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Study on the Similarity Functions for Image Compression
Woo-Seok Joo ' - Jong-Oh Kang '

ABSTRACT

Compared with previous compression methods, fractal image compression drastically increases compression
rate by using block-based encoding. Although decompression can be done in real time even with softwares, the
most serious problem in utilizing the fractal method is the time required for the encoding. In this paper, we pro-
pose and verify i)an algorithm that reduces the encoding time by reducing the number of similarity searching on
the basis of dimensional informations, and ii)an algorithm that enhances the quality of the restored image on the
basis of brightness and contrast information. Finally, a method that enables fast compression with little quality

degradation is proposed.

1. Introduction

Fractal image compression is one of the most
promising image compression methods today. The
method can show a compression rate ranging up to a
thousand. Despite such high compression rate, it can

also reduce the loss of restored images to a reaso-
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nable and acceptable amount. This advantage makes
it useful for storing huge amount of image data with
minimum memory space. Such drastic reduction in
memory requirements can greatly reduce network
transmission time, enabling real time processing of
networked multimedia applications.

Fractal image compression is applicable both for
static images and motion pictures. It is emerging as a
new standard image compression technique.

Originally developed by Mandelbrot, fractal theory
treats nature merely as a feedback system. By itera-
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tively applying certain feedback rule, the shape of the
nature, known as a fractal, can easily be determined.
Evolution from original shape to final shape is governed
by an orderly feedback rule. As the chaos theory
claims, the final fractal shape is deterministically reg-
ular although apparently chaotic. In fractal image
compression, any image is regarded as a fractal.
Resemblances among parts composing an image are
used to extract the feedback rule. During compression,
the only information saved is the feedback rule.
Consequently, one part of the image can be deco-
mpressed from other parts by iteratively applying the
saved feedback rule.

In this paper, we present two new algorithms for
the extraction of the feedback rule. The first one is
designed for the reduction of the compression time,
and the second one for the enhancement of the
restored image quality. In addition, each algorithm is
compared with previous fractal compression methods
in terms of its performances. The remainder of this
paper is organized as follows:Section 2 provides the
review of the previous fractal compression methods.
Section 3 describes the concept and method behind
our first algorithm, followed by performance evalu-
ation. Section 4 provides the concept and method
behind our second algorithm, followed by performance
evaluation. Performance of the combination of the
two algorithm is also evaluated. Finally, we provide

our concluding remarks in section 5.

2. Preliminaries and-Previous Work

Being one of the various block based coding methods,
fractal coding claims that the iteration of simple dete-
rministic mathematical procedures can generate images
with infinitely intricate geometries. This claim, known
as IFS(Iterative Function System) [1, 2, 4, 10] is mathe-
matically based on the contraction mapping principle
as follows: A mapping f is a contraction of the metric
space X, provided that there is a constant ¢(0 < ¢ < 1),
such that for all x, ¥ in X one has that d(f(x), f(3))

<c-d(x, y). The distance d between elements is
measured in Hausdorff distance. Let @, a), a5,...,be a
sequence of elements from a metric space X defined
by a, .+ = f(a,), with f being a feedback process. The
contraction mapping principle states that i) there is a
unique attractor g, =1lim &, and ii)g, is invariant
such that /(@) =dx. e

Hutchinson applied the theory to the area of image
coding by defining operator W, {13, 14]. Denoting an
image as A4, the Hutchinson operator W is defined as
W) =W, (4) UW,(4) UW3(4) U ... UWy(4),
where the feedback transformation W; are contractions.
As a union of individual transformation, the operator
W is also proven to be a contraction mapping. If we
let 4y 4 =W(4p), k=0, 1, 2, 3,..., the generated image
sequence will converge to a distinguished image,
known as the attractor A, of IFS. It is invariant
under further transformations : W (4,) = A,. This means
that final decoded image produced by iteratively
applying the transformation W is convergent and
unique. However, to apply the theory to the image
coding, the inverse problem exists. The problem is
how to derive the transformation W during the
encoding.

