
be compensated for by usine much faster hardware
with target Ada software than the hardware used with
the source hardware.

For the reasons below, it was determined necessary
to have all communications between functional tasks
or between the controller and a functional task to go
via a mail box task. The mailbox task contains intelli-

gence to handle the following:

1)Recognizing and buffering variable length data
messages.

2) Recognizing and buffering control messages and
giving top priority in delivery of control messages.

3) Delivering data messages in a priority order, in

accordance with the message priority requirements of

the source software OS. Same priority data messages
are delivered in first-in first-out order.

4) Acknowledging receipt or delivery of message
corresponding to requirements of the source software
OS calls. Note that this can support both guaranteed
delivery of messages as well as serving blocked or
unblocked communication commands.

5)Receiving, interpreting, and acknowledging con-
trol messages directed to the mailbox task itself. This
is necessary to suspend, continue or terminate a mail-
box.

Mailbox tasks are created dynamically. They are
reported to the controller for each control and func-
tional task. A mailbox task is created at the initializa-
tion of the respective controller or functional task.
Thus, there is one mailbox task for the controller task
and one for the functional task. An additional mail-
box task may be created to establish a sending and
receiving communication path between multiple pro-
cesses in the source software. This task is also created
dynamically in the corresponding place where the
source software communication path is declared in
the source software. The mailbox tasks are also
shown in Figure 3. Each mailbox task has an entry
point for calls of incoming messages and an entry
point for delivery of messages.

The use of mailbox may at times add an overhead
of as much as double the communication time be-
tween tasks. This overhead must also be compensated
for by use of hardware that is considerably much
faster than the hardware used by the source software.

The selection of Ada primitives and their method
of synthesis takes into account minimizing the over-
head in execution, and maintaining, or even improv-
ing the understandability of graphic model of the soft-
ware. We distinguish between two types of primitives:
those that are generic to many OS’s, and those that
are specific to a selected OS. There are some structures
and operations that are common to a number of

OS’s. The translation of each OS call requires compo-
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sing its own procedures that implement the respective
protocol of the call. Both the generic code and the OS
call procedures are placed in the Ada library as dis-
cussed in Section 5. The procedures that execute OS
calls are shown in Figure 3, inside the respective
boxes.

An OS call may not be fully translatable to Ada, or
translatable only in a restricted way. For example,
Section 6 refers to the Unix fork call which involves
creating a new process. It consists of copying an ex-
ecutable image, creating an appropriate task control
structure, and rescheduling. This cannot be done in
general directly in Ada. But this can be done in Ada
if the code executed in the child thread consists of a
call to a predefined pure procedure, i.e. all data used
in the procedure are either local or an explicit para-
meter of the procedure (OQut, and In Qut parameters
of the procedure must have been copied before the

procedure in called.).

Pass1 Pass2

Generation of
Generation snd Functional Task and
Insartion of Insertion of
Control Task Code Procadure Calis for

(Fig- 4) Conversion of 0S calis to Ada

5. Implementation of Translation of Con-
currency-Related OS Calls

5.1 Two Pass Process

The translation of OS calls is shown in Figure 4 as
a circle titled Concurrency Translation. The output of
this process is the Elementary Statement Language for
Ada (ESL-Ada) [CCCC92, Lee95] of the software

obtained from translating the source sequential code
into Ada [CCCC94, Lee95]. Note that ESL-Ada a
graphical language to represent Ada software based
on Entity-Relation-Attribute (ERA) graphs [Che76),
where the statements are represented as nodes, and
the relations between statements as edges, called tuple.
The output includes source OS calls embedded in the
sequential Ada code in the graphic software model.
This concurrency translation process replaces the
source OS calls in the ESL-Ada with Ada code.

The transtator process is illustrated in further detail
in Figure 4. As shown, the ESL-Ada software model
is updated in two passes. The first pass consists of :

1)Scanning the ESL-Ada graphic model of the

software to find :

i )the concurrency-related OS calls that are used in
the source software,

ii ywhich calls create processes and therefore must
be replaced by functional task declarations, and

iit) the beginning and end of the sequential thread
of execution code performed in each of the

SOUICe processes.

This information is tabulated for use in Pass 2.

2) Generating the controller task which contains
calls to the procedures that interpret all the OS calls
that are used in the source software. As noted above
the code in the library is for a single processor. Only
a controller task exists for each processor in the net-
work. It is generated in place and not included in the
Ada library. The controller task declaration is gener-
ated in Pass 1. Its specification is inserted at the be-
ginning of the ESL-Ada model of the software. It
contains procedures for only the OS calls in source
software.

