C-C Bond Cleavage of $\mathbf{8}$-Quinolinyl Alkyl Ketone by σ, η^{3}-Allyl Rhodium(III) Complex

Dae-Yon Lee, Yeong-Gweon Lim ${ }^{\dagger}$, and Chul-Ho Jun*
Department of Chemistry, Yonsei University, Seoul 120-749, Korea
${ }^{\dagger}$ Agency for Defense Development, Yuseong 305-600, Korea

Abstract

Bis(ethylene)rhodium(I) chloride dimer reacted with vinylcyclopropane to give σ, η^{3}-allylrhodium(III) complex 3. Complex 3 underwent C -C bond cleavage of 8 -quinolinyl ethyl ketone 11, to form η^{3} - 1,3 -dimethylallylrhodium(III) complex 8, which was reductively eliminated by trimethyl phosphite to give 8-quinolinyl-1-methylbut-2-enyl ketone (10). More sterically hindered 8 -quinolinyl alkyl ketones were allowed to react with complex 3 to afford corresponding alkenes as well as a mixture of complex 8 and $\eta^{3}-1$-ethylallyl rhodium(III) complex 19, identified as 10 and 8-quinolinyl-pent-2-enyl ketone (20) after reductive elimination. 8-Quinolinyl alkyl ketone bearing a sterically hindered alkyl group showed less reactivity for $\mathrm{C}-\mathrm{C}$ bond cleavage and higher $\mathbf{2 0 / 1 0}$ ratio compared with those having a less sterically hindered alkyl group, such as 8 -quinolinyl ethyl ketone (11).

Introduction

Vinylcyclopropanes could be transformed into cyclopentenes ${ }^{1}$ and dienes ${ }^{2}$ by transition metal complexes. Vinylcyclopropanes particularly undergo an epimerization in the presence of rhodium(I) complexes as catalyst. ${ }^{3}$ This transformation can be explained by reversible formation of $\sigma, \eta^{3}-$ allylrhodium(III) intermediate through oxidative addition of a strained $\mathrm{C}-\mathrm{C} \sigma$-bond of the three membered ning in vinylcyclopropane to rhodium(I). The σ, η^{3}-allyl metal complexes have been prepared by many different methods and well characterized. ${ }^{4}$ We have previously reported the preparation of the σ, η^{3}-allylrhodium(III) complex 3 from the reaction of bis(ethylene)rhodium(I) chloride dimer (1) and vinylcyclopropane (2) (Scheme 1). ${ }^{5}$

Treatment of complex 3 with 8 -quinolinyl benzyl ketone (4) induced reductive elimination of 3 to generate vinylcyclopropane, and subsequent C - C bond cleavage of 4 to

$7^{\mathrm{C}=0}$

Scheme 1. Formation of σ, η^{3}-allyl rhodium(111) chloride (3) from vinylcyclopropane (2) and bis(ethylene) rhodium(I) chloride dimer (1), and its application into $\mathrm{C}-\mathrm{C}$ bond and $\mathrm{C}-\mathrm{H}$ bond cleavgae of 8 -quinolinyl acyl derivatives, 4 and 7 .
give 5 , which was identified with addition of pyridine- d_{5} as 6. ${ }^{5}$ When 8 -quinolinecarboxaldehyde (7) was applied to this reaction in place of 4, η^{3}-1,3-dimethylallylrhodium(III) complex 8 was obtained, which was identified as syn, anti- $\eta^{3}-1$, 3-dimethylallylrhodium(III) complex 9 after addition of py-ridine- d_{5}. ${ }^{6}$ Ligand-promoted reductive elimination of 9 by trimethyl phosphite produced β, γ-unsaturated ketone 10 . This report explains C -C bond cleavage of various 8 -quinolinyl alkyl ketones bearing β-hydrogens by σ, η^{3}-allylrhodium(III) complex 3.

