2152 st=nFHAICISS] =FX| X4 M} 85:(97.8)

s}o] =e}el B2 2] ASIC vlole} A2 E 91
217 AR SEEH) A5 A

e

O

EqY

of

E =L golxalql wale ASIC dlojet Z2E Aolsty] A% AL A4 SEE Y AFHE 2T
Aolrt. EEE FAS TES AU AT AT F3H719 4 F AF @AZ 7AEET o] R
H7e £EEE THE S85te] HAMNEY HA He] FEEYI FHET AP E T AU Yz
ARE 2EEHY 7)E Yoz P48 Fadyr) SEEYE vRIAAeY ZEEY Y BAHAA UojA

2 24 E 1dEn.

Automated Synthesis of Time-Stationary Controllers for Pipelined
Data Path of Application Specific Integrated Circuits

Jong Tae Kim'

ABSTRACT

We developed an approach to automatically synthesize time-stationary controllers for a given pipelined data

path of Application Specific Integrated Circuits (ASICs). This work consists of automated production of control

specifications and Finite State Machine (FSM) Optimization. A FSM controller is implemented by performing

horizontal partitioning so as to minimize the total controller area. We compared our approach to published

work on FSM generation and optimization, and the results indicate large savings in total controller area.

1M &

Pipelining is a widely used approach for designing
high performance digital circuits. As design size
increases, pipelined architectures become quite complex
and thus automatic pipeline design synthesis tools are
necessary to cope with such complexity. Functional

pipelined data path synthesis problems have been well

T4 3 44930 x ANAA L AFE T
=EAS 1996 129 3, AAEE1997d 79 3Y

investigated in [1][2]. Sehwa [1] performs allocation of
functional modules and scheduling of resources and
estimates the cost of registers and interconnections. In
[2] a method for module assignment and Register-
Transfer (RT) level synthesis of pipelined data paths
was presented. Once an RT-level data path is obtained,
the corresponding controller can be synthesized.
There aretwo types of basic control schemes for
pipelined data paths[3]: data-stationary and time-
stationary. A data-stationary control scheme passes
the control function code along with data. This scheme

TOIZ a2 YMQ AsIC LIOILE 222 213 AlZE BAIE BEEC|C XIS g 2153

allows simple and straight-forward design of both the
state sequencer and the data path control circuits for
each stage, and thus, is usually expensive in layout
area. On the other hand, a time-stationary control
mechanism provides the control signals for the entire
pipeline from a single source external to the pipeline.
The main characteristic is that at each unit of time
these controls govern the entire state of the machine.
The design of this type of controller is a complex task
since the controller must also remember the current
pipe state in order to provide control signals to the
pipe stages occupied by multiple overlapping tasks. In
this paper we will focus on the time-stationary control
scheme implementation of pipelined data paths.

The controller is modeled as a Moore style Finite
State Machine (FSM) and the combinational circuits
can be implemented using PLAs or random logic. The
structure of a time-stationary controller is shown in
(Fig. 1). The controller is vertically partitioned into a
Sequencing part and a Command part. The Sequencing
circuit solely implements the next state function
whereas the Command logic generates the output
function. The Sequencing logic is partitioned horizontally
into two parts since it was observed by Paulin[4] that
such a partitioning minimizes the total controller
area.

In this paper, we present a method to synthesize a

Moore-style FSM controller specifications given a

.y

ESM Input | Present | Next
table1 state | state

Input — Cutput
Conditions Y ?

