가용매분해반응속도에 대한 압력의 영향(III) 이성분용매내 Acyl류와 Alkyl류의 친핵성 치환반응의 속도론적 연구

景鎮範・朴炳春・樺五千

漢陽大學校 化學科 (1997. 5. 19 접수)

The Effect of Pressure on the Rate of Solvolysis (III) Kinetics on the Nucleophilic Substitution Reactions of Acyl- and Alkyl groups in Binary Solvents

Jin-Burm Kyong, Byoung-Chun Park, and Oh-Cheun Kwun Department of Chemistry, Hanyang University, Ansan 425-791, Korea (Received May 19, 1997)

요 약. 여러가지 수용성 혼합용매내에서 파라 치환체인 acyl chloride류와 alkyl chloride류의 가용매분해 반응속도를 여러 온도와 압력하에서 전도도 방법에 의하여 측정하였다. 이들 속도상수로 부터 활성화 파라미터들(ΔV^* , ΔH^* , ΔS^*)을 구하였다. 또한 활성화 부피와 활성화 엔트로피 관계로 부터 이들 반응에 대한 반응성을 조사하였다.

ABSTRACT. Kinetics for the solvolyses of acyl chlorides and alkyl chlorides in hydroxylic solvent mixtures have been measured by conductometric method at various temperatures and pressures. The activation parameters $(\Delta V^*, \Delta H^*, \Delta S^*)$ were estimated from the rate constants. The reactivities of these reactions were also estimated from the correlation of the activation volumes with the activation entropies.

서 론

최근 acyl 및 alkyl 유도체에 대한 가용매분해반응 에 대하여 여러 연구자에 1~9 의하여 다양한 실험 방 법과 이론으로 그 물질들에 대한 반응성등을 조사 연구하고 있다. 최근 반응성을 연구함에 있어 압력 변화에 따른 가용매분해반응의 속도상수를 측정하 여 활성화 부피, ΔV_o^* 및 활성화 압축율, $\Delta \Phi$ 을 계산 함으로써 여러 반응들의 전이상태에 대한 많은 정보 를 얻을 수가 있고,¹⁰ 이것으로 부터 반응메카니즘을 규명하는데 유용한 도구로 사용되고 있다. Golinkin 과 그 공동 연구자들은¹¹⁻¹³ 에탄올 수용액내에서 tbutyl chloride와 benzyl chloride류 등의 가용매분해 반응에 따른 전이상태 구조변화와 일차, 이차, 및 삼 차 알콜 수용액 등 용매변화에 따른 기질의 ΔV。* 값 들을 구하여 반응메카니즘을 규명하였으며, Sera 등 은14 tosylate류의 가용매분해반응에 대한 연구에서 치환기 변화에 따른 ΔV。* 값의 변화를 Hammett식

의 치환기 상수와 비교함으로써 두 파라미터간의 상 관관계를 고찰하였다.

또한 화학 반응메카니즘을 보다 정확하게 규명하기 위하여 !e Noble과 그 공동연구자들은 15,16 혼합용 매내에서 ΔV_o 을 측정하여 임의의 반응에서 전이상 태가 "초기의 특성"에 의존하는자 "후기의 특성"에 의존하는지를 확인함으로써 유기 및 무기 반응메카니즘의 평가기준에 대한 토대를 마련하였다.

본 연구에서는 acyl 및 alkyl유도체들을 여러 이성 분 혼합용매내에서 온도, 조성, 압력을 변화시켜가면 서 반응속도를 결정하고, 이로 부터 활성화파라미터 를 계산하고 본 반응들에 대한 반응메카니즘의 변화 를 고찰하였다.

