2690 SRFEX RIS =2 M4 M 113(97.11)

FH vlxe] ¥ 757E 37 9 A Bitonic Sorting
G E AA e A5 A FA

of M E'-H

2

CURTE L

(%t

B Apde FRoez 98 47 @304 N9 keyg Ollog?’N) A7t 38 & 5 9le W
932 Z¢ SHARED-MEMORY-BS9 REDUCED-BSE 41 73l%1ct. REDUCED-BS &1 && 7tz
2AM 0 U local memoryE E&H O Z ALEF £ UEFE A parity A HE ALt 44y X
Aol Qi local memory® E&AH 02 ALg%o 24 REDUCED-BS ¢ &-& SHARED-MEMORY-BS ¢
2 Zd b3ty BAle BieSst 128 E A Aoz Vel 473 o2 REDUCED-BS &2 &&
Wy PPN ENL AaAPo 2N AFEY AL 548 F4NE A

Designing a Bitonic Sorting Algorithm for Shared-Memory Parallel

Computers and an Efficient Implementation of its Communication

Jae-Dong Lee' - Kyung-Hee Kwon' - Young-B Park'

ABSTRACT

This paper presents parallel sorting algorithms, SHARED-MEMORY-BS and REDUCED-BS, which are im-
plemented on shared-memory parallel computers. These algorithms sort N keys in O(log?N) time. REDUCED-BS

uses a parity strategy which gives an idea for the efficient usage of the local memory associated with each processor.

By taking advantage of the local memory associated with each processor, the communication of REDUCED-BS
is decreased by approximately half that of SHARED-MEMORY-BS. On the basis of alleviating the commun-
ication, the algorithm REDUCED-BS results in a significant improvement of performance.

1. Introduction

For both practical and theoretical reasons, sorting
is probably the best studied problem in computer sci-
ence over the past few decades. Sorting is one of the

most common operations performed by a com-

3 This work was supported in part by Dan-Kook University.
T4 3 330 daA0e3
EEH:19974 59 7Y, AALeEE 119979 99 23Y

puter in both parallel and sequential computing sys-
tems. It is often said that twenty-five to fifty percent
of all the work performed by computers is being spent
on sorting[1]. Parallel sorting allows high performance
sorting by utilizing multiple functional units concur-
rently. Bitonic sort is a popular sorting scheme due to
its inherent paraliclism [6, 8, 9, 10]. In 1968, the
bitonic sorting scheme was introduced to construct a

sorting network|2]. Later, the bitonic sorting scheme

SR U2 HY AFH =

has been adapted to a variety of parallel computers
such as hypercube [7], perfect-shuffle [13], mesh-con-
nected parallel computers [11, 14}, and cube-connec-
ted-cycles [12].

Although the bitonic sorting scheme has been ex-
tensively used in parallel computing (mainly to con-
struct sorting networks), there is a need for a bitonic
sort algorithm for a general purpose shared-memory
parallel computation model.

In this paper the bitonic sort algorithm for shared-
memory parallel computers is developed and a modi-
fied bitonic sorting algorithm is presented, which uses
local memories efficiently. The modification improves
performance in the sense that the number of shared-
memory accesses across the interconnection network
is decreased. This improvement is achieved by main-
taining and using local memory efficiently.

Section 2 describes basic definitions which are used
in this paper. Section 3 describes the parallel models
for the considered algorithms. Section 4 introduces
the algorithm SHARED-MEMORY-BS developed
for shared-memory parallel computers. Section 5 in-
troduces the algorithm REDUCED-BS which reduces
the shared-memory accesses. Finally, section 6 states

some conclusions and future work.

2. Definitions

The key component of the bitonic sorting is a com-
parison-exchange element (or a comparator, for short),
as shown in (Fig. 1). Two input keys, x and ¥, are com-
pared and output in ascending order with min(x, y)
output to x’, and max(x, y) output to y’;for a decre-
asing comparator x”=max{x, ¥} and ¥ =min{x, y}.
Throughout this paper, the uppercase letter N denotes
a power of two, lowercase letter 2 denotes logN, all
logarithms are base two and »” represents the value of 2”.