Experimental

All reactions were carried out under nitrogen. Vinylcyclopropane, ${ }^{14}$ chlorobis(cyclooctene)rhodium(I), ${ }^{15} \quad 8$-quinolinyl alkyl ketones ${ }^{9}$ were prepared by published procedures. Bis(ethylene)rhodium(I) chloride dimer, 1,3-pentadiene, trimethyl phosphite, pyridine- d_{5}, benzene- d_{6} were purchased from Aldrich Chemical Co. and used without further purification. All solvents were distilled and stored over a molecular sieve ($4 \AA$). NMR spectra were recorded with either a Bruker AC 300 MHz or a Bruker Avance/ DPX250 (250 MHz) spectrometer.

Reaction of 3 with 11 . To 20 mg (0.05 mmol) of bis(ethylene)rhodium(I) chloride dimer (1) in a screw-capped vial, 72 mg (1.00 mmol) of vinylcyclopropane (2) was added at ambient temperature under nitrogen with loss of ethylene. After the reaction mixture was stirred for an additional 15 minutes, excess vinylcyclopropane was completely removed in vacuo to provide a yellow precipitate 3. ${ }^{5}$ To this suspension was rapidly added $19 \mathrm{mg}(0.103 \mathrm{mmol})$ of 8 -quinolinyl ethyl ketone (11) in 1 mL of benzene. The reaction was allowed to proceed at $100^{\circ} \mathrm{C}$ for two hours. The dark brown precipitate was dissolved in $120 \mathrm{mg}(0.960$ mmol) of trimethyl phosphite to give a brown solution which was evaporated to dryness at $80^{\circ} \mathrm{C}$ under reduced pressure. The crude residue was purified by column chromatography (n -hexane : ethyl acetate $=5: 2$) to give 15.7 mg (68% yield) of 8 -quinolinyl-1-methyl but-2-enyl ketone ($\mathbf{1 0}$) (a trace ($<1 \%$) of 20 was also determined). ${ }^{12}$

General Procedure of the reaction of 3 and 18 in $\mathrm{C}_{6} \mathrm{D}_{6}$. \quad To 20 mg (0.05 mmol) of bis(ethylene)rhodium(I) chloride dimer (1) in a screw-capped vial, 72 mg (1.00 mmol) of vinylcyclopropane (2) was added at ambient temperature under nitrogen with loss of ethylene. After the reaction mixture was stirred for additional 15 minutes, excess vinylcyclopropane was completely removed in vacuo to provide a yellow precipitate 3. To this suspension was added 0.103 mmol of 8 -quinolinyl alkyl ketone 18 , in 1 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction was allowed to proceed at $100{ }^{\circ} \mathrm{C}$ for two hours. After cooling the reaction mixture, the solution was filtered to give alkene in $\mathrm{C}_{6} \mathrm{D}_{6}$, determined by 'H NMR. The dark brown precipitate was dissolved in 120 mg (0.960 mmol) of trimethyl phosphite to give a brown solution, which was evaporated to dryness at $80^{\circ} \mathrm{C}$ under reduced pressure. The crude residue was purified by column chromatography to give a mixture of 10 and 8-quinolinyl-pent-2enyl ketone (20) ${ }^{12}$ in which ratio was determined from the ${ }^{1} H$ NMR spectra.

Isomerization of 3 into 1,3 -pentadieme. To 14 mg (0.036 mmol) of bis(ethylene)rhodium(I) chloride dimer (1) in a screw-capped vial, $72 \mathrm{mg}(1.00 \mathrm{mmol})$ of vinylcyclopropane (2) was added at ambient temperature under nitrogen with loss of ethylene. The reaction mixture was stirred for additional 15 minutes, excess vinylcyclopropane was completely removed in vacuo to provide a yellow precipitate 3. To 3 was added 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The resulting suspension was heated at $100^{\circ} \mathrm{C}$ for 15 minutes. After cooling, 0.2 g of pyridine- d_{5} and one drop of trimethyl phosphite were added to give a mixture of vinylcyclopropane and 1,3 -pentadiene in a 74/26 ratio, determined by ${ }^{1} \mathrm{H}$ NMR spectra.