실 험

시약 및 기기, p-nitrobenzyl chloroformate(p-NBCF, Aldrich), p-nitrophenyl chloroformate(p-

NPCF, Aldrich), 및 p-nitrobenzoyl chloride(p-NBC, Tokyo Kasei, Japan)는 petroleum ether로 p-nitrobenzyl chloride(p-NBZC, Tokyo Kasei, Japan)는 ethyl ether로 재결정하여 사용하였으며¹⁷⁻²¹, p-methylbenzoyl chloride(p-MBC, Tokyo Kasei, Japan)와 p-methylbenzyl chloride(p-MBZC, Tokyo Kasei, Japan)는 분별증류하여 정제하였으며,^{22,23} 생성물 분석은 이전연구와 같이 분석하였다.²⁴

또한 사용된 모든 용매, methanol(MeOH), ethanol (EtOH), acetonitrile(CH₃CN), acetone(Me₂CO)과 반용용액 제조방법, 압력장치(Swiss NOVA 4000), 전도도장치(TOA electronics, CM 40-E, Japan)와 기목계(Pantos, Model U-228, Japan), 항온조 등은 앞서 연구한 방법과 같이 실행하였다.²⁵

반응속도축정. 각 기질의 반응속도 결정은 가용 매분해반응의 결과로 산(acid) 이온이 생성되므로 반응 용액의 전도도가 증가한다. 기질들의 농도에 비해 혼합용매들의 농도가 과량이므로 유사 일차반응으로 반응시켜 이전과 같은 방법으로 25 속도상수를 구하였다. 그 대표적 예를 Fig. 1에 나타내었으며, 그 결과를 Table 1, 2에 종합하였으며, 이 속도상수로부터 활성화 과라미터들을 구하였다.

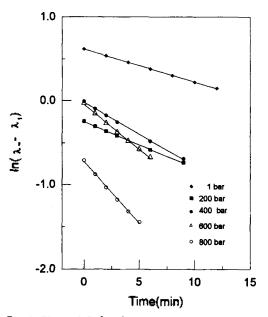


Fig. 1. Plots of $In(\lambda \infty - \lambda_0)$ vs. time(min) for the solvolysis of p-NO₂C₆H₄OCOCI in MeOH at 25 °C.

결과 및 고찰

Acyl- 및 Alkyl chloride류의 가용때문해반응.

Table 1에서 모든 기질에 대한 속도상수, k_{obs} 는 물 함량과 온도가 증가함에 따라 증가하고, 대기압하 유기용매내에서 반응속도상수의 전반적인 크기 순서는다음과 같다. $MeOH>EtOH>Me_2CO>CH_3CN$.

이상과 같이 양성자성 유기용때내에서 반응이 빠름을 알 수 있다. 이러한 이유는 양성자성 용때가 비양성자성 용매보다 염기도와 수소 결합 주개 능력이커서 전체적으로 전이상태를 안정화시켜 주는 효과가 강한 것으로 볼 수 있다. 26 또한 반응속도는 acyl chloride류에서 alkyl chloride류 보다 크게 나타났다. acyl chloride류는 일반적으로 용매가 친핵체로 작용하여 기질의 acyl carbon을 공격하는 것으로 이미 알려져 있고, 치환기 효과를 비교하면 전자흡인 치환기(electron-withdrawing group, EWG) 일수록 acyl carbon에 양전하가 진전되어 용매가 공격하기 쉽기때문에 반응이 빨라지는 것으로 볼 수 있다. 반면에, alkyl chloride류는 전자주가 치환기(electro-donating group, EDG) 일수록 C-Cl의 결합 깨짐이 쉬워져 kobs 값이 커지는 현상으로 설명 할 수가 있다.

한편 이온화 반응인 일분자성 반응들에서는 반응 속도가 용매 이온화력(Y-values)에 민감하지만 이분 자성 반응에서는 그렇지 못하다. 전 연구자들은²⁷⁻³⁰ 일분자성 반응인 1-adamantyl toylate(1-AdOTs)의 비 가 25 °C에서 k_{80%EOH}/k_{100%EOH} ≈ 92, 1-adamantyl chloride(1-AdCl)은 k_{80%EtOH}/k_{100%EtOH}≃320으로 용매의 이 온화력에 민감하다고 발표한 반면, 본 물질인 p-NBC \rightleftharpoons k_{80%EiOH}/k_{100%EiOH} \simeq 4.60, p-MBC \rightleftharpoons k_{80%EiOH}/k 100%EIOH = 5.29, p-NBCF는 k_{80%EIOH}/k_{100%EIOH} = 4.0으로 민감하지 않았고, p-NBZC는 k_{10%EtOH}/k_{40%EtOH}≃6.37, p-MBZC는 k_{10%EtOH}/k_{40%EtOH}≃€6.6으로 acyl chloride 류 보다는 민감하게 나타났다. 실제 alkyl chloride류 에서 ken%ErOH/k100%ErOH일 경우에 Y-value의 차이가 더 많이 나므로 그 값이 더욱 커질 것으로 예상된다. 즉 일분자성이 강한 물질일수록 용매 이온화력이 증가 하여 반응속도는 더 가속화됨을 알 수가 있다.