An ascending sequence, represented as /-sequence, is
a non-decreasing sequence of keys {xo, X1, X2, ..., X¥—1}
such that xo<x1<...<xy-i1. A decending sequence,

represented as \-sequence, is a non-increasing sequence

Z0llA Bitonic Sorting X T2IE MAHQ TEAQI EMQ| 8

2691

of keys {xs. X1, %2, ..., Xv—;} such that xp 23,2 ... >
xn-1. Note that a single key, x, is both an /-sequence

and a \-sequence.

x x'=min{x,y}

i

y'=max{x,y}

(a) Increasing comparator

xX'=max{x,y}
X

Yy

y'=min{x,y}
(b) Decreasing comparator

(Fig. 1) A simple 2X 2 comparator type.

An ascending-desceding sequence (or /\-sequence) is
an /-sequence follow by a \-sequence of key, {x,, %1,
X2y oos Xiy Xi+1, .oy Xv—1} such that xo<x < ... <22
%i+12...2%y-1. Note that any /-sequence is an A-se-
quence. Similary, a desceding-ascending sequence (or
V-sequence) is a \-sequence foflowed by an /-sequence.

A bitonic sequence is a sequence of keys {xo, x1, ...,
%n-1} with the property that (a) there exists an index
5, 0<i<N-—1, such that Xo< %1 <. . SX2% 1.2
N1, or (b) there exists a cyclic shift of indices so that
(a) is satisfied.

For example, {0 1 2 3 4 5 6} is a bitonic sequence
since the sequence {0 1 2 3 4 5 6} may be defined as
the /-sequence and {null} as the \-sequence. The sequ-
ence {0 1234321} is also a bitonic sequence, be-
cause it first increases and then decreases. Similarly,
{3476 51 02} is another bitonic sequence, because it
is a cyclic shift of {0 2 3 4 7 6 5 1}. However, the se-
quence {0 237 6 4 8 5 1} is not a bitonic sequence
since this sequence cannot be an A-sequence by the
rotation. Notice also that, any sequence of three or
less keys is bitonic and any subsequence of a bitonic

sequence is also bitonic.

2692 sIREPXIES =2 HaP M 1135(97.11)

The following theorem gives us the iterative rule to

construct the bitonic sorting network [2]. This rule is
an essential method to rearrange a bitonic sequence
into a sorted sequence in a bitonic sorting.
Theorem 1:Let X ={xo, %1, ..., Xy-1} be bitonic. If B
={bo, bi, ..., bnj2-1} where bi=min(x;, xn/2+:) and C
={Co, ..., Ciy .- CNf2—1} Where ¢; =max(x;, xn/2+:) for
0<i<N/2—1, then (1) both B and C are bitonic and
(2) max{be, by, ...,
(See [2])

bap-1}<minico, €1, ..., CNpz-1}.

3. Parallel Models of Computation

In this paper, shared-memory SIMD and/or MIMD
computers are used in the studying of bitonic sorting
algorithms. A Knuth diagram shows how to program
the bitonic sorting algorithm using N/2 processors for
shared-memory parallel computers [5]. (Fig. 2) shows
shared-memory SIMD (a) and MIMD (b) computers,
where shared-memory could be ecither centralized as
shown in (Fig. 2(a)) or distributed as shown in (Fig.
2(b)).

An advantage of shared-memory SIMD and/or
MIMD computers is that they can simulate message-
passing SIMD and/or MIMD computers in which the

processors communicate through an interconnection
network. Therefore, the algorithms considered in this
paper can be modified to run on message-passing
SIMD and/or MIMD computers while keeping the
number of processors and parallel run time requirem-
ents unchanged. This modification is straightforward
if the direct links connecting the processors are simul-
ated by alternating the write and read operations by
the processors, into and from shared-memory, respect-
ively. Throughout this paper, shared-memory parallel
computers indicate shared-memory SIMD computers
and/or shared-memory MIMD computers.

4. Designing a Bitonic Sorting Algorithm
for Shard-memory Parallel Computers

A bitonic sorting algorithm for shard-memory par-
allel computers (SHARED-MEMORY-BS) is presented
in this section. It uses N/2 parallel processors to sort
a sequence of N(=2*) keys in logN stages where stage
1 requires ¢ steps, for a total of logN(logN +1)/2 steps.
The output of each stage in the algorithm is a concat-
enation of bitonic sequences that are twice as long as
the input. The algorithm for shared-memory parallel

computers can be illustrated using a Knuth diagram

‘ Interconnection Network

interconnection Network

Shared Memory .
: L1 [l T I
Array

T

|
NOSjcyi]

MM indicate the memory module.