Reaction of 21 with 8 -quinolinyl n-hexyl ketone ($\mathbf{1 8 b}$). To $30.0 \mathrm{mg}(0.042 \mathrm{mmol})$ of chlorobis(cyclooctene)rhodium(I) (25) in a screw-capped vial, 80 mg of $1,3-$ pentadiene was added at ambient temperature under nitrogen. After the reaction mixture was stirred for additional 30 minutes, excess 1,3 -pentadiene and cyclooctene were completely removed in vacuo to provide a yellow precipitate 21. ${ }^{12,13}$ To this suspension was rapidly added 20.0 mg (0.083 mmol) of 8 -quinolinyl n-hexyl ketone ($\mathbf{1 8 b}$) in 1.5 mL of benzene. The reaction was allowed to proceed at $100{ }^{\circ} \mathrm{C}$ for two hours. The dark brown precipitate dissolved in $120 \mathrm{mg}(0.960 \mathrm{mmol})$ of trimethyl phosphite, to give a brown solution which was evaporated to dryness at $80^{\circ} \mathrm{C}$ under reduced pressure. The crude residue was purified by column chromatography to give 4.0 mg (21% yield) of a mixture of $\mathbf{1 0}$ and $\mathbf{2 0}$ in a $9 / 1$ ratio, and 51% unreacted $\mathbf{1 8 b}$ was recovered.

Results and Discussion

Complex 3, prepared from 1 and 2, was allowed to react with 8-quinolinyl ethyl ketone (11) in benzene at $100^{\circ} \mathrm{C}$ for two hours to give an insoluble precipitate 8. Ligand-pro-

Scheme 2. Reaction mechanism of σ, η^{3}-allyl rhodium(III) complex 3 and 8 -qionolinyl ethyl ketone (11) to produce complex 8.
moted reductive elimination of the resulting reaction mixture with trimethyl phosphite led to 10 in 68% isolated yield after chromatographic isolation (eq. 1).

Complex 8 could be isolated with pentane and identified by addition of pyridine- d_{5} as $9 .^{6}$ The formation of 8 from the reaction of 11 with 3 is explained in Scheme 2.

The first step may form vinylcyclopropane ${ }^{7}$ from the σ, η^{3} allylrhodium(III) complex by coordination of the acylquinolinyl group as in 12 to give $\mathbf{1 3}$. There is a report about the formation of vinylcyclopropane from the σ, η^{3}-allylrhodium (III) complex. With reductive elimination of $12, \mathrm{Rh}$ (III) might be reduced to $\mathrm{Rh}(\mathrm{I})$ in 13. An intermediate $13, \mathrm{Rh}(\mathrm{I})$ might oxidatively add to an $\alpha-\mathrm{C}$ - C bond of the ketone to generate 14. The $\mathrm{Rh}(\mathrm{I})$ species have been known to undergo $\mathrm{C}-\mathrm{C}$ bond cleavage of 11 under very mild conditions. ${ }^{*}$ Complex 14 bearing β-hydrogens might undergo β-elimination to give 15 as a transient intermediate. During the process for β-elimination of 14 , ethylene, the β-elimination product should be formed, but barely detectable due to its volatility. β-Elimination of the metal alkyls bearing β-hydrogens is the common process in organotransition metal chemistry, especially in 8 -acylquinolinyl rhodium(III) alkyls. ${ }^{9}$ The hydride insertion into vinylcyclopropane in 15 according to Markovnikoff's rule and the subsequent ring opening in 16 produced alkenyl rhodium(III) intermediate 17. Complex 17 underwent olefin-isomerization by allyl-hydrido mechanism to give 8, which has already been studied. ${ }^{10}$

Some other kinds of 8-quinolinyl alkyl ketone 18 having β-hydrogens were applied for this $\mathrm{C}-\mathrm{C}$ bond cleavage by 3 to identify the generation of the β-elimination product, alkene (eq. 2).

Reaction of 18 with 3 at $100^{\circ} \mathrm{C}$ for two hours in $\mathrm{C}_{6} \mathrm{D}_{6}$ produced the corresponding alkenes, determined by ${ }^{1} \mathrm{H}$ NMR spectra, as well as 8 and a small amount of 19 . The yiclds and ratios of 8 to 19 were determined as 10 and 20 after ligand-promoted reductive elimination with trimethyl phosphite as shown in Table 1.