3)Creating a mailbox task for the controller task.

The second pass consists of :
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il. Type of precedure for:

* Interpreting the protocols of the source Operating System calis in the:

- Controlier task
- Functional Tasks
- Mailbox tasks

IIl. Types of tasks and generic package for:
© Mailbox task
® Generic Package that contains a functional task

(Fig. 5) Summary of the Ada library
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1) Inserting the instantiation of respective functional
tasks and their mailbox tasks in place of each OS call
that creates a process. The inserted code sends a con-
trol message to the controller task, reporting the
created task control block.

2)Inserting an instantiation of a mailbox task for
each OS call that establishes an inter-task data mes-
sages channel.

3) Inserting in-place calls to procedures that execute

every other type of OS call.

5.2 Use of Ada Library

As shown in Figure 4, the creation of Ada tasks
and procedures is simplified by instantiation of pre-
defined objects in the Ada library.

The contents of the Ada library is presented in
[Lee9S] but omitted here due to its extensive size.
However, it is outlined in Figure 5. It contains the
data declarations used in the tasks shown in Figure 4.
Next, the library contains procedures for the OS calls.
Finally, the Ada library contains a declaration of a
generic package for a functional task and a mailbox
type. Since there may be a large number of functional
tasks, the use of the generic package for the func-
tional tasks facilitates the software understandability.
The instantiation of each functional task in Pass 2 re-

quires providing the generic package with parameters:

1) a unique name for the task,

2)the name of the procedure that corresponds to

the code executed in the respective source process,
and
3)the names of the procedures for interpreting the

OS calls by the respective functional task.

6. Example of Translating Producer-Con-
sumer Code in C/Unix to Ada

This section illustrates the process of translating
concurrent software into Ada with a C/Unix example
for Producer-Consumer problem. it includes only the
features related to the example. Others are listed in
the Ada library in [Lee95].

6.1 Producer-Consumer Example in C/Unix

Figure 6 shows the code for a C/Unix program
example for the Producer-Consumer problem. This
program consists of three entities : main, producer, and
consumer. At runtime, there are three processes run-

ning concurrently as follows:

1) A process executing the original muain() program
that creates a PIPE, and two child processes.

2)}A process executing a copy of the main() pro-
gram in which a producer() function is being called.

3)A process executing a copy of the main() pro-

gram in which a consumer() function is being called.

These concurrent entities are called MAIN, PRO-
DUCER, and CONSUMER processes respectively.

fork() .~ " fork()

Standard o ! pipe() Ty Standard
Input ; output
—

— i Producer | BUF s I
get() write() read() put()

(Fig. 7) Overview of producer-consumer example in C/ Unix
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The runtime structure of these entities and their relat-

ionships are shown in Figure 7. It includes pipe, fork,
and read/write operations.

In the following, each function and its respective

operations are described :

1)MainQ}: It creates a PIPE and two concurrent pro-
cesses, called PRODUCER and COMSUMER, which
execute producer() and consumer() functions. It passes
a WRITE pointer to the PIPE to PRODUCER and a
READ pointer to CONSUMER for communication
of message between PRODUCER and CONSUMER.
Once both processes are active, it waits for terminat-
ion of both processes. After termination, it closes the
PIPE and terminates its own execution.

2) Producer(): It is executed in a copy of the main()
function. In execution, a pointer to a PIPE is passed
as a parameter to write messages. It writes on the
PIPE a message which has been gotten from the in-
put, in each iteration of a loop. This loop continues
until flag condition is not met.

3)Consumer(): It is executed in a copy of main()
function. In execution, a pointer to a PIPE is passed
as a parameter to read messages. It reads from the
PIPE a message which is to be written to the output,
in each iteration of a loop. This loop continues until
flag condition is not met.

4) Pipe(): It is an inter-process communication mech-
anism used in UNIX OS. This is one-way communic-
ation mechanism, with two pointers for READ and

ZEAC PUMM SES Ada2 HAB7| S UHE 2885

WRITE. It is created by MAIN, and is passed to
PRODUCER and CONSUMER for communication

between them.

6.2 Producer-Consumer : PASS 1

The input to Pass 1 consists of only sequential code
translated to Ada. All OS calls remains commented as
in same software. These OS calls are used in Pass 2
for translation to Ada.