(Fig. 2) Shared-memory (a)SlMD and (b)MIMD compu-

ters with local memory

SR H2e] WE ZFE S40IM Bitonic Sorting L NE|E MAIQ EEXC! 410 3 2493

[5]. A Knuth diagram shows how to program the al-
gorithm in a parallel processor (see (Fig. 3)). In a
Knuth diagram, each horizontal line represents a key
in an array (A;) of N keys and each vertical arrow
represents a processor reading two key from the ar-
ray, comparing them, and writing them back to the
array in proper order. Based on the Knuth diagram,
the straightforward programming way of the bitonic
sorting algorithm for shared-memory parallel com-

puters is briefly described as follows :

/* Each of the k(k +1)/2 steps has two parameters, 7
and d, with 0<d<r<Fk (=logN) */
forr=1to kdo
for d=»—1 down 0 do
/* One step of SHARED-MEMORY-BS with par-
ameters » and d */
1. Each processor reads two keys from an
array (read phase).
2. Pefform a compare-exchange operation
(computation phase).
3. Each processor writes them back to the

array (write phase).

A step with parameters 7 and d forms N/2 pairs of
keys with two keys in each pair. Let the two keys of a
pair be K1 with index bits (bx—1, be—2, ..., b1, bo) and
K2 with index bits {¢k-1, Ck~2, -.., C1, Co). Then cg=1
and bs=0;and ¢;=b;, for all 7 except d. The indices
of the two keys of each pair differ only in bit 4. In
general, keys whose indices differ only in bit ¢ per-

form a compare-exchange operation (k£~7) times.

A compare-exchange operation

The key to the algorithm is a compare-exchange
operation, which compares the two keys of each pair
and swaps if necessary to put them in the proper order.
The proper order is determined by parameter 7;if b,
=¢,=0 then K1 gets the minimum key and K2 gets

the maximum key; otherwise, if b,=c¢, =1 (case b, #¢,

is impossible) then K2 gets the minimum key and K1
gets the maximum key. When 7 =k then all compar-
ators put the minimum key in K1 and the maximum
key in K2,

The following procedures are developed based on
the above description. Here, two flags (RFLAGy
and SFLAGq) are used as a way of determining the
proper order of two keys. The meaning of these flags
is illustrated in (Fig. 3). RFLAGis determines the di-
rection of the arrow (RFLAG s = True=>arrow up).
SFLAGy;s determines the proper order of two keys in
the array. PID is the processor ID.

Procedure SET-RFLAG(»)
Global RFLAG ;4 :boolean

1 if [2*PID/2"} =0dd number
2 then RFLAGis «+ True

3 else RFLAG s «—False

SET-RFLAG determines the value of RFLAG of each
processor ;each processor sorts two keys ascendingly
when RFLAG iz = False (see (Table 1)).

The following procedure describes that each pro-
cessor performs a compare-exchange operation at each
step;two keys are compared and exchanged if neces-
sary (SFLAG iz = True = exchange two keys).

Procedure COMPARE-EXCHANGE

Global RFLAG 4, SFLAGa:boolean, K14, K2y4'key
1 Set SFLAGis «~RFLAGis.

2 if Klpig > K2pia .

3 then Set SFLAG s +Not SFLAG g .

4 if SFLAG g =True

5 then Swap Klzs and K2,4.

Addressing of the array for two keys

In shared-memory parallel computers, each proces-
sor reads/writes two keys from/into the shared-me-
mory array in each step. The following procedure
obtains the addresses of shared-memory array and
returns them to the main procedure SHARED-MEM-

2694 StZFBXCIED] =EX| M4 M 112(97.11)

ORY-BS in order to access two keys.

Procedure KEY-ADDRESS (d)

Global Qpiz, Rya:integer

1 Set Qpia ~— LPID/d|* d.

2 Set Rpis — PID—Qpia .

3 Obtain the address of the first key: ADRES!
+—2*Qpid +Rpia.

4 Obtain the address of the second key: ADRES2
—2*Qpia +Rypig +d.

5 Return (ADRES1, ADRES2).

The following algorithm implements the bitonic
sorting algorithm for shared-memory parallel compu-
ters, which sorts N keys in O(log>N) time using N/2

Pprocessors.