Originally proposed by Barnsley and implemented
by Jacquin et al. [3, 4, 5, 7, 8, 9], PIFS(Partitioned
Iterated Function System) encoding is done as follows
:i)subdivide original image into square blocks of
finite size. ii) measure similarities between the blocks.
iii) determine the transformation functions between
the most similar block pair. The transformation func-
tion and the number of the corresponding block pair
make up the encoded file.

| [
Comtn | Corran PR, il
— Cuic:‘lil;iblm |
Original kmoge b Reduced image
(Fig. 1) Relation between Domain Block and Range
Block



PIFS subdivides the original image into non-
overlapping domain blocks as in (Fig. 1). Also, the
same image is reduced by a factor of 2, and range
blocks are defined on this reduced image. The size of
the domain block and range block is the same. But
the range blocks are made to overlap as it shifts right,
so that every possible block can appear. For each
domain block, similarity searching is performed to
find the most similar range block.

PIFS uses affine transformation functions [15, 16}.
The inherent linearity of the affine transformations
makes the contraction property maintained during
decoding process. To simplify further, the transfo-
rmations are limited to identity, translation, rotation,
and reflection. In practice, there are eight possible
transformations depending on the angle of the rotation
and axis of the reflection. The affine transformation

W; is defined as W,=[;,,]= 2 Z’]:[’;] + Q;. Pixels
?

at (x, y) of the domain block can be mapped into (x", ¥)
of the range block by the transformation. a;, &;, c;, d;
designate the corresponding type of affine transfo-
rmation, and Q; represents the average intensity dif-
ference between the blocks.

Similarity searching is the most important factor in
PIFS. It determines the encoding speed and the qual-
ity of the restored image. All transformations are ap-
plied to every range block, and the transformed block
with minimum distance from given domain block is

selected. This distance, known as /, distance,
N

is defined as Y. (Pp¢. yy— Prex, »)2. Here, N denotes
x Yy

the block length in pixels, and Pp(, , denotes the
pixel intensity at (x, ») in the domain D. In PIFS, /,
distance is used extensively to measure the similarity.
In a rigorous sense, /, distance does not coincide with
the Hausdorff distance. But the Hausdorff distance
itself is hard to implement, and /, distance is used in

place of it.

3. Proposed Algorithm 1|: Dimensional

Similarity Algorithm

3.1 Concept and Method

In our dimensional similarity algorithm (DSA,
hereafter), we make use of dimensional information
during the similarity search. Based on the infor-
mation, we limit the number of the range blocks to be
compared. As a result, the encoding time reduces re-
markably. As a side effect, the quality of the restored
image degrades somewhat. Compromise
between the speed and quality can be made by
controlling involved parameters. By carefully adjusting
the parameters, DSA can produce large reduction in
encoding time with small degradation in image qual-
ity.

Fractal dimensions can take floating point values
unlike general Euclidean dimension. For instance, the
Koch curve in (Fig. 2) is 2.26 dimensional. Such
dimensional values characterize and differentiate natural
fractal images from artificial Euclidean images. By
definition, the iterative feedback transformation is
valid only when the dimensions match. In (Fig. 2),
block ‘a’ cannot generate block ‘c’ under any trans-
formation. - In contrast, the union of the affine
transformations can generates block ‘b’, which is also
2.26 dimensional. Extracting the dimension is useful
in the similarity search.

Two problems exist in characterizing a block with
the corresponding dimension. First, the fractal theory
generally defines the dimension on the basis of
boundary curve shapes. But the raster block image
has regional pixel values. Second, a single block may
be composed of multiple curves, which do not necess-
arily coincide in their dimensions. Moreover, the
multifractal{13] curves may be intermingled inside the
block complicating the extraction of individual
dimension.

To solve the first problem, the box counting dimen-
sion is used instead of the more general fractal dimen-
sion. It is also a form of the fractal dimension, and

we use it in DSA because of its automatic com-
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putability. It coincides with the general fractal dimen-
sion in most cases, but not always. If we divide an
image by a regular mesh with size s, and s,, and let N
(s) be the number of grid boxes which contain some
of the image, the box counting dimension D, is
defined as D, = (log(N (s5) —log(N (s,))/(log(1/s)) —log
1/s)).