FSM Input Present | Next | Present | Next
table2 NPUt! state state state | state

Sequencing logic Command part

(Fig. 1) The Structure of a Time-Stationary Controlier

to
Data Path

pipelined data path with conditional branches. The
input is a scheduled data flow graph (DFG) which
shows operator-to-time step assignments and depe-
ndencies between operations. The output is a FSM
specification in the form of a state table. A DFG is a
directed graph representing the functionality of a digital
system or a computer program. In a DFG, a node
represents an operation on values and a directed edge
represents the flow of values between its source and
sink nodes. There are many constructs which can rep-
resent conditional execution paths in DFGs. How-
ever, in this paper, we use OR-FORK and OR-JOIN
(also referred to as a distribute-join (D-I)) node pair[l1}
to represent conditional execution paths in DFGs.
Whenever an execution path is to be selected by some
condition, a distribute node must be used to split the
values to every possible execution path. Conditional
branches can be nested as many levels deep as
needed. When the execution path is no longer depen-
dent on the branching condition, a join node is used
to indicate the termination of conditional execution.
A DFG which is augmented with these D-J constructs
is referred to as a Control/Data Flow Graph (CDFG)
since it now includes additional control information.
At this point, and in order to avoid any ambiguity,

we define the term latency which will be extensively

used throughout this paper. The number of time units
between two consecutive initiations in a pipeline is
called the latency, L of the pipeline.

Section 2 presents the control specification of
pipelined data paths. The partitioning and state
assignment algorithms are described in Section 3. Sec-
tion 4 shows some experimental results. Conclusions

are drawn in Section 5.

2 Control Specification

The work in [5] dealt with the automatic production
of control specifications for non-pipelined data paths.
Another system, Bridge[6], performs data path and
control path allocation for non-pipelined systems by

2154 SIEEEX2ISS =2 AM4H K 85(97.8)

applying either a local slicing or a global slicing tech-
nique. Other works for non-pipelined systems are
reported in [7][8].

The control specification procedure consists of two
major steps:state decision, and state transition. In the
remainder of this section, we describe these steps and

present our approach to solving each one.

2.1 State Decisions

It is assumed that the CDFG schedule is pipelined
with a latency of L and that the total number of
stages (or time steps) is #;. Conditional branches are
handled by using an algorithm described in [1]. The
algorithm assigns to every node a label consisting of a
sequence of one or more integer codes. Using these
labels, we can test for mutual exclusion between any
pair of nodes (operations) in pseudo-constant time.
Before going any further, we define the following
terms which assume a CDFG scheduling with a
latency L.

Definition 1:Given two events in a data flow graph
which occur conditionally. If the condition that
selects one event always falsifies the condition
selecting the other, and vice versa, then the two
events are called mutually-exclusive with respect to
each other.

Definition 2:A set M of nodes is said to be a
mutual exclusion set (MES) if all the nodes in M are
pairwise-mutually exclusive and M is not included in
any larger MES M. For a given time step 7, we will
denote by M; |, M; ,,---,the MES’s which cover the
nodes scheduled in ¢.

Based on Definition 2, MESs are the maximal
groups of mutually exclusive operations within a
given time step. Next, we find sets of operations
which can be executed concurrently in each time step
by picking one operation from each MES and com-
bining them.

Definition 3:Let M; \, M; ,,---,M; , denote the MES
covering time step i, a Possible Execution Mode or

PEM, P is defined as a set of # operations, one from

each MES. P;={0,,-,0,/0,EM; , h=1,--,n}. We
will denote by P; |, P; ,,-, the different PEM’s in
time step 2.

Thus, each PEM P; ; represents a subset of nodes
that can be executed in parallel during time step 7.
Without loss of generality, we can assume that 7 < L.
Since the schedule is pipelined, time steps 7, i +L, ¢
+2L,---,are overlapping and therefore, a state can
now be defined as follows:

Definition 4:Given 1 <7< L, a state S; is defined
as a set of PEM’s corresponding to overlapping time
steps 4, £ +L, i +2L,. S;={Ps i/ V Pr.1» P nESi,
k mod L=m mod L=i}, and S; is not included in
any larger state S;".

We will denote by S; 1, S;, 2,-,S; » all the states
that can be generated by different combinations of
PEM’s in 7 and the time steps that overlap with it,
and #; is the number of such different combinations.
Since 1 <7 < L, we can define groups of states G\, G,,
G-+, Gy such that G;={S; ;, 1 < j <n;}.