모든 물질에 압력 변화를 주면서 일정한 시간 간격으로 가용매분해반응에 따른 전도도를 측정하여 반응속도상수를 계산한 결과를 Table 2에 나타내었다. 모든 물질은 압력이 증가함에 따라 속도들은 중

Table 1. Rate constants^a for the solvolyses of acyland alkyl substrates in binary solvents

 $10^4 k_{obs}$ Solvent Substrate Temp. (s^{-1}) (p-substituted) (v/v%) (°C) 35 4.063 p-NBCF **EtOH** 30 2.761 25 1.859 20 1.241 90 EtOH 25 5.535 80 EtOH 30 10.73 25 7.474 20 5.348 15 3.645 0.485 95 CH₃CN 60 50 0.270 0.053^{6} 25 90 CH₃CN 50 1.280 40 0.420 0.069^{b} 25 30 8.749 MeOH 25 6.244 4.237 20 25 13.23 90 MeOH 80 MeOH 25 18.74 25 p-NPCF 95 CH₃CN 6.565 15 3.743 10 2.630 25 44.44 90 CH₃CN 15 23.60 10 15.17 25 97.70 p-NBC **EtOH** 20 67.53 15 49.13 32.85 10 90 EtOH 25 328.4 15 182.1 125.1 10 449.1^b 80 EtOH 25 15 229.8 10 166.6 5 113.1 95 CH₂CN 25 5.633 20 4.918 15 3.948 25 90 CH₃CN 17.16 20 14.21 15 10.20

가하였으며, 압력 증가에 따라 acyl류가 alkyl류 보다 는 속도 증가가 뚜렷함을 알 수가 있었다. 결과적으 로 모든 물질들은 가용매분해반응시 물함량과 온도,

Table 1. Continued

Substrate	Solvent	Temp.	10⁴k _{ohs}	
(p-substituted)	_ (v/v%)	(°C)	(s ⁻¹)	
p-MBC	EtOH	35	14.06	
-		30	8.960	
		25	5.624	
	90 EtOH	35	32.42	
		30	21.43	
		25	14.21	
	80 EtOH	35	86.21	
		30	47.59	
		25	29.77	
	95 CH ₃ CN	50	3.118	
		45	2.163	
		40	1.469	
		25	0.433 ⁶	
	90 CH ₃ CN	45	10.89	
		40	7.783	
		35	4.913	
		25	2.135 ^b	
	MeOH	35	88.32	
		30	58.12	
		25	36.74	
		20	22.97	
		15	14.15	
	90 MeOH	35	205.1	
		30	129.5	
		25	81.12	
p-NBZC ^{c,c}	40 EtOH	60	0.823	
•		50	0.288	
	30 EtOH	60	1.732	
		50	0.614	
	10 EtOH	60	5.240	
		50	1.960	
	14 Me ₂ CO	25 ^d	0.537	
p-MBZC ^c	40 EtOH	40	0.122	
p-MD2c		30	0.0257	
	30 EtOH	40	0.229	
		30	0.0683	
	10 EtOH	40	3.250	
	· · · · ·	30	1.170	
	50 Me ₂ CO	25 ^d	0.552°	
	30 Me ₂ CO	25 ^d	0.0761	
	14 Me ₂ CO	25 ^d	0.758	

^aResults are determined conductimetrically in duplicate; errors for this work are not shown but are typically <±3%, ^bExtrapolated values, ^csolvent (w/w%), ^dRef. 36 ^crate constants are 10⁶k_{obs}(s⁻¹)

압력이 증가함에 따라 반응속도가 증가하였고, 그 가용매분해반응의 속도 순서는 다음과 같았다.