To solve the second problem, we assume that the
pixels belonging to a single curve have similar
intensities. Under the assumption, the multiple curves
can be separated by the pixel intensities. We partition
gray level ranges with disjoint set of classes. For
instance, 256 gray levels can be partitioned into 4
classes such that 0 < class, < 63, 64 < class, <127,
and so on. Now, any block can be characterized by a
vector with the number of components being equal to
the number of classes. Then the block image =1, U
LU LU ..U Iy where I; is the subimage of ith class,
and N is the number of classification.

Consequently, we define a characterization function
fiR->RN as f(D=D=(Dy(I)), Ds(l), Dy(Iy),...,
(Ds(Iy)) where Dy(I;) is the value of the box counting
dimension of ith class subimage. Now, a block is
characterized by a single vector in the N dimensional
vector space whose axes correspond to multifractal
elements inside the block. Moreover, we cluster the
characteristic vectors by K-means algorithm [11, 17].
Denoting the number of clusters as K, the algorithm
repetitively reassigns set element D such that D €S if
ID-CA<ID=Cil for all i=1, 2,..K i#j. S;
denotes the set of samples whose cluster center is C;.
The clustering is performed in N dimensional vector
space. This is shown in (Fig. 3). Once the blocks with
similar characteristic vectors are clustered, DSA con-
fines the range block searching only to the cluster
whose dimensional values are comparable to the

dimension of the given domain block.

3.2 Performance Evaiuation
3.2.1 Pseudocode Comparison

In terms of pseudocode, Barnsley et al. ’s algorithm

for similarity searching can be written roughly as

follows:

block 'b*
2.26 dimension

AR

affine
block ‘a‘ transformation block ‘¢
y y N t dimension;

—
not by affine
transformation

(Fig. 2) Koch Curve and Fractal Dimension

( DA when N =2 I

cless 2
(38-170)

CLUSTER 1

CLUSTER 2 -

. class 1
————— - ©-85
cless 3 Characterization Funciion of Block a,
71-285) =(ct.c2.09

(Fig- 3) Vector Space of DSA

partition image
adjust threshold
for each domain block
for each range block
apply transformations
for transformed blocks
calculate /, distance
update minimum-distance block
endfor
endfor
Encode by the minimum distance block

endfor

In this case, most of the CPU time is spent on



evaluating the statements inside the innermost for
loop. Recalling the transformations used in Barnsley
et al.’s algorithm, the innermost loop is executed eight
times. If we let the number of the domain block as
Np and that of the range block as Npg, the algorithm
has the time complexity of O(8 NpNpg). In DSA, the

algorithm is modified as follows:

partition image
adjust threshold

Jor each domainfrange block

Locate into N dimensional vector space )

assort the range blocks into K clusters @
for each domain block

find matching cluster ©)

Jor the range blocks in the matching cluster @

On the average, DSA algorithm can reduce the run
time approximately by a factor of K. Statements (D
and @ are evaluated just once, and adds no extra
complexity in terms of the big Oh notation. Statement
@ can be run in linear time since there can be only X
clusters. If the clustered pattern reveals a uniform dis-
tribution, the number of range blocks in statement @
reduces to Ng /K. As a result, DSA will show the time
complexity of O(8 NpNg/K), and the run time can
be controlled by adjusting the parameter X.

3.2.2 Speed and Quality

Here, we compare DSA with Barnsley et al.’s algo-
rithm with respect to their speed and quality.
The encoding time required by Pentium 100MHz
CPU was measured in seconds. Let us denote an orig-
inal image as I, restored one as I, and the pixel
intensity at(s, 7)th position as I(, 7). Given an wxw
image, root mean square error is defined as RMSE=

i w w . . ) )
\/7 — L » (G, D-I'G, M) Peak signal to noise

w* (315
ratio is defined as PSNR=20 log,(255/RMSE) [12].
Three 128 X 128 Images, known as Baboon, Lenna, and

Pepper are selected as sample inputs. Block size of 4 X 4
pixels is assumed.

(Fig. 4) shows average encoding time as N, the num-
ber of classification, varies, Both axes are plotted in log
scale with base 2. The number of clusters, X, is used as a
parameter. Taking into account the log scale, the run
time reduction is enormous. For instance, if we choose
the parameters N=K =4, DSA reduces the run time
required by Barnsley et al.’s, by a factor or 8.47. Also, as
shown in (Fig. 5), the reduction factor grows up rapidly
as K increases. However, when N approaches 26, the
computational overhead caused by multiple vector
components dominates our DSA, and the speed is
degraded close to that of Barnsley et al.’s.

