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View Variations and Recognition of 3-D Objects

Whangbo Taegkeun '

ABSTRACT

Recognition of 3D objects using computer vision is complicated by the fact that geometric features vary with
view orientation. An important factor in designing recognition algorithms in such situations is understanding the
variation of certain critical features. The features selected in this paper are the angles between landmarks in 2
scene. In a class of polyhedral objects the angles at certain vertices may form a distinct and ciiar=:ienistic align-
ment of faces. For many other classes of objects it may be possible to identify distinctive spactiai arrangements
of some readily identifiable landmarks.

In this paper given an isotropic view orientation 2nd an orthographic prcjection the two dimensional joint
density function of two angles in a scene is derived. Also the joint density of all defining angles of « polygai in
an image is derived. The analytic expressions for thic densities are useful in determining statisticui docise o aies
to recognize surfaces and objects. Experiments to cvaluate the usefuiness of the proposed methaods ar .Lported.
Results indicate that the method is useful and powerful.

1. Introduction recognition requires matching features in the input
image with sets of model features. In most situations

Most schemes for recognizing 3-D objects in two- the orientation of the object vis-a-vis the camera is
dimensional images are model-based systems in which not fixed, there is, therefore, considerable variation in
T3 3 9 AL0%m Za0e AALe the images of an object that are captured by a

R 19979 59 69, AAEE:1997d 109 18 machine vision system. It is impractical to store all of



these image variations and to attempt recognition by
malching an objservation to these stored images. More
feasible recognition schemes [1]-[3] store features
sampled at different views and use these feature sets
as model representations of the object. An unde-
rstanding of feature variations with view orientation
is fundamental to designing cfficient recognition systems.

The importance of understanding the variation in
geometric features is recognized. Burns ef al [4] quan-
tify the variations in angles, length, and relative pos-
ition and plot extensive charts and histograms of
these variations. Analytic expressions for variations
are however not derived. Ben-Aric [5] develops
probabilistic models for angles and distances but his
functional expressions are mostly approximations.
Binford et al [6] have also studied angle densities but
have developed their pdf plots using numerical inte-
gration.

The ideas presented in this paper are continuation/
extension of previous and ongoing research in 3-D
object recognition using view variation. The random
orientation model (»om) was developed and applied
to specific situations in [7)[9]. In [10] the angles
between the edges of the surface were selected as a set
of significant characteristics of a polygonal flat sur-
face and an analysis of the variations of the measured
angles in a triangle was presented. The angles selected
are not restricted to the polyhedral object, the spatial
arrangement of landmarks (or easily
recognized icons) on an object may constitute a
unique characteristics of that object.

A significant characteristic of the decision rules
using the variation of the measured angles is to dis-
tinguish amongst objects that appear in images, poss-
ibly with the same shape. However since such
decision rule is statistical, it will not always give the
correct result. A method to reduce the error pro-
bability is examining the more measured angles in an
image. Some of new contributions of this paper are 1)
the verification of the usefulness of the proposed

decision rules through some experiments, 2) a math-
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ematical framework and mathematical understanding
of the view variation, and 3) the derivation of the
joint densities of the defining angles of any polygon.
A brief description of random orientation model
and angle measures in an image is presented in sec-
tion 2. In section 3 the joint densities of the defining
angles of polygon are derived. Optimum decision
rules for recognition are outlined in section 4.
Experiments to verify the utility of these rules are
reported in section 5. Finally, in section 6 some

conclusions are drawn.

2. Angle Measures in Images and Angle
Density

The image captured is assumed an orthographic
projection of the scene and that the image plane is
normal to the view axis (Fig.1). Object views from
different directions are equivalent to positioning the
viewpoint, v, at different locations on the observation
sphere. A location on the observation sphere, and
thus a unique orientation of the object, is specified by
the polar and azimuth angles, 6 and ¢, respectively.

In the random orientation model the position of
the viewpoint on the observation sphere is randomly
selected. This in turn implies that # and/or ¢ are ran-
dom. The probability density function (pd f) that de-

scribe the randomness in 8 and ¢ is determined by the

v view direction

(Fig. 1) An observation sphere models camera and/or ab-
iect orientation.
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viewing situation and derived in [11] as

1
— 5in0;0<0<,0<¢<2
o0, d=] am " mosgs2m

0 ;elsewhere

A triangle is placed in the x-z plane at the center of
an observation sphere (Fig. 2). The angles in the
plane of this triangle are labeled, a, b and c. (Table

1) contains a list of the labeling conventions used.

