DOI QR코드

DOI QR Code

Spectroscopic Studies on the High-$T_c$ Superconducting $La_2CuO_{4-δ}$ Prepared by Electrochemical Oxidation

  • Published : 1997.09.20

Abstract

A superconducting phase La2CuO4+δ (Tc=44 K) has been prepared by electrochemical oxidation which allows the oxygen to intercalat into the La2O2 layers. According to the Cu K-edge X-ray absorption near edge structure spectroscopic analysis, the oxidized phase shows an overall spectra shift of about 0.5 eV to a higher energy region compared to the as sintered one with the occurrence of an additional peak corresponding to the transition to the |1s13dn+1L-14pσ1 > final state, indicating the oxidation of CuO2 layer. From the X-ray photoelectron spectroscopic studies, it is found that the binding energy of La 3d5/2 is significantly shifted from 834.3 eV (as sintered La2CuO4) to 833.6 eV (as electrochemically oxidized La2CuO4+δ), implying that the covalency of the (La-O) bond is decreased due to the oxygen intercalation. The O 1s spectra do not provide an evidence of the superoxide or peroxide, but the oxide (O2-) with the contaminated carbonate (CO32-) based on the peaks at 529 eV and 532 eV, respectively, which is clearly confirmed by the Auger spectroscopic analysis. Oxygen contents determined by iodometric titration (δ=0.07) and thermogravimetry (δ=0.09) show good coincidence each other, also giving an evidence for the "O2-" nature of excess oxygen. From the above results, it is concluded that "O2-" appeared as O 1s peak at 528.6 eV is responsible for superconductivity of La2CuO4+δ.

Keywords

References

  1. Phys. Rev. Lett v.58 Grant, P. M.;Parkin, S. S. P.;Lee, V. Y.;Engler, E. M.;Ramirez, m. L.;Lim, G.;Jacowitz, R. D.
  2. Acad. Sci. Ser. v.2 no.304 Beille, J.;Cabanel, R.;Chaillout, C.;Chevalier, B.;Demazeau, G.;Deslands, F.;Etourneau, J.;Lejay, P.;Michel, C.;Provost, J.;Raveau, B.;Sulpice, A.;Tholence, J. L.;Tournier, R.
  3. Acad. Sci. Ser. v.2 no.t.310 Wattiaux, A.;Park, J.-C.;Grenier, J.-C.;Pouchard, M. C. R.
  4. Phys. Rev. v.B no.50 Coy, J.-H.;Kim, D.-K.;Hwang, S.-H;Demazeau, G.
  5. J. Am. Chem. Soc. v.117 Choy, J.-H.;Kim, D.-K.;Hwang, S.-H.;Park, J.-C.
  6. Physica v.C no.152 Schirber, J. E.;Morosin, B.;Merrill, R. M.;Hlava, P. F.;Venturini, E. L.;Kwak, J. F.;Nigrey, P. J.;Ginley, D. S.
  7. Phys. Rev. v.B no.38 Rogers, Jr. J. W.;Shinn, N. D.;Schirer, J. E.;Venturini, E. L.;Ginley, D. S.;Morosin, B.
  8. Phys. Rev. v.B no.39 Zhou, J.;Sinha, S.;Goodenough, J. B.
  9. Phys. Rev. v.B no.41 Srongin, M;Qiu, S. L.;Chen, J.;Lin, C. L.;McCarron, E. M.
  10. Physica v.C no.177 Park, J. C.;Huong, P. V.;Rey-Lafon, M;Grenier, J. C.;Wattiaux, A.;Pouchard, M.
  11. Curr. Opin. Solid State & Mat. Sci. v.1 Grenier, J.-C.;Pouchard, M.;Wattiaux, A.
  12. J. Less-Common Metals v.164 & 165 Park, J. C.;Huong, P. V.;Grenier, J. C.;Wattiaux, A.
  13. Bull. Korean Chem. Soc. v.9 no.5 Choy, J. H.;Choi, S. Y.;Byeon, S. H.;Chun, S. H.;Hong, S. T.;Jung, D. Y.;Choe, W. Y.;Park, Y. W.
  14. Atlas d'equilibre electrochimque Pourbaix, M.
  15. J. Electrochem. Soc. v.136 Mehandru, S. P.;Anderson, Alfred B.
  16. Physica v.C no.158 Chaillout, C.;Cheong, S. W.;Fisk, Z.;Lehmann, M. S.;Marezio, M;Morosin, B.;Schirber, J. E.
  17. Phys. Rev. v.B no.41 Allan, K.;Campion, A.;Zhou, J.;Goodenough, J. B.