2.2 State Transitions

After identifying the states, we need to determine
the state transitions. Given a CDFG pipeline-scheduled
with a latency L, we observe that state transitions oc-
cur between adjacent groups of states in the following
sequence :Gy—> G+ G;—> G 4y - G —>G). This is mainly
due to the. pipelined nature of the scheduling and is
shown in (Fig. 2). This is a key property in our
optimization scheme, as will be discussed later. Another
important factor affecting the control specifications
are the distribution nodes (D). If the present state has
m D nodes, there are 2™ possible combinations of
input conditions. Given a particular state, we now
present a strategy for finding the next state by con-
sidering only node labels.

We define two nodes to be compatible if they are
not mutually exclusive. Thus, the next state is the one
which has all the compatible (i.e. not mutually exclusive)
nodes of the present state. Using the state repres-
entation outlined in Section 2.1, we can find compat-

TOIT2tel AL

ible nodes by searching only the PEMs corresponding
to the next time step within states in the next group.
Starting with G|, we choose a present state and find
all the possible next states in G, for all possible input
conditions. This procedure is repeated for all the
states in G,. Next, states in G, are considered in the
same manner and so on until all L groups of states
have been visited.

Once the state table is obtained, we need to

synthesize an FSM to implement the controller.

Tasks

it {1]e2 | ralralrsire

2 REETET @’@
13 Fifrefra]Fa|Fs]Fe|
Gt:GZiG3G4IGETH TIMES

(Fig. 2) Owerall timing and state transitions in a
pipelined system

3 FSM Optimization

An FSM consists of two major components:a
combinational circuit and a memory. The memory
stores a representation of the state machine at any
given time and the combinational circuit produces the
primary outputs as a function of the machine state
and/or the machine primary inputs. The first stage of
this FSM optimization is performing partitioning and
state encoding. Next stage is logic minimization. In
the following subsection we briefly survey the FSM
optimization schemes for partitioning and state encoding.

3.1 PLA-based FSM optimization schemes

A crucial step to prepare for the minimization is
the task of state assignment. The codes of the states
are assigned in such a way that results in boolean
minimizations. De Micheli proposed a technique for
state assignment of FSM based on symbolic mini-

mization of the FSM combinational component and

o] AsIC CIOIEL B2 & 28t A2t R 2EEN O XIS &M 2155

on a related constrained encoding problem[9]. Amann
presented state assignment algorithms that permit the
synthesis of optimal counter-based PLA FSM ’s[10].
The work in [11] presents sate assignment algorithms
based on the solution of face hypercube embeding
and ordered face hypercube embeding. Hyper-Place
using the graph embedding problem is presented in
[12). It breaks the hypercube embedding problem into
two steps:(1) mapping of the adjacency graph to a
grid ; (2) mapping the solution on the grid to one on a
minimum dimensionality hypercube with dilaton at
most two. It can handle large FSM’s efficiently.
Vertical partitioning is a classical PLA optimization
technique which separates the set of output functions
into two or more PLA s while minimizing the number
of redundant product terms in all the PLA's[13]. A
common technique is the separation of state outputs
from command outputs. An initial PLA personality
matrix is partitioned to yield the sequence PLA and
the command PLA which generate next states and the
primary output functions, respectively. Horizontal
Partitioning was proposed by Paulin [4] and combines
the advantages of traditional vertical partitioning and
counter embedding. It allows the reduction of the
number of input and/or output columns in the PLAs
resulting from the partition. The technique also
reduces the total number of product terms, as in
counter embedding techniques. The concept of hori-
zontal partitioning used in Paulin’s algorithm is a
generalization of Amann’s work. The significant dif-
ference in procedures is how horizontal partitioning is
performed. In Paulin’s algorithm, the final partitioning
of the sequencing PLA into two PLAs is done by

considering some boolean relations between various

product terms in the sequence PLA. The objectives
for the horizontal partitioning are to:1) Find a par-
tition that does respect all boolean relations, and 2)
find a partition that holds product terms (PTs) which

depend on common outputs and/or common inputs.