(Fig. 2) A triangle within the observation sphere. The tri-
angle is in the x-z plane.

{Table 1) A catalog of the labels used in (Fig. 2).

Description Convention | Example

Angles in the plane Lower-case a,b

Angles on the sphere (or in image) | Upper-case A, B

Angles at the origin Greek 0,4

Intersection points Italics a b

Using the Jacobian method, the density function
f4, (4, B)can be simplified as (see [10] or [11] for
detail derivations)

1 1
27 sin Asin BsinC (2

f(4, B)=

;0 A<, 0<B<n—A,C=n—A—B)

sin(4 +B)sin a sinb _ cot4 +cotB

sin 4 sin Bsin(a +b)  cota +cotb ’
1 +H2 +£2

=

where k=

3. Polygon Angle Densities

3.1 Triangle

The angle-pair density in equation (2) is accurate
only if a correct point correspondence has been estab-
lished between the image triangle and the model tri-
angle. Suppose this image triangle is a projection of
the model triangle at some unknown orientation.
Without collateral information it is impossible to
determine if the angle pair (4 B) in the image
corresponds to (a b), or to (b ¢), or to (c a) in the
model. It is reasonable to assume that there is only a
1/3 chance of selecting the correct correspondence.
Therefore the angle-pair density for a given model T

is
£(4, BJT) =% £(4, Bfa, b) +—;- F(4, Bfb, ©)

+§ F(A, Blc, 2) 3)

where f(A4, B/a, b) is the density in equation (2), and
F(4, B/b, c) and f(4, Bfc, a) are functional equivalent
to the expcept that 2 and p are replaced with corre-
sponding angles in the model.

4.2 Quadrilaterals

A quadrilateral is just a combination of two
triangles sharing one side, which is a diagonal of the
quadrilateral. The diagonal of a quadrilateral is in
negative z axis, and one triangle is in (+x, —2) plane
and another triangle is in (—x, —z) plane as shown in
(Fig. 3). Let a,, a;; be the two angles of the triangle
in (—x, —z) plane and a;;, a,4 be the two angles of
the triangle in (+x, —z) plane. The images of angles
a1, a1, a;3, and a4 are denoted as A;y, Ay, A3, and

Aya respectively. The relationship between angle ays,



ayy and Ay, A4 is oblained analogously by using the
geometry of spherical triangles.

cot A3 =csc ¢ sin & cot a;; +cot ¢ cos § 4)

cot Ay4=csc @ sin 0 cot a,,—cot ¢ cos 0 (5

(Fig- 3) A quadrilateral within the observation sphere.

The probability density of the angle vector [4,;, 4,,,
A3, Ay4] given the correspondence (a; — A4, aj,—>
A|2, a|3—>A13, 314—‘>A|4) may be obtained using

Bayes’ rule:

fAnAndisdulagapasag =4 Au| Ay Ay
sapapapay) - f44plaa,) (6)

Now the joint density of A;;, 4, is just equation (2)
with the following substitutions:

A=A, Ap=B, ki =k, etc.i.e.

1
27 sin Ay sin Apsin(Ay; +4;,)

fdn, A iapap)=

1 1 +l|2 +k2l
W —1{, where p,———,e7|—
ki by

Now A4, and A, are completely determined by the
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other angles, hence the angle vector density may be

written in terms of delta functions [12] as:

f(4y ApAiyAiglagapagsa) =
é(A._;—cot“ (k; cot ajy -H,)) 2]
. 5(A|4"0017‘ (k, cot a, +11)) . f(Au A|z|ana|2)

In a convex quadrilateral there is no way to cor-
rectly identify vertex with the (a,,, a,4) angles without
additional information. An image vertex (A3, 4,4
may correspond to any of the model vertices (a,, a,,),
(a3, ai4), (a3, a3), or (as, a,), with only 14 chance

of selecting the correct one. The pdf of a convex

quadrilateral, Q, is therefore

1
f(AnAlenAM ‘Qmm)ex)=—4_ f(AnAlenAu lay alzanau)

1

+T f(AIIAIZAISAM | a|3a|4a||alz)
1

+T f(An An Az Al ay a22323a24)

1
+‘4— f(An A Az A | annagay azz)

where each term on the RHS is derived from
equation (7).