Algorithm SHARED-MEMORY-BS
e Input:A[0...(N—1)], an array of N keys in shared
memory.
* Qutput: Array A with keys in non-decreasing or-
der.
e Comment:N/2 processors are used. PID is the

processor ID ranging from 0 through

N/2-1. This algorithm runs on shared-

memory parallel computers.

Global K14, K2pia:key RFLAGiz: boolean

For all processors in parallel

1 forr+—ltokdo

2 Set RFLAG iz using the procedure SET-RFLAG(r).

3 d+—21

4 While 4>1 do

5 Obtain two key addresses of an array:(ADRI,
ADR2) —KEY-ADDRESS(d).

6 Read two keys from an array:K1,s <~ A[ADR1},
K244 +——AJADR2].

7 Perform a COMPARE-EXCHANGE for a com-
pare-exchange operation.

8 Write two keys back to the array: A[ADR1] «
Kl1pig, AIADR2] «-K24ia.

9 d«—df2.

The algorithm first sets RFLAGiq to determine the
sorting type of each processor (ascending or descend-
ing) in line 2. Within the body of the while loop, each

processor reads two keys from the array, performs a

stagel stage2 stage3

stepl step2 step3 stepd stepb stepb

r 1 2 2 3 3 3

r 2 4 4 8 8 8

d 1 2 1 4 2 1

PO False False False False False False

Rflag Pl True False False False False False
"l P2 False True True False False False
| | P3 True True True False False False
PO True False True False False False

Sflag Pl False True False False False True
P2 True False True True True False

P3 True False False False False True
Two keys | K1 | K2 | KI | K2 | KI | K2 | KI | K2 | K1 | K2 | KI | K2
PO 6 1 1 4 0 0 7 0 3 0 1
Key | p1 4 0 6 0 6 1 5 1 2 3 2
value| P2 7 5 5 3 7 4 3 7 4 4 5
P3 2 3 7 2 2 6 2 5 6 7 6

Table 1 : The operations of SHARED-MEMORY-BS.

B2 M2 gigd ZHTE{ $Z0IM Bironic Sorting 2 U2IE MAHIQI SEXO EAI0] T8 2695

compare-exchange operation and writes two keys back
into the array in lines 6-8. (Fig. 3) shows a Knuth
diagram for 8 keys, which illustrates how to program
the bitonic sorting algorithm for shared-memory par-
allel computers. (Table 1) shows how SHARED-
MEMORY-BS works using sample values shown in
(Fig. 3), where flag conditions are illustrated. Key val-
ues which are processed by each processor are shown.
By using two flags (Rflag, Sflag), each processor de-

termines the proper order of two keys.

. i 6:" g,
1 1, 1] l o,
4 3 3 z,
o% 2 2 l £
7| 7 4 4,
5 ¢ 5‘ 5 I 5A5
2! 4 7. § a,
3 6 6. l L

step 5 step &

Stage 2

(Fig. 3) A knuth diagram based on the bitonic sort for N
=8

The following theorem establishes the correctness
of SHARED-MEMORY-BS.
Theorem 2:SHARED-MEMORY-BS sorts N(=2*) keys
correctly in O(log2N) time.
Proof: A sequence of two keys K, and K, forms a bit-
onic sequence, since either Ky <K, in which case the
bitonic sequence has K, and K in the increasing part
and no keys in the decreasing part, or K;2K;, in
which case the bitonic sequence has K1 and K, in the
decreasing part and no keys in the increasing part.
Hence, any unsorted sequence of input keys is a con-
catenation of bitonic sequence of size two (sec stage |
of (Fig. 3)). After a single compare-exchange step, the
pairs can be sorted iteratively ascending and descen-
ding. Next all groups of 22 keys are bitonic as a result
of the previous step. Two compare-exchange steps are

required for sorting the 2% keys (see stage 2 of (Fig.

3)). At stage 7 for 1 <i<logN, N/2' groups of keys of
size 2 are obtained. During a single step, each pro-
cessor reads two keys from an array in shared-memory
at line 6, compares them if necessary in line 7 and
writes them back to the array in line 8. Two flags
(RFLAG x4 and SFLAG)are used as a way of de-
termining the proper order of two keys. The same
process is applied to groups of size 2°, 2%, ..., and
202N Following logN stages (i.e., iterations of the for
loop), the keys are sorted in an ascending order.