3.2 The Partitioning Algorithm

2156 StRHEEXL|SS =2X| M43 X 855(97.8)

As part of our approach to FSM optimization, we
use a variation of the horizontal partitioning technique.
In Paulin’s algorithm, the second objective must be
weighed against the first one. By exploiting the specific
characteristics of the pipeline control synthesis problem,
we developed a new algorithm for horizontal partitioning
in which both objectives are satisfied without conflicts
and therefore is more efficient in the situation above.
While it is originally targeted at PLA optimization,
this methodology can also be applied to mon-PLA
control structures, such as random logic, and would
still result in area savings as will be shown expe-
rimentally in Section 4. In addition, we extended the
horizontal partitioning from a two-partitioning to
multi-way partitioning.

This enables us to explore more optimization
possibilities and thus obtain more area-efficient con-
troller implementations. The area of a controller logic
can be reduced by reducing the number of states (row
reduction in PLAs) and also by reducing the number
bits/state (column reduction in PLAs). The first re-
duction can be achieved by placing all the possible bi-
nary relations.(objective 1 in Paulin’s approach) in
cither one of the partitions and the number of bits/
state can be minimized by grouping together PTs
which depend on common inputs (objective 2). In
general these two are interdependent (and sometimes
even competing) and thus can not be optimized simul-
taneously. However, in our model, the D nodes are
scheduled in only one time step and therefore the
inputs to each of the groups Gi are always mutually
exclusive. Thus, grouping overlapped stages in a
pipelined data path has the important advantage that
it solves the first objective in Paulin’s algorithm with-
out worrying about the second one. In other words,
the input/output relations do not block any binary
simplifications between terms because the inputs to
each group are mutually exclusive. The new horizontal
partitioning algorithm is presented in (Fig. 3).

We partition the groups into two subsets SP;, and
SP; such that the total area of the resulting parti-

tioned FSM is minimized. As mentioned in Sec. 2.2,
state transitions occur between adjacent groups of
states in the following sequence: G, —=> G- G;—>Gj 4+
—>G.—>G). And we can group the state transitions
from the state is G; to states in G; ¢, and call them as
state transition groups, TG;.

If the controller is implemented as a PLA, in order
to calculate the area we need to know the number of
columns Cp; and Cp, in and SP,, the number of
product terms PT, and PT, and the number of
binary relations in each partition. We can estimate
the number of rows Rpl and Rp2 in each partition
by subtracting the total number of rows reduced by
coding constraints from the total number of PTs in
the partition. The total area is Area= R, Cp +RpCp
». If the controller is implemented in random logic, we
can estimate the area of the layout by using the
LAST area estimator{l4] which can do so quite
efficiently and within 5% accuracy for standard cell
implementations. In either case, the problem reduces
to finding the partitioning which results in a mini-
mum total Area.

Since the partitioning scheme now deal with only L
groups instead of a much larger number of states, the
problem is greatly reduced in size. For small values of
L we can find the optimal partitioning by exhaustive
search. In the following we use basic combinatorial
concepts to derive the size of the search space. In gen-
eral, the size of the search space for a two-way par-
titioning is given by the following theorem:

Theorem 1:The number of distinct ways of partitioning
L distinct objects 4, ,...,4; into two non-empty partitions
is given by R, ,=2L"1-1,

Proof:Given the set of objects 4={a,....,a.}, we
define a partition P={p;, p,} on A, where p, and p,
are disjoint subsets of A. Let p and g be the sizes of p
1 and p,, respectively, and p+g=L, and 1 <p<
L—-1 and 1 <g< L—1. The number of distinct ways
of parititioning the objects onto p, and P, can be
derived by first selecting p objects from A for

TOIZ 2101 20| ASIC TIOIEL B2 8 21T A2t IXIE 2EE24Q XS 24 2157

inclusion into p, (the remaining objects will go into py)
and summing over all possible values of p. This gives

us two cases:

L is even.

i) L is odd.