Substrate (p-substituted)	Solvent (v/v%)	Temp.	10 ⁴ k _{obs} (s ⁻¹) Pressure (bar)						
		(°C)	1	200	400	500	600	800	1200
p-NBCF	МеОН	25	6.52	9.09	12.1		16.6	24.5	
	EtOH	25	1.86	5.71		8.26	_	14.2	_
p-NPCF	95 CH ₃ CN	10	2.63	3.16	-	4.13	-	5.75	_
p-NBC	95 CH ₃ CN	25	5.63	7.55	9.50		11.5	15.5	_
p-MBC	95 CH ₃ CN	40	1.47	2.01	-	2.49	_	3.41	
p-NBZC ^h	40 EtOH	50	0.00288	0.00328	0.00356		. –	0.00393	0.00427
	10 EtOH	50	0.0196	0.0222	0.0246	-		0.0268	0.0298
p-MBZC"	40 EtOH	40	0.122	0.139	0.156		-	0.192	0.219
	10 EtOH	40	3.25	3.69	3.90			4.61	5.17

Table 2. Rate constants for the solvolyses of acyl- and alkyl substrates in binary solvents under various pressures

*Results are determined conductimetrically in duplicate; errors for this work are not shown but are typically $(+3\%)^b$ (w/w%).

p-NPCF > p-NBC > p-MBC > p-NBCF > p-MBZC > p-NBZC

가용매분해반응의 온도 및 압력 외존. 각 온도 및 압력에 따른 모든 물질의 k_{obs} 값을 절대반응속도 본식에 대입하여 ΔH^{+} , ΔS^{+} 및 ΔV_{o}^{+} 값을 구하여 Table 3에 나타내었다.

Acyl chloride류의 ΔH^{*}는 작은 양의 값을, ΔS^{*}는 큰 음의 값을 나타내었으나, alkyl chloride류의 ΔH⁺ 값은 acyl chloride류의 값 보다 상대적으로 큰 것을 알 수가 있었다. 전 연구자들에 의하면³¹ 이같은 결 파는 acyl chloride류가 엔트로피 조절 반응인 이분자 성 반응의 특성을, alkyl chloride류는 엔탈피 조절 반 응인 일분자성 반응의 특성을 나타내는 것으로 생각 된다. 특히 acyl chloride류는 양성자성 용매 보다는 쌍극자 비양성자성 용매일때 활성화 엔트로피 값이 상당히 큰 유의 값을 나타내고 있다. 이미 연구된 methyl chloroformate 및 phenyl chloroformate를 Table 3에 같이 비교하였다.32 그 결과 본 연구에서 사용된 acyl chloride류와 유사한 경향성을 나타내지만 아세 토니트릴 혼합용매내에서는 AE메카니즘(addition-elimination)의 특성을 나타내고 있다. 이상과 같이 온도 의존 파라미터를 만으로는 각 물질에 대한 반응 중심 의 전하발달 상태를 분류하기란 여간 어렵지가 않다.

따라서 반응속도 상수와 압력과의 상관관계을 이 용하여 전이상태를 규명하는 것이 바람직하다.

본 연구에서는 속도상수와 압력과의 상관관계가 $\ln k_{obs}$ =a+bP에 따르므로 식 (1)에 대입하여 $-\Delta V_o^{-+}$ 를 계산할 수 있다.

$$-\Delta V^{*} = RT(\partial \ln k_{obs}/\partial P)_{T}, \Delta V_{o}^{*} = -RTb \quad (1)$$