Clearly, the algorithm SHARED-MEMORY-BS
takes logN(logN +1)/2 steps to sort N keys. There-
fore, the time complexity of SHARED-MEMORY-BS
is O(log?N). (O

The following theorem obtains the total processor-
memory communications per processor of SHARED-
MEMORY-BS.
Theorem 3:Let C(N) be the total number of shared-
memory references per processor in SHARED-MEM-
ORY-BS. Then C(N)=2%kx*(k -+1) for sorting N(=2%)
keys.
Proof : Each step needs four shared-memory references
since the read phase in line 6 requires two shared-
memory references to read and the write phase in line
8 requires two shared-memory references to write as
well. Thus, the total number of shared-memory refer-
ences per processor is C(N)=4% k¥ (2 +1)/2=2%k*
(k +1) since SHARED-MEMORY-BS requires total
k(k +1)/2 steps. [J

5. Reducing Software Communication

As described in the previous section, the straight-
forward programming way of the bitonic sorting al-
gorithm for the shared-memory parallel computers is
that each processor reads two keys from shared-mem-
ory, compares them, and writes two keys back to
shared-memory. Thus, four shared-memory accesses
are required in each step as described in theorem 3.
Since shared-memory access can be very time con-

suming it is desirable to reduce the number of such

2696 SIRFEXelHD| =X MR K 1132(97.11)

accesses. In the following, an algorithm which reduces

the number of shared-memory accesses is introduced.

5.1 The Basic Approach

The basic idea employed in the proposed bitonic sort-
ing is that if each processor has enough local memory
to store one key then each processor reads only one
key from shared-memory, compares it to the key in
its local memory, and writes only one key back to
shared-memory. This decreases the number of shared-
memory accesses, and hence, leads to a performance
improvement. First, we briefly illustrate the parity
strategy which leads to the modified bitonic sorting
algorithm REDUCED-BS.
Parity strategy: Let the parity of a key be defined by
the number of 1-bits in its index,if the index has an
even number of 1-bits then the key has even-parity (e.g.,
0011) ;if the index has an odd number of 1-bits then
the key has odd-parity (e.g., 1011). Note that in each
pairing of the keys during the bitonic sorting each pro-
cessor compares an even-parity key with an odd-parity
key. We can decrease the communication by letting
each processor retain the even-parity key in its local
memory and just read and write the odd-parity key

Jrom and to shared memory.

5.2 The aigorithm REDUCED-BS

In this section, the algorithm REDUCED-BS is
presented, which reduces the number of shared-mem-
ory references to and from shared-memory by allowing
the even-parity keys reside in the local memory as-

sociated with each processor.

Assigning even-parity keys to local memory

The procedure LOAD-EVEN first finds the N/2
even-parity keys in the shared-memory array, obtains
the address of each even-parity key and initially as-
signs N/2 even-parity keys to each local memory. The
function FParity takes PID as input and returns the
number of 1-bits in its index as output. KEEPy is

the address of an even-parity key in an array and

Keep_KEYis is used as a local key to keep an even-

parity key in local memory (Mpig) of each processor.

Procedure LOAD-EVEN

Global KEEP,,;:integer Keep —KEY 4 :local key

1 if FParity(PID) = Even number

2 then Set KEEPs <—2*PID

3 else Set KEEPyq «+—2*PID +1

4 Load cach even-parity key to local memory:
Keep_KEY piz +—A[KEEPu]
LOAD-EVEN is illustrated in (Fig. 4-(A))

A compare-exchange operation using local memory

A compare-exchange operation using local memory
is more complicated than the one described in the
previous section since each processor has to decide
which key to keep in its local memory. Three flags
(RFLAG 44, PFLAG iz, and MFLAG4) are utilized
as a way of determining whether each processor retains
the maximum key or the minimum key in its local
memory. The meaning of these flags is illustrated in
(Fig. 5). As described in the previous section,
RFLAGyis determines the direction of the arrow
(RFLAG s =True = arrow up). PFLAGq determines
which is the greater key index, the local key index
(the even-parity key index) or the global key index
(the odd-parity key index). Finally, MFLAGpid de-
termines which of the two keys is larger (MFLAG iz
=True=>local key is larger). RWyys is an index to
read an odd-parity key from an array and RW_
KEY s is a key used as an odd-parity key.