Ly (L L 2oLy 1K
(+G) =+)= 2 ()45 £)
2 i=1
L-1 L
Therefore, the number of cases is Y, (i)= 2L-1—1,
i=
The two way partitioning can be generalized into
multi-way partitioning. In this case, the groups of
states are partitioned onto » partitions by exhaus-
tively searching all the possible configurations. The
size of the search space is given by the following the-
orem in which can be easily derived from basic

principles of combinatorics(!5].

Theorem 2:The number of distinct ways of partitioning
L distinct objects a,,...,a; into #(»% < L) non-empty
L!

" L _ 1
partitions is given by R, ,= o Ze: —el!...e,,! , where

eis
(@, .edle+ .. te,=L e =21,.,,21.
Proof:Given the set of objects A={a,..,a.}, we

define a partition P={p,,..., ps} on A, where the p;’s

are pairwise disjoint subsets of 4. Let ¢, ,...,¢, denote

the sizes of P...., Pu, Tepsectively. Clearly, e, + ...+ ¢,
= L. The number of ways of distributing the objects
onto the P subsets of sizes ¢,...,€, can be expressed

as:

(&))" e

Which can be derived by first selecting e; objects
from A for inclusion into py, then e, object from the
remaining L—e¢, for p, for p,, and so on until all the
partitions are filled. Thus, the total number of ways
of partitioning 4 onto the ordered partitions in P can
be obtained by summing (1) over all possible integral,
positive solutions (¢, ,..., ,), of the equation e; + ... +¢,
=L Since the partitions p,,..., p, are permutable, the
final expression for R, , can be obtained by dividing
by the total number of permutations in P, or #nl.

Since the values of R, are less than 100 when L < 6,
7 < 6, an exhaustive search to obtain the optimal par-
tition is feasible for small values of L. The experimen-
tal results in Section 4 show that partitioning the
groups of states onto more that two partitions can re-
sult in more area efficient implementations that the
two-way partitioning. The multiway partitioning

Algorithm is a simple modificatwo-way partitioning.

3.2 State Encoding

Once the horizontal partitioning of the state table
is done, we need to perform state encoding. Given a
set of coding constraints, the objective of this procedure
is to assign state codes so that the size of the
sequencing logic is reduced. We generate coding con-
straint groups consisting of states having the same
next state and matching primary inputs. States in the
same coding constraint group can be collapsed into
one common PT, thus reducing the number of states.
In addition to saving states by horizontal parti-
tioning, we can also reduce the number of bits/state
in the two-way partitioning case by assigning even
codes to all the next states of one partition (in a PLA,
this will set the last column in the OR-plane to all ze-
ros, and in random logic, this will reduce the gate
count and the wiring). To decide on a candidate for
this reduction, we compute the number of next states
in each partition and check if it is less than [log,
(total number of states)] /2. If this applies to both
partitions, choose the partition that can result in a

larger reduction in area. This is always possible since

2158 Sl=FHRACIES =2X M4 X 8z(97.8)

Procedure State_Encoding

inputs: Coding Constraint Sets CCA and CCB in partition A & B and
total # of states, =,

outputs: encoded states; .
/* code' Set of codes to be assigned to states;

CA;, CB; Coding constraints in CCA, CCB, respectively;
Sl: States in CA,', CB.,
BC: Starting number to encode CA,, CB; */
({ .
code={ 0,1, 2 (27T,
?Vhile ({ CCA#0) and (CCB+0))

If (CCA+0) then {
pick CMAX=max(|CA;|) € CCA:
CCA= CCA— CMAX;
even_code = true;
else { pick CMAX=max(|CB;|) € CCB;
CCB= CCB— CMAX:

¥ N @™
then even_code = false;
else even_code = true;

J)BC=2 log [CMAKT
IF (even_code = true)

then N=min{n| n=A#BC) and n € code, k=1,2,":'};
else N=min{n|n=KBC)+1 and n» € code, k=1,2,---};

For j=1 to | CMAX]| {

if Ne& code

if (even_code = true)

then N=min{z| n=2k and n € code, k=1,2,-};
else N=min{nkn € code};

code= code- N;
s,‘= N;