In the reaction of 8 -quinolinyl sec-butyl ketone ($\mathbf{1 8 c}$), 8 quinotinyl cyclopentyl ketone (18d) and 8-quinolinyl cy-

Table 1. Reaction of 18 and 3 at $100{ }^{\circ} \mathrm{C}$ for 2 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ and reductive elimination of the resulting complex by $\mathrm{P}(\mathrm{OMe})_{3}$

Entry	R	alkene ${ }^{\text {a }}$	$\begin{gathered} \text { Ratio } \\ \text { of } \\ \mathbf{1 0 / 2 0 ^ { b }} \end{gathered}$	Isolated Yield of 10 \& 20
1	n-butyl (18a)	2-butene	95/5	64\%
2	n-hexyl (18b)	2-hexene	97/3	62\%
	sec-butyl (18c)	2-butene	94/6	48\%
4	cyclopentyl (18d)	cyclopentene	93/7	44\%
5	cyclohexyl (18e)	cyclohexene	92/8	46\%
	t-butyl (18f)			0\%
	α, α-dimethylbenzyl (18g)			0\%

${ }^{\text {a }}$ Alkenes were determined by ${ }^{\prime}$ H NMR spectra. ${ }^{5}$ Ratios were determined by ${ }^{3}$ H NMR spectra.
clohexyl ketone (18e) with 3, expected β-elimination products, 2-butene, cyclopentene and cyclohexene were determined by 'H NMR spectra (Table 1, entry 3-5). However, the reaction of 8 -quinolinyl n-butyl ketone (18a) and 8 -quinolinyl n-hexyl ketone (18b) with 3 afforded 2-butene and 2 -hexene instead of 1 -butene and 1 -hexene (Table 1, entry 1-2). Initially generated 1 -butene and 1 -hexene might be isomerized into 2 -butene and 2 -hexene by rhodium complexes. Isomerization of the terminal alkene into the more stable internal alkene by transition metals has been studied in detail. ${ }^{11}$

Complex 8 was contaminated with a small amount of 19, in which the ratios of $8 / 19$ were also determined as those of reductive elimination products, 10 and 20 . The mechanism for the formation of 19 is explained in Scheme 3.

At high temperature, complex 3 may partially decompose to chlorobis(1,3-pentadiene)rhodium(I) (21), which reacts with 22 to give the C-C bond cleavage complex 23, followed by β-elimination to form 24. There are some reports about conversion of σ, η^{3}-allyl complex into 1,3 -pentadiene. ${ }^{2}$ On heating 3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $100^{\circ} \mathrm{C}$ for 15 minutes, 26% of 3 was transformed into 1,3 -pentadiene, determined by ${ }^{1} \mathrm{H}$ NMR spectra (eq. 3).

(74 : 26)

It has been reported that a hydride addition into 1,3-pentadiene in 24 produced a mixture of 8 and 19 in an $80 / 20$

Scheme 3. Plausible mechanism of the formation of 19 from the reaction of 8 -quinolinyl alkyl ketone (22) bearing β-hyrogens and 21, partially decomposed from 3.
ratio ${ }^{12}$ while reaction of 8 -quinolinecarboxaldehyde (7) with σ, η^{3}-allylrhodium(III) complex 3 afforded 8 exclusively. ${ }^{6}$ To identify partial formation of 19 from complex 21 and 22 , 8 -quinolinyl hexyl ketone ($\mathbf{1 8 b}$) was allowed to react with complex 21, ${ }^{13}$ prepared in situ by addition of 1,3-pentadiene to chlorobis(cyclooctene)rhodium(I) dimer (25), at $100{ }^{\circ} \mathrm{C}$ for two hours. Ligand-promoted reductive elimination by pyridine and trimethyl phosphite produced 10 and 20 in a $90 /$ 10 ratio in 21% isolated yield.