Table 3로부터 acyl chloride 류의 - ΔV_a *는 모두 큰 음의 값으로 이러한 현상은 전이상태일 때가 초기상태일 때 보다 전하가 더 발달하여 전이상태에서 주위의 용매를 끌어 당기므로 전기적 역압(electrostriction)상태가 중가됨을 의미한다(ΔV_a * = $\overline{V_i}$ - $\overline{V_i}$). 이에 비하여 alkyl chloride류의 ΔV_a *값은 상대적으로 작은 음의 값으로 나타나 acyl chloride류 보다 전이상태에서의 전기적 역압이 작다는 것을 알 수 있다. 전 연구자들 $^{10.33.44}$ 에 의하면 기질 자체의 결합이 형성될 때는 ΔV_a * = 10 ml/mol이고, 결합이 깨질때는 ΔV_a * =+10 ml/mol 인데, 특히 이온화반응에서는 결합이 깨질 때 ΔV_a *=-20 ml/mol 정도 기여한다고 보고된 바 있다. 즉 결합깨집에서의 활성화 부피 기여가 일치하지 않는 것은 강한 ion-solvent interaction(electrostriction)들이 일어나기 때문이라고 설명하였다.

또한 활성화부피 ΔV_o ^{*}는 전이상태를 형성하는 과정에서 반응물질 자체의 부피변화, ΔV_{inir}^* (intrinsic part)와 반응물질과 혼합용매와의 상호작용으로 일어나는 부피변화, ΔV_{solv}^* (solvation part)로 나누어 생각할 수 있다. ^{10,33,44}

$$\Delta V_o = \Delta V_{int} + \Delta V_{soly}^{\star}$$
 (2)

이온의 생성, 소멸이 없는 경우는 ΔV^{+}_{int} 에 의하여 ΔV_{o}^{+} 가 결정며, 이온이 관여하는 경우는 ΔV^{+}_{obs} 이 ΔV_{o}^{+} 에 영향을 주는 것으로 보고하였다.

결과적으로 acyl chloride류의 ΔV, *가 큰 음의 값

Table 3. Activation parameters for the solvolyses of acyl- and alkyl substrates in binary solvents

Substrate (p-substituted)	Solvent (v/v%)	Temp. (°C)	ΔH [*] (kcal/mol)	- ΔS [±] (cal/mol⋅K)	- ΔV₀ [★] (ml/mol)
p-NBCF	MeOH	25	12.0	32.8	40.3
	E _t OH	25	13.6	30.0	57.7
p-NPCF	95 CH ₃ CN	10	9.57	41.0	22.9
MCFa	MeOH	25	12.6	33.7	25.2
	80 MeOH	25	11.9	36.1	25.9
PCFb	MeOH	10	9.12	37.5	36.2
	80 MeOH	10	8.64	38.2	36.8
p-NBC	95 CH₃CN	25	5.48	55.0	30.3
	95 Me ₂ CO ^c	20	8.11	49.8	20.4
p-MBC	95 CH ₃ CN	40	14.5	29.8	26.3
	95 Me ₂ CO ^c	25	8.72	15.2	15.2
p-NBZC	40 EtOH	50	21.8	21.2	13.2
	10 EtOH	50	20.4	21.7	13.6
p-MBZC	40 EtOH	40	22.6	9.04	17.5
	10 EtOH	40	18.6	15.0	13.8

*Methyl chloroformate *Phenyl chloroformate *Ref. 37

을 가진다는 것은 가용매분해반응시 전이상태에서 기질자체의 결합길이가 늘어남에 따른 부피 증가보다는 부분적인 전하에 기인한 주위 용매 수축이 더크게 작용했을 것으로 추축되고, p·NBC가 p·MBC보다 [ΔV_o*]이 더 큰 이유는 EWG인 물질일수록 acyl carbon에 양전하가 발달하여 친핵체인 용매와 전기적 억압정도가 커지기 때문이라고 생각된다.

Alkyl chloride류는 acyl chloride류 보다 $|\Delta V_o^*|$ 이 전반적으로 작았으며, 그 이유는 결합형성이 우선하지 않고, 결합깨짐이 우선한 후 친핵체가 공격함을 의미한다.