Procedure C-EXCHANGE-LOCAL

Global KEEPs, RWyi:integer RW_KEY iy,
Keep-KEY i : key
PFLAG s, MFLAG, RFLAGps: boolean

if KEEPpia > RW pia

then PFLAG s «+True

else PFLAGps +False

if Keep_KEY s> RW_KEY i

then MFLAGis +True

Wb W N -

ZR 22| 218 I BZH0IA Bitonic Sorting 2 T12|5 MAHIQI MO EMO| 18t 2697

else MFLAGis +—False
if (RFLAG iz =PFLAGq) and MFLAG 4
then Keep a smaller key in its local memory (M)

N 0 1 O

else Keep a larger key in its local memory(Mpiq)

The operations of C-EXCHANGE-LOCAL are
illustrated in (Fig. 4) and 5. A compare operation de-
termines the value of PFLAG in lines 4-6. An
exchange operation is performed depending on the
values of three flags in lines 7-9.

Having defined these procedures, the algorithm
REDUCED-BS proceeds as follows:

Algorithm REDUCED-BS
e Input: A[0...(N—1)], an array of N(=2" keys in
shared-memory.
e OQutput: Array A with keys in non-decreasing or-
der.
e Comment:N/2 processors are used. PID is the
processor ID ranging from 0 through
N/2—1. Each processor has its own
local memory (M) to store an even-
parity key. The s;'mbol @ denotes an

Exclusive OR operation.

Global RFLAGgia:boolean; KEEPi4,

RW,iq:integer; Keep_KEY pid, RW_KEY pig: key

For all processors in parallel.

1 Initialization : Perform the procedure LOAD-EVEN
to assign N/2 even-parity keys to
local memory associated with each
processor.

for » +—1 to logN(=k) do

Set RFLAG it using SET-RFLAG(»).
d—2"",
while d>1 do
Obtain the address of an odd-parity key:
RW pig+—KEEPpia Dd.
7 Read only an odd-parity key from an array
; RW_KEY pid —A[RWia].

A W AW N

8 Perform C-EXCHANGE-LOCAL:a compare-
exchange operation.

9 Write only one key back to an array:
A[RW pia] —RW _KEY 4.

10 d«—dj2.

11 Write an even-parity key from local memory to
an array:
A[KEEPiq] +—Keep _KEY pig

Loosely speaking, sorting N keys proceeds in logN
stages (i.e., iterations of the for loop). At the first
stage, the keys are divided into N/2 bitonic sequences
each of size 2, in which one key (the even-parity key)
is in local memory and the other one (the odd-parity
key) is in an array. At stage 7, where 1 <7<logN, we
have N/2° groups of keys of size 2' in each group, 2!
keys reside in individual local memory and 2°~! keys
reside in shared-memory array. Those groups are
sorted in parallel into bitonic sequences. During a
single step in each stage, each processor gets an odd-
parity key from an array in lines 6-7, compares it
with its local key at line 8. Depending on the order of
keys in line 8, such processor writes one key back to
an array at line 9 and keeps the other in its local
memory. After logN stages, the keys are sorted in an
ascending order.

By comparing SHARED-MEMORY-BS with RE-
DUCED-BS it should be noted that they perform the
same comparisons at each step but using different
processors. Since the comparisons are performed in
parallel, it doesn’t matter which processor does which
comparison. Hence, it is easily verified that both al-
gorithm yield the same sequence in each step. There-
fore, the correctness of REDUCED-BS can be estab-
lished by its comparison with SHARED-MEMORY-
BS(see (Fig. 3) and 5).

5.3 Analysis of the algorithm REDUCED-BS
In this section, the time and communication com-
plexity of REDUCED-BS are analyzed. As shown in

2698 SIRBHEKBISS =EX] M4 M1 (97.11)

theorem 3, SHARED-MEMORY-BS needs a total C
(N)=2% k* (k +1) shared-memory references per pro-
cessor and its time complexity is O(log?N).

The following thearem establishes that REDUCED-
BS decreases the number of shared-memory references
by approximately one half compared with SHARED-
MEMORY-BS, while preserving the same time com-
plexity.

Theorem 4:The total number of shared-memory re-
ferences per processor of REDUCED-BS is C(N)/2 +
2 and its time complexity is O(tog>N) to sort N=29)
keys.