(Fig. 6) shows the quality behavior of DSA. PSNR of
DSA approaches to that of Bamsley et al's, as N
approaches 27. In 128-dimensional space, almost all
blocks are widely dispersed, and uniform clustering can-
not be expected. In case where N = K =4, DSA degrades
PSNR of Bamslkey et al’s by a factor of
0.05, a relatively slight loss compared with the run time
reduction factor. However, such degradation in PSNR
does not always lead to visual degradation. In a sense,
the visual proximity reproduced by the fractal dimension
cannot be exactly measured by PSNR alone. Although
the searching space is reduced by a factor of 8, inherent
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(Fig. 4) Run Time as a Function of N
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fractal dimension of DSA still maintains high restoration
capability as shown in (Fig. 8).

Ig (Run Time)

3 -~---Bamsley et al.
——DSA(N = 4)

1 2 3 4 5 6 7
ig (Number of Clusters)

(Fig. 5) Run Time as a Function of K

B

PSNR[db]
3
(9.3

28
275 ----Bamsley et al.
27 ——DSA(K=2)
%5 ——DSA(K = 4)
) —e—DSA(K = 8)
26
1 2 3 4 5 6 7

Ig (Number of Classification)

(Fig. 6) PSNR as a function of N

(Fig. 7.1) Original Baboon Image

(Fig. 7.2) Bamsley et al.'s (Fig. 7.3) Differences

(Fig. 7.4) DSA(N = 4, K =8)'s (Fig. 75) Differences

4. Proposed Algorithm I : Luminous Simi-
larity Algorithm

4.1 Concept and Method

Luminous similarity algorithm (LSA, hereafter)
incorporates luminance information into the similarity
search. We differentiate brightness and contrast, and
apply them separately before the similarity search.
The pixel intensity in the original block is modified
into another value according to the luminance infor-
mation. The similarity search is done on the modified
block.

Barnsiey et al’s algorithm applies the brightness
information into the similarity search. In practice, the
algorithm computes the mean pixel intensity for each
block. Difference in the mean intensities between
given pair of blocks is added or subtracted just before
the similarity search. Therefore, it is also based on the
modified range block.

LSA extends Barnsley et al.’s algorithm to accom-
modate the contrast in addition to the brightness.
Given a block, we define a gray level span as the dif-
ference between the maximum and minimum pixel

intensities inside the block. If the gray level span of



the domain block is Sp, and that of the range block is
Sk, every pixel in the range block is made to amplify
its pixel intensity by a factor of Sp/Sg. However, in
applying such transformation, brightness information
must also be incorporated. In terms of (Fig. 8), the
algorithm proceeds as follows:6i) the pixel intensities
of the range block are decremented by My so that M,
coincides with the x-axis, ii) the pixel intensities are
multiplied by S, /S5, iii) M, is added to them so that
Mg and M; coincides. Now, /, distance evaluation
can be proceeded with the modified range blocks.
LSA generally enhances the quality of the restored
images. Especially when images have frequent variation
in gray level, it works out best. Since both of the
luminous transformations are affine, contraction
mapping principle is preserved. The mean intensities
and the gray level spans are evaluated once for all
range blocks. As a result, added computational com-
plexity increases only by a constant term. As for the

compression rate, additional few bits are required to

pixel intensity

S, : gray level span

M, : mean value

pixel position(raster order)

(Fig. 8.1) Intensity Distribution of Domain

store the quantized ratio of the gray level span

between the matching domain and range blocks.

pixel intensity

Sy, : gray level span

M, : mean value

pixel position{raster order)
(Fig. 82) Intensity Distribution of Range

4.2 Performance Evaluation

4.2.1LSA

In general, PSNR of LSA outperforms Barnsley et
al’s as shown in (Table. 1). Since the similarity
searching is done on the modified blocks, the block
selected as the matching block in Barnsley et al’s
algorithm may not be the matching block in LSA.
The differences in the number of matching blocks are
also shown in the table. More than half of the
domain blocks have changed their matching range
blocks. Direct consequence of this change results in
the increase in the quality of restored image as shown
in (Fig. 9).