CMAX = CMAX —{S;}

} /* procedure */

(Fig. 3) Horizontal partitioning algorithm

the number of next states either partitions less than
equal to a half of the total number of states and also
the number of available codes are always at least
equal to the total number of states. Furthermore, PTs
not in the current partition are included but their next
states are set to don’t cares. This allows further
minimization by logic optimization tools such as
Espresso[16] (for PLAs) or MIS([17] (for random
logic) since it reduces the number of literals. The state
encoding algorithm is shown in (Fig. 4). The encoding
algorithm can be extended to the multi-way parti-
tioning onto two blocks and assigning state codes to

each as if it were a two-way partitioning,.

4. Experimental Results

In this sectin, we present some experimental results
which were obtained by applying our approach to
two desgn examples. The first example is from [1}, the
second is a reduced instruction set version of the
M6502 microprocessor. In both cases, we show evidence
that our approach achieves better area savings compared
to traditional synthesis methods.

4.1 The Sehwa example
The first example CDFG is shown in (Fig. 5). We
used Sehwa to schedule this CDFG with different

WOIZ 2t YA0| ASIC TIOIEL ZEE QIS AIZF XY ZES20| XS &ty 2159

Procedure Horizontal_Partitioning
inputs: State table { 7Gy+- TG,)

outputs: the partitions SP; and SP, which are the sets of TG,’s such that

SPlﬂSPz =0.

/% PT,: the number of product terms in TG,
n; . the number of coding constraints in 76,
CC; ; jth coding constraint in TG,
IC, : No. of input conditions to TG;\
RArea; : the area to be reduced by a partition; */ .

For (i=1;i< Lii++) {

compute PT; and IC, in TG;
calculate the rows R;= PT;— }Z“(1 CCi;| —1)

} /* for */

/* Find optimal partition by exhaustive search */

For (i=1; <257 1—1; i++) {

Partition 7G---TG, to sets SP; and SPy;

Ry= R
a s SPy "

Co= T('_ZEISPlIC,,,;
Rp= m_Zﬁ:mR,,;
Cﬂ= T(._EESP,R’";

RArea;= R,,Cﬂ + RﬂCﬂ,

} /* for */

Choose the partition, SP; and SP,, which max (RArea;);

} /* procedure */

(Fig. 4) State encoding algorithm

latencies. In Example Sehwa-1, the CDFG is scheduled
with latency L =3, There is a total of 16 states in this
example. The array area of each can be estimated by
AREAp 4=2 X |m] +1m,|) X ny gives the number
of PTs. (Table) shows the PLA areas obtained by

{Table 1) Expreimental results of PLA controller for the
Sehwa example

No, of { PLA Controller ‘Area {array units)
Program PLAs fatency 3 latency 2
area ! savings | area | savings
NOVA 1 528 0% 1,175¢% 0%
M_Horizon 3 474 10. 2% 619 47.3%
Proposed 3 397 24.8% 370 68. 5%
% jo_hybrid encoding

(Table 2) Expreimental results of standard cell controller
for the Sehwa example
Standard Cell Controller Area (um‘)

Program latency 3 latency 2
area savings area savings
NOVA 133, 929 0% 267, 246% 0%
Proposed 121,258 9.5% 72,446 72.9%

% jo_hybrid encoding

NOVA[11], by the modified horizontal partitioning
[18], and by our algorithm in PLA area units
(normalized), We added an estimate of the routing
and buffering areas for the two approaches which
produce multiple PLAs. We ran the exact encoding
strategy NOVA. The modified Horizontal Partitioning
starts with the state table encoded by NOVA. To get
result by modified Horizontal Partitioning we use dif-
ferent sizes of cluster which are 8, 10, 12, 16, 20 and
we choose the best result. In this particular example,
our algorithm achieves PLA area savings of more
than 24% as compred o the other two algorithms. In
Example Sehwa-2, the same DFG in (Fig. 5) is now
scheduled with latency L = 2. Here we use the io_hybrid
encoding strategy for NOVA since the i_exact encoding
was computationally infeasible (we ran for more than
70 hours on a Convex supercomputer). The savings
are much greater in this cases.