Table 3에 나타난 바와 같이 acyl chloride류 중 p-NBCF 및 p-NBC와 p-MBC는 이미 연구된 methyl chloroformate와 같은 이분자성 반응이며, p-NBCF는 이미 본 연구실에서 발표한 바 있는 phenyl chloroformate와 유사한 반응중심에 전하가 좀 더 진전되어 이분자성 반응 가운데 결합형성이 더 우세한 AE메카니즘으로 진행됨을 알 수가 있다. Alkyl chloride류는 이미 일분자성 반응으로 규명된 1-AdOTs와 1-adamantyl chloroformate(1-AdOCOF, TFE수용액)처럼 ionpair return을 형성하는 일분자성 반응으로 예상된다.

활성화 엔트로피-활성화부피에 대한 분석.

Acyl chloride류와 alkyl chloride류의 ΔS^* 값과 ΔV_o^* 값을 *Table* 3에 나타내었다. 일분자성 반응인 alkyl chloride류는 ΔS^* 값과 ΔV_o^* 값이 모두 작은 음의 값을 나타낸 반면, 이분자성 반응에 해당되는 acyl chloride류는 모두 큰음의 값을 나타내고 있다.

전 연구자들은 $^{14.35}$ 분자가 서로 부착하거나 조밀하게 배열하여 무질서도를 잃으면 ΔS^* 값과 ΔV_o *가 감소하며, 반대로 무질서도를 얻으면 ΔS^* 값과 ΔV_o *값이 대체적으로 증가함을 보고한 바 있다. 본 연구에서는 온도 의존성 파라미터인 ΔS^* 값들로 부터각 물질에 대한 반응 중심의 전하발달 상태를 분류하여 설명하기가 쉽지 않았으므로, 압력의존성 파라미터인 ΔV_o *값과 비교하여 좀 더 정확하게 전이상태에서의 전하발달상태를 예측할 수 있었다.

이상과 같이 수용성 혼합용매내에서 acyl chloride 류는 용매가 친핵적으로 작용하여 acyl carbon을 공격하는 이분자성으로 진행되며, alkyl chloride류의 가용매 분해반응에서는 C-Cl의 결합파괴가 우선하는 양이온 형성이 유리한 일분자성 반응으로 진행됨을 알 수가 있었다. 한편, 압력 실험을 통한 ΔV。*를 도입하여, acyl chloride류는 모두 큰 음의 값으로 나타나 전이상태가 초기 상태일때 보다 전하가 더 발

달된 상태, 즉 전기적 억압상태가 있음을 확인할 수 있었으며, alkyl chloride류는 상대적으로 적은 음의 값을 나타내 acyl chloride류보다 전이 상태에서 전기 적 억압 현상이 적음을 알 수 있었다.

따라서 acyl chloride류는 이분자성 반응으로, alkyl chloride류는 일분자성이 우세한 반응으로 확인할 수가 있었다.

전 연구와 본 연구를 ΔV。*-ΔS*값으로 비교하여 반응성을 분류하면 p-NBCF와 phenyl chloroformate 의 가용매분해반응은 이분자반응으로 진행되는 AE (addition-elimination)반응 메카니즘이며, p-NPCF, p-NBC 및 methyl chloroformate의 가용매 분해반응은 이분자 반응으로 진행되는 synchronous displacement S_N2 반응 메카니즘이며, p-MBC는 dissociative S_N2 반 응으로, alkyl chloride 류인 p-NBZC와 p-MBZC의 가 용매 분해반응은 ion-pair를 경유하는 일분자반응으로 분류, 추정할 수 있었다.

이상의 결과로 부터 전이상태의 전하발달 상태를 좀 더 정확하게 예측하여 반응성을 연구할 수가 있었다. 앞으로 더 많은 물질에 대해 채계적으로 연구함으로써 이 분야의 반응 메카니즘을 결정하는데 쉽게 해결되리라 믿는다.

본 연구는 1996년 교내 연구비 지원으로 이루어졌으며 이에 감사를 드린다.