Proof:Let C'(N) be the total number of shared-mem-
ory references in the algorithm REDUCED-BS. k(k
+1)/2 steps are required to sort 2* keys during the
execution of the for loop in lines 2-10. Furthermore,
each step requires two shared-memory references since
one shared-memory access is required to read at line
7 and another shared-memory access is needed to

ésequence l/f)

write at line 9. In addition, during the executions of
line 1 and line 11, one shared-memory reference is
needed, respectively. Therefore, C'(N)=1 +2% k* (£
+1)/2 +1=k*(k +1) +2=C(N)/2 +2 since C(N)=
2% kx (B +1).

The algorithm REDUCED-BS takes O(1) time to
initialize at line 1, the execution of the body of the for
loop takes O(log?N) time, and line 11 requires O(1)
time to write the local keys back to the shared-mem-
ory array. Therefore, the time complexity of REDU-
CED-BS = O(log’N). (1

5.4 An 8-key REDUCED-BS example

As an example, consider the sorting of 8 keys. The
key indices are 3-bit binary numbers, (b2, &1, bo), for
8 keys. (Fig. 4) shows the sorting of an unsorted in-
put list on the array A=1{6, 1, 4, 0, 7, 5, 2, 3} through
REDUCED-BS. In this figure, lightly shared array cell

shown the even-parity keys which are never accessed

(Fig. 4) The operations of the algorithm REDUCED-BS for

N=8

BF Hze] S8 UFTE SABUA Bitonic Sorting L DAIS MHIQ FREQ MO T3 2699

during the execution of the body of the for loop. M g4
indicates the individual local memory of each pro-
cessor which keeps an even-parity key, only.

Graph (A) illustrates the initialization (line 1 of
REDUCED-BS) with unsorted input keys; every even-
parity key is initially assigned to local memory as-
sociated with each processor.

Graph (b)-(g) show that the sequence of keys are
sorted using local memory which keeps an even-parity
key;the execution of the body of the for loop of
REDUCED-BS. Here, the arrow lines illustrate the
compared two keys, an odd-parity key and an even-
parity key. During these steps, shared array keys are
never accessed.

Graph (Z) illustrates that the local keys are written
back into the shared-memory array, so the whole
sorted sequence resides in shared-memory;line 11 of
REDUCED-BS.

As a further illustration, a Knuth diagram of this
example is shown in (Fig. 5). Each solid horizontal
line represents an odd-parity key in an array (4;) and
each dashed horizontal line represents an even-parity
key in local memory (M i) associated with each pro-
cessor. Each vertical arrow represents a processor re-
ading only an odd-parity key from an array, compar-
ing it with an even-parity key in its local memory,
and writing one key back to the array in proper or-
der. The indices of each key are shown as a 3-bit rep-

resentation. Sample values are shown on the wires.

________ R)

f ©00)

1 141 A

001)

3 3 2 a

l)

2o v2 N3 M

o1y

7. 4 4 A

109)

Sy |5 V5. _m

{0y

A eI 8w

| g,

e 6 6 v 7 A,

D o)stept D1 (c)step2 | (d)stepd (e) step 4 (step5 (g)steps (110}
irRadet Di redds2 ored el D re8.d% re8d=2 re8 ¢=

Stage t Stage 2 Stage 2

(Fig. 5) A knuth diagram with 4-local memories for N =§

6. Conclusions and Future Work

In this paper, we have presented the bitonic sorting
algorithm which are implemented on shared-memory
parallel computers and sort N keys in O(log?N) time
using N/2 processors. The algorithm SHARED-ME-
MORY-BS which has no memory fetch conflicts is
presented. The modified bitonic sorting algorithm
REDUCED-BS which is based on SHARED-MEM-
ORY-BS is presented. Using the parity strategy, the
algorithm REDUCED-BS decreases network communic-
ation by taking advantage of local memory associated
with each processor. Communication between each
processor and shared-memory is reduced by approx-
imately one half compared with the algorithm
SHARED-MEMORY-BS. Therefore, the algorithm
REDUCED-BS significantly improves performance.

Both algorithms can be adapted for commercially
available shared-memory MIMD computers such as a
NYU Ultracomputer [3] since memory fetch conflicts
are prevented by synchronization. They can be ad-
apted for shared-memory SIMD computers like a BSP
machine [4].

Anticipated continued research will find other ap-
propriate applications for the parity strategy.