When R group in 18 was changed as primary, secondary and tertiary alkyl in this reaction, the isolated yield of 10 and 20 was dramatically decreased, and no product was obtained for 8-quinolinyl tertiary alkyl ketones (Table 1, entry 6-7). These trends can be explained by proposing the increasing steric hindrance of the alkyl group by changing the primary alkyl group to the tertiary alkyl group in 18. It is not clear whether the accessibility problem is generated between the metal center and the nitrogen in quinoline or between the nitrogen-coordinated metal center and the α ketone C-C bond. Since the steric hindrance problem of the alkyl group makes C-C bond cleavage more difficult, complex 3 might have more time for isomerization into 21 as in the primary alkyls to secondary alkyls. Therefore, as the steric hindrance of alkyl group increases as in 11, 18b, and 18e, the product ratio of $20 / 10$ also increases as $0 / 100,3 / 97$ and $8 / 92$.

In conclusion, various 8 -quinolinyl alkyl ketones bearing β-hydrogens were applied for C-C bond cleavage by σ, η^{3} allylrhodium(III) complex 3. C-C bonds of 8 -quinolinyl alkyl ketone having primary alkyls and secondary alkyls could be cleaved by 3 , while those of 8 -quinolinyl tertiary alkyl ketones resisted cleavage due to the steric hindrance.

Acknowledgment. This work was supported by grant No. KOSEF 961-0306-054-2 from the Korea Science and Engineering Foundation, and by the Basic Science Research Institute Program, Project No. BSRI-96-3422, from the Ministry of Education. Author (C.-H. Jun) also thanks IBRD for purchasing a 250 MHz NMR spectrophotometer.

References

1. (a) Murakami, M.; Nishida, S. Chem. Lett. 1979, 927. (b) Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 2871. (c) Alcock, N. W.; Brown, J. M.; Connely, J. A.; Williamson, D. H. J. Chem. Soc., Perkin II 1979, 962. (d) Ryu, I.; Ikura, K.; Tamura, Y.; Maenaka, J.; Ogawa, A.; Sonoda, N. Synlett 1994, 941. (c) Hiroi, K.; Arinaga, Y. Tetrahedron Lett. 1994, 35, 153.
2. (a) Sarel, S.; Ben-Shoshan, R.; Kirson, B. J. Am. Chem. Soc. 1965, 87, 2517. (b) Sarel, S. Acc. Chem. Res. 1978, II, 204. (c) Hanzawa, Y.; Harada, S.; Nishio, R.; Taguchi, T. Tetrahedron Lett. 1994, 35, 9421. (d) Schulze, M. M.; Gokel, U. Tetrahedron Lett. 1996, 37, 357. (e) Gassman, P. G.; Lee, C.-J. Syn. Comm. 1994, 24, 1457.
3. Salomon, R. G.; Salomon, M. F.; Kachinski, J. L. C. J. Am. Chem. Soc. 1977, 99, 1043.
4. (a) Aumann, R. J. Am. Chem. Soc. 1974, 96, 2631. (b) Roell, B. C.; McDaniel, K. F. J. Am. Chem. Soc. 1990, 112, 9004. (c) Bleeke, J. R.; Hays, M. K. Organometallics 1987, 6, 1367. (d) Bleeke, J. R.; Wittenbrink,
R. J.; Clayton Jr. T. W.; Chang, M. Y. J. Am. Chem. Soc. 1990, 112, 6539.
5. Jun, C.-H.; Kang, J.-B.; Lim, Y.-G. Tetrahedron Lett. 1995, 36, 277.
6. Jun, C.-H.; Lim, Y.-G. Tetrahedron Lett. 1995, 36, 3357.
7. Donaldson, W. A.; Ramaswamy, M. Tetrahedron Lett. 1989, 30, 1343.
8. (a) Suggs, J. W.; Jun, C.-H. J. Am. Chem. Soc. 1984, 106, 3054. (b) Suggs, J. W.; Jun, C.-H. J. Am. Chem. Soc. 1986, 108, 4679.
9. Suggs, J. W.; Jun, C.-H. J. Chem. Soc., Chem. Comm. 1985, 92 .
10. (a) Jun, C.-H. Organometallics 1996, 15, 895. (b) Jun, C.-H.; Koo, B.-T.; Kang, J.-B.; Kim, K.-J. Bull. Korean Chem. Soc. 1994, 15, 1064 . (c) Jun, C.-H.; Kang, J.-B.; Lim, Y.-G. Bull. Korean Chem. Soc. 1991, 12, 251.
11. Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed; John Wiley \& Sons: New York, 1992; p 10.
12. Jun, C.-H. J. Organomet. Chem. 1990, 390, 361.
13. Porri, L.; Lionetti, G.; Allegra, A.; Immirzi, A. J. Chem. Soc., Chem. Comm. 1965, 336.
14. Crawford, R. J.; Cameron, D. M. Can. J. Chem. 1967, 45, 691.
15. van der Ent, A.; Onderdelinden, A. L. Inorg. Syn. 1973, 14, 92.