The input of Pass 1 of the translation of the C/
Unix Producer-Consumer example to Ada is shown in
Figure 6. C code is translated into Ada procedures.
This sequential translation is performed by a separate
sequential code translator [CCCC94, Lee95]. The out-

put of Pass 1 is organized as follows:

1) A list of OS calls: These are used to generate the
body of a controller to interpret OS calls of the target
Ada code.

2) A list of procedure bodies of functional tasks: These
are actual bodies of the functional tasks in the target
Ada code.

3) The type of arguments for procedures in 2): These
parameters are to be passed to the functional task at

the time of instantiation.

Based on these information, the following tasks and

procedures are generated in Pass 1:

1) Controller: It is a task that translates the source

. S
. .~
, “

.
\
N

Standard
input

UNIX_fork() ,

o

UNIX, plpe()

) .. UNIX_fork()

Producer
Qe(()

UNIX \ E
write()

UNIX_
read()

Standard
output

Consumer
pm() @

(Fig. 8) Overview of producer-consumer example in Ada
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software OS calls. It includes only servicing concur-
rency related OS calls that are actually used in the
source software. It performs the following operation

in iteration:

i )Receives a control message from a respective
task to perform an OS call.

ii )Calls a procedure that interprets the protocol of
the OS call. The protocol may involve sending
control message to tasks and receiving an

acknowledgement of the protocol.

2) Consumer : It is a procedure corresponding to con-
sumer() function in source software. The sequential
part has been separately translated into corresponding
sequential Ada code. All OS calls remain to be trans-
lated into the concurrent Ada code in Pass 2.

3)Producer: It is a procedure corresponding to pro
ducer() function in source software. The sequential
part has been separately translated into corresponding
sequential Ada code. All OS calls remain to be trans-
lated into the concurrent Ada code in Pass 2.

4)Main:It is a procedure corresponding to main()
function in source software. The sequential part has
been translated into corresponding sequential Ada
code. All OS calls remain to be translated into the

concurrent Ada code in Pass 2.

The source software is translated into a procedure.
One of the reason for this is to modularize each re-
spective source software. This increases readability and
understandability of the generated Ada target code.

The structure of the translated Ada code is shown
in Figure 8. It consists of tasks:a controller tasks with
a mail box, functional tasks with mail boxes, and a
pipe. Note that the reason for MAIN to be instanti-
ated as a task is due to UNIX semantics that MAIN
is a process. The outputs of Pass 1 are specifications
and bodies of Controller task, Producer, Consumer,
and Main procedures. The outputs also include data

structure declarations and type conversion functions

used in Controller task and other three procedures.

All remaining OS calls are translated in Pass 2.

6.3 Producer-Consumer : PASS 2
In Pass 2, all OS calls are translated according to

their protocols. This translation consists of :

1)Creating a functional task and its mail box in
place of each OS call to create a respective process.
The functional task calls its own procedure.

2)For every call in the functional task’s own pro-
cedure, insert in-place a call to a procedure that
interprets the part of the OS call protocol performed
by the functional task.

3)Creating a mailbox task for each multiple input/

output communication indicated by an OS call.

In the following, procedures to handle Unix OS
calls in Functional Tasks are listed. These are pre-de-
fined in the Library in Appendix A of [Lee95].

1)FORK OS call: The fork() OS call is translated
into a call to a function in PRODUCER_PACK
package, which is an instantiation of package called
FUNCTIONAL_TASK_PACK. This package is de-
fined in the library. This instantiation requires the
body of PRODUCER or CONSUMER procedure to
be passed as a parameter. A call to a Generate_ Func-
tional _Task function in this instantiated package
requires a set of proper parameters to be passed.
These parameters are used to generate a desired func-
tional task. These are i)name of child task being
created, ii)a pointer to this task creating a new child
task, iii)a pointer to the CONTROLLER mail box,
and finally iv)a list of parameters for this PRO-
DUCER or CONSUMER procedure in a stream of
bytes. In instantiation, this newly created child task
generates its own mail box, informs a controller about
its own task and mail box, and finally calls the body
procedure of its own. When Controller receives mes-
sages about these new tasks, calls NEW _TCB_ Rou-
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tine procedure, in library, to create a new TCB for
this functional task and mail box. This TCB is used
to inform parent task about its child task.