In a convave quadrilateral, there can only be one
vertex in a quadrilateral with an inside angle greater
than 180°. Also all views of this angle lie between
180° and 360°, i.e. a concave angle always remains a
concave angle Therefore there is no ambiguity in
identifying the concave vertex, and the quadrilateral

density is
f(Au Az Az Ayl Qcom)ex)=f(AH A A Al ay aIZaIBaM)

3.3 N-gon

The pdf of a N-sided polygon can similarly be
derived. The N-gon can be split into N-2 triangles by
using the method illustrated in (Fig. 4), and therefore
with 2(N-2) angles the N-gon is uniquely determined.
There are however, N possible ways of dividing a

N-gon into N-2 triangles. If an N-gon consists of
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only convex angles, then the angle vector density

function is
f(An, A1zyees Ayon-9) | N—gom conex)

1 N
=y 2 f(An, Ay Aion-0 | 20, aiz,--~aai(2N—4))
=1

where f(An, Az, Aiov-a | 2, aiz,-~~,ai(z/v—4))‘—‘

2N -4

f(An Az lag, aiz) jl:[I 5(141;"(30t_l (%; cot a;; ’Hi)),

cot A4;, cot a;; —cot 4, cot a;,

i cot a;; +cot a;,

sin(4;; +4,,) sin a; sin a;
sin 4, sin A, sin (a; +a;)

=

Triangles
T,=P, P, P,
T,=F pp,
T,=P, P, P,

T Py Py, P,

(Fig. 4) With the vertex labeled shown on an N-gon it is
possible to define N-2 triangles as shown.

4. Decision Rule

The density functions that have been derived may
be used to develop optimum decision rules for
recognizing plane geometric shapes in images. In this
paper exposition is restricted to the recognition of
triangles; however the methods presented here may
easily be extended to recognizing N-gons.

Decision rules depend on the a priori knowledge
available. Two distinct situations exist in recognizing
triangles in images. The more desirable situation is
when point correspondence has been established
between the points (or vertices) of an image triangle

and the model triangles using connectivity or other

information acquired by processing other parts of the
image. The converse situation is when no corres-
pondence has been established implying greater ambi-

guity.

4.1. Point Correspondence

Consider the situation where the triangles shown in
(Fig. 5) represent, say, parts of the facade of various
buildings and our objective is to process an image of
one of these buildings and to recognize the shape of a
triangle and thereby alos recognize the building.

Bottom

Image T

T, T,

(Fig. 5) Model triangles Ts, Ts, Ts, and T« where the apex
is recognizable in the image T.

A model of the decision problem is shown in (Fig.
6). The objective solution to this problem is the speci-
fication of a rule to convert the image angle-pair (4,
B) measurements into a decision about which model
triangle produced (4, B). An optimum solution is a
decision rule which minimizes some reasonable cost
function such as the probability of error, P(E).

The decision rule which minimizes the probability
of error in the case when all model triangles (T,

Ts,..., Tm) are equally likely is
T=T;if f(A4, Bla, b)> f(4, Bla; b)) Vi#j ()

This rule may further be simplified by using equation



Unkown

Orientation
Model Scene 0,4

T —> [Fepreaion] —> (o, ) —>[Camerd]

(Transfomations
equations 3.1, 3.2

Decision

_ Image
T €&— €—— (4,B)
Te {Ti }11
Te T, }11 - Triangle
{anie %(ai,b, )}M - Angle_ pair

(Fi. €5 The dzeision problem model. T is one of the tri-
angles from the set i{Ti, Tz -, Tw} and is
characterized by the angle-pair (a, b).

(2). The inequality in equation (8) may be written as

1
2nsinAsin BsinC

1 1
= - ——
2nsindsinBsinC \/ 2 \2
k;p;

which reduces to the following inequality
kipi < k;p;

The kp term using the / and % parameters (in section 2) is

2 2 2
1+lk’+k )=k+l+l_

kp:k( E ok

Now the minimum value of this expression (since % is
always> 0) is when £=1 and /=0, which occurs when
A=a and B=Db i.e. when the image angles equal the
model angles. The decision rule is therefore

1 12 1 42

Select T =T if ki +— +— <k; +— +

ki ki ki k; ©)
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4.2 No Correspondence
When there is no knowledge about which vertex in
an image corresponds to which vertex in a model trian-

gle, then the decision rule in equation (9) changes to:
T=Tiif f(4, BIT)=f(4, BIT)) Vj#i (10)

where the density is the triangle angle-pair density

given in equation (2).
5. Experiments

The usefulness of the derived probability density
function was tested in a series of experiments and re-
ported in the previous paper. Various samples as
shown in (Fig. 7) were selected and imaged on the
target structure sketched in (Fig. 8). The samples used
in the experiments are labeled and described in
(Table 2.