인 용 문 현

- Brown, D. A.; Hudson, R. F. J. Chem. Soc. London 1953, 883.
- 2. Crunden, E. W.; Hudson, R. F. ibid. 1961, 3748.
- Hudson, R. F. Ber. Bunsenges Physik Chem. 1964, 68, 215.
- Hudson, R. F.; Moss, G. J. Chem. Soc. London 1964, 2986.
- Streitwiseser, A. Solvolytic Displacement Reaction; McGraw-Hill: N. Y., 1962.
- Kevill, D. N.; Weitl, F. L. J. Am. Chem. Soc. 1968, 90, 6416.
- Lee, S. M.; Koh, K. S.; Lee, I. J. Korean Chem. Soc. 1980, 24, 1.
- 8. Queen, A. Can. J. Chem. 1967, 45, 1621.
- Otlov, S. I.; Chimishktan, A. L.; Grabarnik, M. S. J. Org. Chem. (USSR) Eng. 1. Ed/19 1983, 1981.
- Issac, N. S. Liquid Phase High Pressure Chemistry; John Wiley & Sons: 1981.
- 11. Hyne, J. B.; Golinkin, H. S.; Laidlaw, W. G.

- J. Am. Chem. Soc. 1966, 88, 2104.
- Golinkin, H. S.; Laidlaw, W. G.; Hyne, J. B. Can. J. Chem. 1966, 44, 2193.
- Golinkin, H. S.; Lee, I.; Hyne, J. B. J. Am. Chem. Soc. 1967, 89, 1307.
- Sera, A.; Yamagami, C.; Maruyama, K. Bull. Chem. Soc. Japan 1973, 46, 3864.
- 15. Asano, T.; le Noble, W. J. J. Chem. Rev. 1978, 78, 407.
- Eldile, R. V.; Asano,T.; le Noble, W. J. J. Chem. Rev. 1989, 89, 546.
- Carpenter, F. H.; Gish, D. T. J. Am. Chem. Soc. 1952, 74, 3818.
- 18. Kim, J. C. M. S. Thesis, Hanyang Univ. 1986.
- Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724.
- Kevill, D. N.; Knauss, D. C. J. Chem. Soc., Perkin Trans. 2 1993, 307.
- 21. Kwun, O. C. J. Korean Chem. Soc. 1981, 25, 152.
- Bentley, T. W.; I. S. Koo. J. Chem. Soc., Perkin Trans. 2 1989, 1385.
- Bentley, T. W.; I. S. Koo.; Norman, S. J. J. Org. Chem. 1991, 56, 1604.
- Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304.
- Kyong, J. B.; Park, B. C.; Kim, J. C. J. Natural Sciences 1993, 12, 213.
- Kamlet, J. M.; Abboud, J. L. M.; Taft, R. W. Prog. Phys. Org. Chem. 1981, 13, 485.
- (a) Bentley, T. W.; Carter, C. E.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1985, 2, 983. (b) Bentley, T. W.; Harris, H. C. ibid. 1986, 619. (c) Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724.
- Fujio, M.; Goto, M.; Yoshino, T.; Funatsu, K.;
 Tsuji, Y.; Ouchi, S.; Tsuno, Y. Mem. Fac. Science,
 Kyushi University, Ser. C. 1987, 16, 85.
- Liu, K. T.; Sjeu, H. C.; Chen, H. I.; Chiu, P. F.;
 Hu, C. R. Tetrahedron Lett. 1990, 31, 3611.
- 30. Liu, K. T.; Sjeu, H. C. J. Org. Chem. 1991, 56, 3021.
- Lee, I.; Sohn, S. C.; Lee, H. W.; Kim, I. C. J. Korean Chem. Soc. 1987, 31, 419.
- 32. Seo, I. B. M. S. Thesis, Hanyang Univ. 1993.
- Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 875.
- Kelm, H. High Pressure Chemistry; D. Reidel Pub. Co.: Holland, 1977; pp 288-309.
- Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Processes; McGraw-Hill: N. Y., 1941, 418.
- Laidler, K. J.; Martin, R. Int. J. Chem. Kinet. 1969, 1, 113.
- Kwun, O. C.; Kyong, J. B.; Lee, D. W.; Yun, J. S.
 J. Natural Scieces, Hanyang Univ. 1994, 13, 131.