2)EXIT OS call: The exit() OS call is translated
into a call to UNIX _Exit procedure defined in the li-

brary. This procedure generates a control message for
this OS call and passes it to Controller. When Con-
troller receives this message, it calls a procedure
SYS_EXIT _Routine defined in the library. This pro-
cedure will perform the protocol of exit() OS call in

with LIBRARY_PACK; use LIBRARY_PACK;
with TEXT_IO; use TEXT_IO;
with Unchecked_Conversion;

procedure ADA_MAIN is
—<other Ada code for controfier and
- Mail Box Tasks>

- PRODUCER

producer Producer
(CriMBoxPtr : in MAIL_BOX_P;
FTMBoxPtr  : in MAIL_BOX_P;
ArgList 1in MESSAGE_TAIL_T)

— Local Variables;
MSG : CHARACTER;
FLAG : INTEGER = 1;
~ Conversion Dependent Local Variable:
LocalArgList : PRODUCER_ARG_P
= BYTE_Str_T_2_Producer_Arg_t{ArgList);
ByteStream : MESSAGE_TAIL_T;
N . INTEGER := MSG'SIZE;
RValue : INTEGER ;
begin
while (FLAG = 1) loop
GET(MSG);
ByteStream = MSG_2_Byte_Str_T(MSG);
UNIX_Write(FTMBoxPtr, LocalArgList BUF,
ByteStream,N,RValue);
end loop;
UNDX_EXITICtriMBoxPtr,FTMBoxPtr);
end Producer,

- CONSUMER

procedure Consumer
(CtiMBoxPtr - in MAIL_BOX_P;
FTMBoxPtr  : in MAIL_BOX_P;
ArgList . in MESSAGE_TAIL_T)

— Local Variables:
MSG : CHARACTER;
FLAG : INTEGER :=1;

— jon Dependent Local Variable:
LocalArgList : CONSUMER _ARG_P

= Byte_Str_T_2 Cmsumer r_Arg_T(ArgList) ;
ByteStream : MESSAGE_TAIL_T;

: INTEGER := MSG'SIZE

Rvalue ! INTEGER;

while (FLAG = 1) loop
UNIX_Read (FTMBoxPtr, LocalArgList, BUF,
ByteStream,N,RValue);
ByteStream := Byte_Stre_T_2_MSG(ByteStream);
PUt{MSG),

end loop;
UND(_EXIT(CtriBoxPtr, FTMBoxPtr);
end Consumer;

- C_MAIN
procedure C_Main .

(CiriMBoxPtr in MAIL_BOX_P

in MAIL_BOX_P

FTMBoxPtr H i
Arglist . in MESSAGE_TAIL_T)
- Local Varibles:

BUF : MAIL_BOX_P;
CWMDWLMVM
ProducerArg PRODUCER_ARG_’ T
ConsumerArg - T,
ByleStream : MESSAGE_TAILL T:
FTaskPtr . . STANDARD_TASK_P;
RValue . INTEGER;
Name : NAME_T;

Consumer_P : STANDARD_TASK_P;
Producer_P : STANDARD_TASK_P;

— Instantiation of PRDUCER package
package PRODUCER_PACK is new FUNCTIONAL_TASK_PACK
(Task_Body | Pmeedn=>Pmd\mr)

— Instantiation of CONSUMER package
package CONSUMER_PACK is new FUNCTIONAL_TASK_PACK
(Task_Body_Procedure=> Consumer);

begin
UNIX. PlPE(CMIABothr FTHBothr BUF, RValue ) ;
ProducerArg.BUF BUF
ByteStream ‘= Producer, _Arg_T_2 Byte_Str_T
{ProducerArg):
Name = Gel_Task

ask_Name;
Producer_P: =PRODUCER_PACK.Gtmh Functional_Task
( Name, FTMBoxPtr, CtriMBoxPtr, ByteStreamP ) ;
ConsumerArg. BUF = BUF,
Bytestream = Consumer_Arg_T_2_Byte_Str_T

{ConsumerArg);
Consumer, P-CONSUHER_PABK.M Functional_Task
(Name, FTMBoxPtr,CtriMBoxPtr,ByteStream);
UNIX_Wait ( CtriMBoxPtr, FTMBoxPtr, NULL, RValue ) ;
UNDC| w-n(cmuaomr.rmm NULL, RValue ) ;
UNIX_Close ( CtriMBoxPtr, FTMBoxPtr, BUF, WRITE_PIPE, RValue );
cUNMpA‘l NCIose(CMIIBothr FTHBothr BUF, READ_PIPE, RValue );
end

~ Instantiation of C_MAIN package:
package MAIN_PACK is new FUNCTIONAL _TASK_PACK
(Task Body Procedure=>Main);

begin
declare
Name : NAME_T;
ByteStream : MESSAGE _TAIL_T;
MainSrg : MAIN ARG_T;
C_MAINP STANDARD, )_TASK_P;
begin
Name = Get_Task_Name;
ByteStream = Main_Arg_T_2_Byte_Sir_T(MainArg) ;
C Mainp = C_MAIN_PACK Generate_Functional_Task
(ControllerMaiiBoxPtr, ControierMaiBoxPtr,
ByteStream) ;
end,
NULL;
end ADA_MAIN;

(Fig. 9) Target Ada code for producer-consumer example



2888 IRTRK2|ES =2 X M4 M 113(97.11)

the source software OS.