Comparing (Fig. 9.2) and (Fig. 9.4), we find that
LSA restores high frequency components far better
than Barnsley et al.’s. The difference of (Fig. 9.1) and
(Fig. 9.2) is shown in (Fig. 9.3), where most of the

(Table 1) Quality Comparison of LSA and Barnsley et al.’s

Block Size:4 X 4 Block Size:8 X 8
Method Barnsley LSA Block Barnsley LSA Block
PSNR et al. Differences ct al. Differences
PSNR Lenna 2822 29.40 787/1024 22.92 23.72 197/256
PSNR Pepper 30.98 32.48 848/1024 2398 24.80 189/256
PSNR Baboon 29.20 29.68 757/1024 24.60 24.25 197/256
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outline information is retained. This means that
Barnsley et al’s algorithm relatively lacks in the
ability to restore the outline information. On the con-
trary, LSA exhibits much better performance as
shown in (Fig. 9.4) and (Fig. 9.5). The increase in
PSNR is mainly caused by the ability of our LSA
that traces the rapid change in the gray level.

%
(Fig. 9.1) Original Lenna Image

(Fig. 9:2) Bamsley.et al.’s (Fig. 9.3) Differences

(ﬁg. 94) LSA (Fig. 9.5) Differences

4.2.2 DSA in Combination with LSA

Since the merit of DSA is in its speed, and that of
LSA is in its quality, the two algorithms can be
combined to complement each other. Such combi-
nation can be done procedurally by first applying
DSA in finding the dimensionally similar blocks and
then applying LSA in modifying the block. The re-
verse order, LSA followed by DSA, is not used since
the dimension defined on the modified block is mean-
ingless. According to their inherent fractal

dimensions, DSA sorts the blocks into certain number
of clusters. Within each cluster, LSA modifies the
pixel intensities according to the contrast and bright-
ness. Performance of the LSA and DSA combination
is shown in (Fig. 10) through (Fig. 12).

As (Fig. 11) shows, the encoding time is almost the
same as that of DSA alone. Reduction in search
space caused by DSA is so predominant that the cal-
culation overhead required by LSA is almost negligible.
On the contrary, PSNR generally increases above the
level of DSA as shown in (Fig. 10). In case where K=
2, PSNR continuously outperforms that of Barnsley
et al.’s. If we limit the parameter N within the range
of 32, the encoding time is also far below the level of
Barnsley’s. For the case of (Fig. 12.3), the pepper im-
age encoded with parameters K= N=2 has the run
time reduction factor of 3.6 compared with Barnsley
et al’s algorithm. Moreover, PSNR also has increased
by a factor of 0.03.

Although the performance largely depends on the
specific characteristics and instance of input images,
some compromise can always be taken. The compro-
mise between quality and speed can be controlled by
the parameters K and N. For instance, if we select the
parameters K=4, N=16, we get the speed up factor
of 14.35, and the quality degradation factor of 0.04.

5. Conclusion

We have presented two efficient algorithms for the
fractal encoding. DSA remarkably speeds up the
encoding time by reducing the similarity search space.
It was possible by clustering range blocks according
to their inherent fractal dimensions. LSA enhances
the quality of restored image by accommodating both
contrast and brightness information inside range
blocks. By combining the two algorithms, we could
have the freedom to choose the level of speed and
quality we need. This can be done by properly
selecting the relevant parameters N and K while
encoding. Depending on the selection, both the speed
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(Fig- 12.1) Original Pepper Image

(Fig. 12. 2) Barnsley et al.’s  (Fig. 12.3) LSA Combined
PSNR = 3098 [db] with DSA
Run Time = 1914 [sec] PSNR = 31.88 [db]
Time =523 [sec]

and quality can be improved compared with Barnsley
et al’s. Also, depending on the selection, the speed
can be greatly increased at the expense of the slight
quality loss expressed in terms of PSNR. Researches
on the fractal coding is still relatively in its infancy,
and further researches toward the improvements on

the compression techniques should follow.
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