In the case of random logic controllers, we minimized

2160 st=yBAiC|IED] =2 K| M4 K| 8%(97.8)

the logic by using the MIS multi-level logic optimizer.
Each partition was optimized separately using NAND,
NOR, and INVERTER gates. The three partitions
were then merged to one block and laid out using the
GDT standard cell place and route tools. {(Table 2)
shows that our approach achieves savings of 9.5%
and 72.9% in layout area over NOVA for Examples
Sehwa-1 and Sehwa-2, respectively. In each case, we
chose the standard cell row configuration which
resulted in minimum layout area. Again, we note that
for example 2, our comparison with NOVA is based
on a sub-optimal(io_hybrid) run because an optimal

run of NOVA was computationally infeasible.

4.2 Reduced M6502 example

We selected the MOSTEK 6502 microprocessor as
another example. The specification in ISPS was
obtained rom the High Level Synthesis benchmark
set[19]. Also, we reduced the instruction set to four
instructions to obtain a manageable size example for
Sehwa that we used as a scheduler. After we
generated a pipelined RT-level implementation, we
used our algorithm to synthesize several imple-
mentations of the control part using both PLAs and

{Table 3) Experimental results for the M6502 example
with L =6 (Moore style)

N_o, of PLA Standard Cells
Partitions | Area | Dealy} Area | Delay
(za’) | (ns) | (mo®) | (ns)
1 12.531 94.6 | 3.87 46.9
2 9.82168.5 |3.70 36.7
4 9.39126.1 |3.11 33.9
6 10.11426.1] 3.61 34.0

(Table 4) Experimetnal results for the M6502 exampie
with L = 4 (Moore style)

No. of PLA Standard Cells
Partitions | Area | Dealy| Area | Delay
(ma’} | (ns) | (ma®) | (ns)
1 124,081 159.8] 9.76 57.3
2 19.42]101.4] 6.91 43.3
4 19.521100.6] 6.09 43.0

standard cells. Here, we could not compare against
NOVA to handle, even in io_hybrid mode. In each
case, we generated layouts corresponding to various
n-way partitionings of the groups of states for n=1,
2, 4, 6. (Table 3) shows area and delay data of the
various implemetations. In both styles, the best area
and performance were achieved using a four-way par-
titioning of the controller. The slightly differing
technologies make it hard to compare the areas and
delays of the two implemetation style. {(Table 4)
shows similar figures for a scheduling of latency L =4.

5. Conclusion

There are two types of basic control schemes for
pipelined data paths:data-stationary control and
time-stationary control schemes. We presented an ap-
proach to automatically synthesize a time-stationary
control scheme for a pipelined data path. We devel-
oped an efficient method to produce a control specifi-

+2 Q 2) Steps
(© ¢
[Da]2) !
(10)
2
02}10)
/
(
3
4
+7)0) 5
6

(Fig. 5) Example sehwa-1:scheduled CDFG with label
lingt =3

Ol A

cation for a pipelined data path with conditional

branches by detecting mutual exclusion
between operations. A highly optimized FSM control-
ler implementation is obtained by performing hori-
zontal partitioning so as to minimize the total con-
troller area. The examples presented indicate that our
approach results in controller implementations which
are more area efficient than the ones obtained by
directly using traditional logic synthesis methods. we
are currently researching the automatic design of
data-stationary controllers. We will analyze and com-
pare the cost vs. performance tradeoff of these two
control schemes and set up a basic guideline for the

choice of controllers given a data path design.

o2

[1] N. Park and A. Parker, “Sehwa:a Software
Package for Synthesis of Pipelines from Behavioral
Specifications,” IEEE Trans. on CAD, Vol.7,
No.3, pp356-370, March 1988.