3)WAIT OS call: The wait() OS call is translated
into a call to UNIX_W ait procedure defined in the li-
brary. This procedure generates a control message for
this OS call and passes it to Controller. When Con-
troller receives this message, it calls a procedure SYS
W AIT _ Routine defined in the library. This procedure

will perform the protocol of wait() OS call in the
source software OS.

4)PIPE OS call: The pipe() OS call is translated
into an instantiation of mail box. In instantiation, it
makes a call to UNIX _Pipe procedure defined in the
library to inform Controller about this new mail box
task named PIPE. This procedure generates a control
message for new task and passes it to Controller.
When Controller receives this message, it calls a pro-
cedure SYS_PIPE_Routine defined in the library.
This procedure creates a new TCB for this mail box.

S)CLOSE OS call: The close() OS call is translated
into a call to UNIX_Close procedure defined in the
library. This procedure generates a control message
for this OS call and passes it to Controller. When
Controller receives this message, it calls a procedure
SYS_CLOSE_Routine defined in the library. This
procedure will perform the protocol of close() OS call
in the source software OS.

6)READ OS call: The read() OS call is translated
into a call to a procedure UNIX_Read defined in the
library. This procedure gets a data message from a
PIPE mail box by calling a READ entry. In reading,
it checks for the right message by the size and type of
message.

7T)WRITE OS call: The write() OS call is translated
into a call to a procedure UNIX _Write defined in the
library. This procedure generates a data message to a
PIPE mail box by calling a WRITE entry. In writing,
it waits for an acknowledgement from the PIPE based
on blocking information. In return, it receives a num-
ber of bytes written on the PIPE.

Bodies of three functional task prbccdures are

presented in Figure 9. These are C_Main, Producer,
and Consumer procedures. Only the translation of OS
calls in these bodies are high-lighted with bold face.
The details of procedures used are defined in the li-
brary in [Lee95].

7. Conclusion and Future Research

This paper described the methodology for trans-
lation of concurrent software expressed in OS calls to
Ada, as a part of a large re/reverse engineering pro-
cesses in SRE. Concurrency in some legacy software
is expressed by OS calls that perform concurrent pro-
cess/task control. For example, this paper presented
calls in C programs to Unix. This approach is also
applicable to other cases, such as calls in CMS-2 pro-
grams to the ESR of ATES. The methodology fo-
cused on translating the OS calls in a legacy software
into the equivalent protocols using the Ada facilities.
In translation to Ada, these calls are represented by
Ada equivalent code that follow the scheme of a
message-based kernel oriented architecture. To facili-
tate translation, it utilizes templates placed in library
for data structures, tasks, procedures, and messages.
This methodology is a new approach to modeling OS
in Ada in software refreverse engineering. Compared
to other approaches, there is no need of knowledge of
the underlying OS for software understanding in this
approach, since the dependency on the OS in the leg-
acy software is removed. It is portable and interoper-
able on Ada run-time environments. This approach
can handle OS calls in different legacy software systems.

The rescarch reported in this paper has a number
of limitations since it focused on the translation of
concurrent source software into Ada for a single pro-
cessor. The future research should handle the problems
of checking and modifying the software to attain in-
dependence of the logic on the source hardware and

distribution of the calculations as follows:

1) Distributing concurrent software of large scale ap-
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plications : Large-scale concurrent software is envisaged
as consisting of large number of Ada tasks divided
among software units. Frequently communicating
pairs of tasks should be executed in co-located pro-
cessors. Less frequently communicating tasks may be
distributed geographically.

2)Modifying the Ada software for independence of
the hardware: The programmer of the source software
may have omitted some synchronization statements
based on knowledge of the speed of the processors
and the scheduling discipline of the OS used. Such
omitted synchronization commands must then be
added to the software in order to attain logic-wise in-
dependence of the speed of the processors used.

3) Determining required processor and communication
capacity for satisfying real-time deadlines: The timing
requirements are typically not specified in the source
software. They must be obtained by the human user
of the software reengineering facility from the soft-

ware specification.
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