References

{11 Akl, S. G., Parallel Sorting Algorithms, Aca-
demic Press, Inc., 1985.

{2] Batcher, K.E, “Sorting networks and their applic-
ations”, Spring Joint Computer Conference, AFIPS
Proc., Vol. 32, pp. 307-314, 1968.

(3] Gottlieb, A., Grishman, R., Kruskal, C.P., Mc-
Auliffe, K.P., Rudolph, L., and Snir, M., “The
NYU Ultracomputer-designing a MIMD, shared
memory parallel computer”, IEEE Transactions
on Computers, Vol. C-32, No. 2, pp. 175-189,
February 1983.

{4] Hwang, K., Advanced Computer Architecture: Par-
allelism, Scalability, Programmability, McGraw

2700 si=FEMeiED =X M4 M 112(97.11)

Hill, Inc., 1993.

[5] Knuth, D., The Art of Computer Programming:
Sorting and Searching, Vol. 3, Addison-Wesley,
1973.

[6) Kumar, M., and Hirschberg, D., “An Efficient
Implementation of Batcher’s Odd-Even Merge
Algorithm and Its Application in Parallel Sorting
Schemes”, IEEE Transactions on Computers, Vol.
C-32, No. 3, pp. 254-264, March 1983.

[7) Kumar, V., Grama, A., Gupta, A. and Karypis,
G., Introduction to Parallel Computing . design and
analysis of parallel algorithms, The Benjamin/
Cummings Publishing Company, Inc., 1994.

[8] Kumar, V., Grama, A., Gupta, A and Karypis,
G., Introduction to Parallel Computing . design and
analysis of parallel algorithms, The Benjamin/
Cummings Publishing Company, Inc., 1994.

[9] Lee, Jae-dong and Batcher, K.E., “Simplying
Multistage Hardware Interconnection in the
Bitonic Sorting Network”, in Proceedings of the
7th IASTED/ISMM International Conference on
Parallel and Distributed Computing Systems, pp.
138-142, 1995.

[10] Lee, Jae-dong and Batcher, K.E.,, “A Bitonic
Sorting Network with Simpler Flip-Interconnect-
ions”, in Proceedings of the 1996 International
Symposium on Parallel Architectures, Algorithms
and Networks, pp. 104-109, 1996.

[11] Nassimi, D. and Sahni, S., “Bitonic sort on a
mesh-connected parallel computer”, IEEE Trans-
actions on Computers, Vol. C-27, No. 1, pp. 2-7,
Jan. 1979.

[12] Preparata, F. and Vuillemin, J., “The cube-con-
nected cycles:a versatile network for parallel
computation”, Communications of the ACM, Vol.
24, No. 5, pp. 300-309, 1981.

[13] Stone, H.S., “Parallel processing with the perfect
shuffle”, IEEE Transactions on Computers, Vol.
C-20, pp. 153-161, Feb. 1971.

[14] Thompson, C.D. and Kung, H.T., “Sorting on

mesh-connected computers”, Communications of

the ACM, Vol. 20, No. 4, pp. 263-271, 1977.

o =

19850 Ao AAA NS
3} (B.S)

19873 ~1988d o9 FFA A
Bag Mg

19913)= Cleveland State
University, Dept. of com-
puter and Information
science (M.S)

1996\d w] = Kent State University, Dept. of com-
puter science (Ph.D)

199213 ~1996'3 Kent State University, A48 T.A.

19973 ~&x =gtz AAA Aekst A TFAL

AARok: R, 472 Z, Interconnection net-

works, AFE M EH A, ATM network

Az 3

19763 eivigtwy Bz &3
(e12hap)

19863 Old Dominion University,
Dept. of Computer Scien-
ce (M.S)

1991 Louisiana State Univers-
ity, Dept. of Computer
Science (Ph.D)

1979 d~1984d @A A 7Y A7 Y

1993 ~3A dFdiste AAA NG 20

DR WEA R, Y2 F, dHY

o 8 Y
1985 Ao A=A g
2} (B.S)

19873 N.Y. Polytechnic Uni-
versity (M.S)

1991'd N.Y. Polytechnic Uni-
versity (Ph.D)

19924 ddAA FADd7a
AY d+4

19933~ 5o gtn AXA LA 2a

4] ¥ oF: Speech Recognition, ¥ 22| &