[2] N. Park and F. Kurdahi, “Module Assingment
and Interconnect Sharing in Register-Transfer
Synthesis of Pipelined Data Paths,” In Pro-
ceedings of ICCADS9, IEEE Computer Society,
November 1989.

3] P.M. Kogge, ‘The Architecture of Pipelined
Computers’, McGraw-Hill, N.Y., 1989.

[4] P. Paulin, “Horizontal Partitioning of PLA-based
Finite State Machine,” in Proc. of 26th Design
Automation Conference, pp.333-338, June 1989.

[5] S. Hayati and A. Parker, “Automatic Production
of Controller Specifications from Control and
Timing Behavioral Descriptions,” in Proc. of 26th
Design Automation Conference, pp.75-80, June
1989.

[6] C. Tseng et al., “Bridge:a Versatile Behavioral
Synthesis System,” in Proc. of 25th Design Auto-
mation Conference, June 1988.

(71 A. Nagle, R. Cloutier, and A. Parker, “Synthesis
of Hardware for the Control of Digital Systems,”

I ASIC TIOIEL BEZE R18 A2 SR SEERQ XS g 2161

IEEE Trans. on CAD, Vol.1, No.4, pp201-212,
1982.

[8] H. Kramer et al., “Data Path and Control Syn-
thesis in the Caddy System,” In Logic and Archi-
tecture Synthesis for Silicon Compilers, Elsevier
Science Publishers B.V., 1989.

[9] G. De Micheli R. Brayton, and A.
Sangiovanni-Vincentelli, “OPtimal State Assign-
ment for Finite State Machine,” IEEE Trans. on
CAD, Vol4, No.3, pp269-285, July 1985.

[10] R. Amann and U. Baitinger, “Optimal State
Chains and State Codes in Finite State Machines,”
IEEE Trans. on CAD, Vol.8, No.2, ppl53-170,
Feb. 1989.

[11] T. Villa and A. Sangiovanni-Vincentelli, “NOVA
:State Assignment of Finite State Machine for
Optimal Two-Level Logic Implementations,”
IEEE Trans. on CAD, Vol9, No.9, pp905-924,
Septemeber 1990.

[12] S. Liu, M. Pedram, and A. Despain, “A Fast
State Assignment Procedure for Large FSMs,” In
Proc. of 32th Design Automation Conference,
June 1995.

[13] G. De Micheli and A. Sangiovnni-Vincentelli,
“SMILE:a Computer Program for Partitioning
of Programmed Logic Arrays,” Computer-Aided
Design, pp89-97, March 1983.

{14] F. Kurdahi and C. Ramachandran, “LAST:a
Layout Area and shape functione STimator for
high level applications,” In FDAC 91, IEEE
Computer Society, February 1991.

[15] C. Edwards and D. Penney, ‘Calculus and Ana-
lytic Geometry,” Prentic Hall, Inc., 1982.

[t16] R. K. Brayton, et al, ‘Logic Minimization
Algorithms for VLSI Synthesis,” Kluwer, 1985.

[17] R. K. Brayton, et al., “Multiple Level Logic
Optimization System,” in Proc. of ICCAD 86,
November 1986.

[18] T. Chang. Application of Vertical-Horizontal
Partitioning Algorithm for PLA-based Finite
State Machine, Master’s thesis, Dept. of ECE,

2162 SIZFLK LSS =2X M4 K 8%(97.8)

UC Irvine, June 1990.
[19] High Level Synthesis Benchmarks, Microele-
ctronic Center of North Carolina, 1991.

4 5 o

198213 AFAUEn H=3 g
F EA(F AP

19873 wix A Eeld g
(Irvine) A7] € A FH
T3 2H(FTFHAD

1992 vx FexYol &

(Irvine) 7] 2 HAFYH

%3 24(F A
199133 ~1993d 1) 3 The Aerospace Corporation &
T4
19933 ~19953 HE SR FFEHITEH 25
19958 ~3A AFadsy A7 A2} @ HFEF
oGy wF
A Eof: VLSI CAD, ASIC A, I FEl 7%