Cobalt(III) Complexes of 1,3-Diaminopropane$\mathbf{N}, \mathrm{N}^{\prime}$-di- α-(β-methyl)-pentanoic Acid

Hyeyoung Ham, Young-Joon Park, and Moo-Jin Jun*
Department of Chemistry, Yonsei University, Seoul 120-749, Korea

Received May 1, 1997

Abstract

A novel ONNO-type tetradentate ligand, 1,3-diaminopro-pane-N, N^{1}-di- α-(β-methyl)-pentanoic acid (H_{2} apmp) and its cobalt(III) complexes, $\left[\mathrm{Co}(\mathrm{apmp}) \mathrm{X}_{2}\right]^{n+},\left(\mathrm{X}=\mathrm{Cl}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{X}_{2}=\mathrm{CO}_{3}{ }^{2 \cdot}\right.$, en, L-phenylalanine) have been synthesized. During the preparation of the dichloro cobalt(III) complex of apmp, $\left[\mathrm{Co}(\mathrm{apmp}) \mathrm{Cl}_{2}\right]^{-}$, the ligand has coordinated to the cobalt(III) ion in a geometric selectivity to give only the uns-cis isomer and, during the substitution reaction between L -phenylalanine and $\left[\mathrm{Co}(\mathrm{apmp}) \mathrm{Cl}_{2}\right]^{-}$, the L -phenylalanine has coordinated to the cobalt(III) ion in a geometric selectivity to give only an uns-cis-meridional isomer. It is of interest that this is a rare case of the $\left[\mathrm{Co}\left(\mathrm{ONNO} \text { ligand) } \mathrm{X}_{2}\right]^{n+}\right.$-type complex preparations, which gives only an uns-cis isomer with geometric selectivity.

Introduction

A linear flexible tetradentate ligand of the type ONNO in the donor atom array such as edda (ethylenediamine- N, N '-diacetic acid, $\mathrm{HOOCCH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{COOH}$) can occupy four coordination sites in an octahedral geometry to give three possible geometric isomers: s-cis (symmetric cis), uns-cis (unsymmetric cis), and trans (Figure 1). A number of ONNO-type ligands have been prepared, and many studies have been directed toward the stereospecificity of these

Figure 1. The possible geometrical isomers of $\left[\mathrm{Co}(\text { edda }) \mathrm{X}_{2}\right]^{n+}$ complexes.

[^0]complexes and the isolation of various isomers. ${ }^{1-10}$ The s-cis and uns-cis geometric isomers have usually been isolated in the preparation of the metal complexes, but no trans isomers have been obtained to date.

1,3-diaminopropane-di- α-(β-methyl)-pentanoate ligand, apmp
In order to study the relative stabilities of the s-cis and uns-cis isomers during the preparation process of the metal complexes of an ONNO-type ligand, a novel bulky 1,3-diaminopropane- $\mathrm{N}, \mathrm{N}^{\top}-\mathrm{di}-\alpha-(\beta$-methyl)-pentanoate (apmp) ligand and the cobalt(III) complexes of this apmp ligand have been prepared.

It is of particular interest to observe what isomers would be formed from the preparation of $\left[\mathrm{Co}(\mathrm{apmp}) \mathrm{X}_{2}\right]^{n+}$-type $(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}^{2}, \mathrm{X}_{2}=\mathrm{CO}_{3}{ }^{2-}$, en, L-phenylalanine) complexes. It will be shown that only the uns-cis geometric isomer is obtained in the preparation of $\left[\mathrm{Co} \text {-(apmp) } \mathrm{X}_{2}\right]^{n+}$ com-

[^0]: *To whom correspondence should be addressed