The vertices in the images in (Fig. 9) were extracted
and the angles computed (see {Table 3)). For all model
triangles we assume there is no angle correspondence,
thus equation (10) is uced for the decision rule. A
tabulation of all these values is shown in (Table 4).

Consider the Sample-a values shown in the second

colum of the table. The likelihood function values

A =~ -~

Triangle 1 Triangle 2 Triangle 3
Triangle 4 Triangle 5 Triangle 6
Tri-1 | Tri-2 | Tni-3 | Tri-4 | Tri-$ |Tri-6 [Tri-7
pr - 60 [ 11090 |90 |80 |90 |140
Triangle 7 60 |40 J15 |45 |80 |30 |10

60 |30 |75 |45 20 |60 | 30

(Fig. 7) Model! triangles and their angles
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(Fig. 8) A sketch of the target area showing the target
orientation

{Table 2) Sample triangles and their approximate orient-

Sample-a Sampleb Sample<
Sample-d Sample-¢ Samnple-f

Sample-g Sample-h

(Fig. 9) Images of sample triangles after certain orient-

ations. ations
Sample Triangle t° s
a 2 16 40 (Table 3) Measured angles of sample triangles after cer-
b - 1 18 “ tain orientations.
c 3 3 5‘ - o ?“ Sample Measured
d 4 38 45 a 31.6770 101.8908 46.4322
e 7 35 4 b 73.0989 55.3940 51.5071
£ 1 40 55 c 63.0794 99.9854 16.9352
e 5 2N 0 d 45.6658 49.0547 85.2795
h 1 21 40 e 24.1325 145.3833 10.4842
f 54.0058 82.2607 43.7335
73.0507 84.2267 22,7225
69.1531 552777 55.5693
{Table 4) Likelihood values for different samples.
Triangle Samp-a Samp-b Samp-c Samp-d Samp-e Samp-f Samp-g Samp-h
1 0.2250 1.4287 0.0665 0.6114 0.0199 0.6623 0.1311 2.2452
2 0.8447 0.1874 0.0479 0.2237 0.0196 0.1895 0.0878 0.1769
3 0.0513 0.0532 0.4584 0.0531 0.0264 0.0564 0.2457 0.0528
4 0.3391 0.5833 0.0664 1.5845 0.0235 0.7597 0.1236 0.5215
5 0.0990 0.1003 0.3132 0.0977 0.0247 0.1043 0.8004 0.0994
6 0.1467 0.2479 0.1511 0.2737 0.0356 0.3291 0.3135 0.2497
7 0.0172 0.0201 0.0747 0.0222 0.2288 0.0233 0.0404 0.0200
Decision 2 1 3 4 7 4 5 1




evaluated using the seven different triangles are shown.
The largest value of the likelihood function in this
case is 0.8447 and corresponds to triangle 2. The next
most likely in this case is triangle 4 with a likeithood
value of 0.3391. The decision, of course, is triangle 2.
We can see from table 2 that this is indeed the correct
decision. In fact the scheme gave incorrect results
only in the case of Sample-f. It should be remembered
that the method is statistical and will not always give
the correct result. The method becomes less reliable,
as is to be expected the sharper the target orientation

angles (t and s).

6. Conclusions

The joint density of the two measured angles in an
orthographic projection has been derived and ex-
tended to the joint density of the angles in any poly-
gon. Using this density function optimum decision rule
for recognizing geometric shapes in images has been
proposed and demonstrated its use to distinguish
amongst the triangles in a group. From the exper-
iment conducted, the joint density function turns out
to be a quite reliable method. The method is not lim-
ited to two-dimensional objects because a triangle
captures the spatial arrangement of identifiable land-
marks in any three dimensional scene. The import-
ance of being able to distinguish similar shapes arises
from the fact that surface segments (such as planar
faces) of distinct objects are often similar.

This method, however, needs to be extended to
model the errors that arise from incorrect positioning

of landmarks in an image.
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