DOI QR코드

DOI QR Code

Approximate Nonrandom Two-Fluid Lattice-Hole Theory. Thermodynamic Properties of Real Mixtures

  • Published : 1997.08.20

Abstract

A simple molecular theory of mixtures is formulated based on the nonrandom two-fluid lattice-hole theory of fluids. The model is applicable to mixtures over a density range from zero to liquid density. Pure fluids can be completely characterized with only two molecular parameters and an additional binary interaction energy is required for a binary mixture. The thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid parameters and the binary interaction energies. The Quantitative prediction of vapor-liquid, and solid-vapor equilibria of various mixtures are demonstrated. The model is useful, in particular, for mixtures whose molecules differ greatly in size. For real mixtures, satisfactory agreements are resulted from experiment. Also, the equation of state (EOS) is characterized well, even the liquid-liquid equilibria behaviors of organic mixtures and polymer solutions with a temperature-dependent binary interaction energy parameter.

Keywords

References

  1. Bull. Korean Chem. Soc. v.18 no.9 Yoo, K.-P.;Shin, H. Y.;Lee, C. S.
  2. Mixture Guggenheim, E. A.
  3. J. Chem. Eng. v.59 Panayiotou, C.;Vera, J. H.
  4. J. Chem. Phys. v.9 Flory, P. J.
  5. J. Chem. Phys. v.9 Huggins, M. L.
  6. Acad. Sci. v.43 Huggins, N. Y.
  7. J. Am. Chem. Soc. v.86 Wilson, G. M.
  8. Inst. Chem. Eng. Symp. Ser. (Lodon) v.3 Derr, E. L.;Deal. Jr.
  9. AIChE. J. v.21 Abrams, D.;Prausnitz, J. M.
  10. AIChE. J. v.21 Fredenslund, A.;Jones, R. L.;Prausnitz, J. M.
  11. Nature v.252 Sanchez, I. C.;Lacombe, R. H.
  12. J. Phys. Chem. v.80 Sanchez, I. C.;Lacombe, R. H.
  13. Ibid v.80
  14. ibid v.13
  15. Polymer J. v.13 Okada, M.;Nose, T.
  16. Polymer J. v.14 Panayiotou, C.;Vera, J.
  17. Fluid Phase Equioibria v.34 Smimova, N. A.;Victorov, A. I.
  18. Ind. Eng. Chem. Res. v.26 Kumar, S. K.;Suter, U. W.;Reid, R. C.
  19. Flued Phase Equilibria v.93 Yor, S. S.;Yoo, K.-P.;Lee, C. S.
  20. ibid v.93
  21. J. Supercritical Fluids v.6 You, S. S.;Lee, C. S.;Yoo, K.-P.
  22. ibid v.7
  23. Int, J. Thermophysics v.16 Shin, M. S.;Yoo, K.-P.;You, S. S.;Lee, C. S.
  24. Fluid Phase Equilibria v.111 Yoo, K.-P.;Shin, M. S.;Yoo, S. J.;You, S. S.;Lee, C. S.
  25. Korean J. Chem. Eng. v.12 Yoo, K.-P.;Kim, H. Y.;Lee, C. S.
  26. ibid v.12
  27. DECHEMA Chemistry Data Series; FECHEMA: Frankfurt v.1 Vapor-Liquid Equilibrium Data Collection Gmehling, J.;Onken, U.;Alt, W.
  28. J. Chem. Eng. Jap. v.19 Takishima, S.
  29. J. Chem. Eng. Jap. v.7 Nagahama, K.
  30. J. Chem. Eng. Jap. v.41 Olds, R. H.
  31. Fluid Phase Equilibria v.41 Hong, H. H.;Kobayashi, R.
  32. Russ J. Phys. Chem. v.38 Tsekhanskays, Y. V.;Iomtev, M. B.;Mushkina, E. V.
  33. J. Chem. Eng. Data v.31 Schmitt, W. J.;Reid, R. C.
  34. Ing. Eng. Chem. Fundam. v.15 Peng, D. Y.;Robinson, D. B.
  35. Trans. Faraday Soc. v.52 Bawn, C. E.;Patel, R. D.
  36. Trans. Faraday Soc. v.64 Eichinger, B. E.;Flory, P. J.
  37. Trans. Faraday Soc. v.64 Kershaw, R. W.;Malcolm, G. N.
  38. Fluid Phase Equilibria v.56 Ochi, K.;Tada, M.;Kojima, K.
  39. DECHEMA Chemical Data Seres; DECHEMA: Frankfurt v.V Liquid and Liquid Equilibrium Data Collection Sensen, J. M.;Arlt, W.
  40. J. Physico-Chemical Constants of Pure Organic Compounds v.1-2 Timmermans,
  41. J. Chem. Eng. Data. v.20 Leder, F.;Irani, C. A.